Main content area

Differential incorporation of dietary conjugated linolenic and linoleic acids into milk lipids and liver phospholipids in lactating and suckling rats

Cao, Ying, Chen, Jingnan, Yang, Lin, Chen, Zhen-Yu
Journal of nutritional biochemistry 2009 v.20 no.9 pp. 685-693
rats, lactation, suckling, animal models, dietary fat, conjugated linoleic acid, linolenic acid, milk, fortified foods, experimental diets, saturated fatty acids, fatty acid composition, liver, phospholipids, structure-activity relationships
Interest in health benefits of conjugated fatty acids is growing. The present study compared the incorporation pattern of dietary conjugated linolenic acids (CLnA) into milk with that of conjugated linoleic acids (CLA). Lactating Sprague-Dawley rats (Day 1) were divided into five groups fed the control diet (n=4) or one of four experimental diets supplemented with 1-2% CLA or CLnA mixture (n=8 each). Supplementation of 1% and 2% CLA led to enrichment of 4.17% and 8.57% CLA, respectively, while supplementation of 1% and 2% CLnA resulted in enrichment of only 0.98% and 1.71% CLnA in the milk lipids, demonstrating the transfer of CLnA from maternal diet to milk was discriminated. When the lactating rats were given a diet containing a CLnA mixture of 9t,11t,13t-, 9c,11t,13t- and 9c,11t,13c-CLnA isomers, two CLA isomers, namely, 9t,11t (0.59-0.90%) and 9c,11t (1.21-1.96%), were found in the milk, suggesting that three CLnA isomers were Δ-13 saturated. Dietary CLnA at 1-2% had no effect on liver phospholipid (PL) fatty acid composition of both maternal and suckling rats, whereas dietary CLA increased docosahexaenoic acid (4c,7c,10c,13c,16c,19c-22:6) and palmitic acid (16:0) proportionally in the PL of maternal rats, but it suppressed 16:0 in the PL of suckling rats. It is concluded that maternal rats incorporate CLnA isomers into milk differently from that of CLA isomers. Most interesting is that maternal rats can metabolically convert CLnA to CLA.