U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

A critical review of on-site inorganic arsenic screening methods

Author:
Yi He, Jingyu Liu, Yanhua Duan, Xiaofei Yuan, Lulu Ma, Ratan Dhar, Yan Zheng
Source:
Journal of environmental sciences (China) 2023 v.125 pp. 453-469
ISSN:
1001-0742
Subject:
arsenic, arsenites, biocompatible materials, colorimetry, electrochemistry, guidelines, oligonucleotides, oxidation, risk, transportation, well water, China
Abstract:
Approximately 94 to 220 million people worldwide are at risk of drinking well water containing arsenic > 10 µg/L, the WHO guideline value. To identify non-compliant domestic wells, assess health risks and reduce exposure, accurate and rapid on-site inorganic arsenic screening methods are desirable because all domestic wells worldwide need to be tested. Here, the principles, advantages and limitations of commonly used colorimetry, electrochemistry, and biosensing methods are critically reviewed, with the performance compared with laboratory-based benchmark methods. Most commercial kits are based on the classic Gutzeit reaction. Despite being semi-quantitative, the more recent and more expensive products display improved and acceptable accuracy and shorter testing time (∼10 min). Carried out by trained professionals, electrochemical methods are also feasible for on-site analysis, although miniaturization is desirable yet challenging. Biosensing using whole bacterial cells or bio-engineered materials such as aptamers is promising, if incorporated with function specific nanomaterials and biomaterials. Since arsenic is frequently found as arsenite in reducing groundwater and subject to oxidation during sampling, transportation and storage, on-site separation and sample preservation are feasible but the specific methods should be chosen based on sample matrix and tested before use. To eliminate arsenic exposure among hundreds of millions of mostly rural residents worldwide, we call for concerted efforts in research community and regulatory authority to develop accurate, rapid, and affordable tests for on-site screening and monitoring of arsenic in drinking water. Access to affordable testing will benefit people who are socioeconomically disadvantaged.
Agid:
7661105