U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Changes in the free amino acid profile of pickling cucumber during lactic acid fermentation

Jennifer Fideler Moore, Rachel DuVivier, Suzanne D. Johanningsmeier
Journal of food science 2022 v.87 no.2 pp. 599-611
arginine deiminase, asparagine, citrulline, consumer acceptance, cucumbers, free amino acids, glutamate decarboxylase, glutamine, health promotion, human health, isoleucine, lactic acid, lactic fermentation, leucine, liquid chromatography, lysine, mass spectrometry, nutrition, nutritive value, ornithine, starter cultures
Free amino acid (FAA) profiles of fresh, acidified, naturally fermented, and starter culture fermented cucumbers were analyzed by liquid chromatography triple quadrupole mass spectrometry. Fermented cucumbers contained more total FAA than acidified cucumbers (1,302 ± 102 mg/kg and 635 ± 35 mg/kg, respectively). Total FAA content of fermented cucumber was similar regardless of brine salt levels (2–6% NaCl) and starter culture addition. Glutamine (1491.4 ± 69.3 mg/kg), γ‐aminobutyric acid (GABA, 269.6 ± 21.4 mg/kg), asparagine (113.0 ± 6.4 mg/kg), and citrulline (110.3 ± 8.5 mg/kg) were the most abundant FAA in fresh pickling cucumber, whereas GABA (181.3 ± 21.5 mg/kg), isoleucine (165.2 ± 11.2 mg/kg), leucine (129.8 ± 10.9 mg/kg), and lysine (110.9 ± 5.0 mg/kg) were the most abundant in fermented cucumber. GABA and ornithine were produced during fermentation, indicating glutamate decarboxylase and arginine deiminase activities. Notably, ornithine was significantly higher in natural (63.3 ± 31.5 mg/kg) versus starter culture fermented cucumbers (3.0 ± 0.7 mg/kg). This new information on FAA composition of fresh and fermented pickling cucumbers shows the impact of fermentation conditions on cucumber amino acid profiles while providing insight for manipulating fermentations for health promotion and consumer acceptance. PRACTICAL APPLICATION: This study reports changes in the free amino acid profiles of raw, fermented and acidified cucumbers, which may be valuable for understanding the impact of these foods on human health and nutrition. This information is useful for food microbiologists studying the metabolism of lactic acid bacteria during fermentation and/or designing starter cultures and could contribute to the development of novel fermented cucumber pickle products with enhanced nutritional value.