Main content area

Long-term toxicity of hexabromocyclododecane (HBCDD) to the benthic clam Macoma balthica (L.) from the Baltic Sea

Smolarz, Katarzyna, Berger, Agata
Aquatic toxicology 2009 v.95 no.3 pp. 239-247
water pollution, flame retardant finishes, chronic toxicity, clams, cytotoxicity, genotoxicity, biomarkers, Sweden, Baltic Sea
The world's largest brackish water sea area, the Baltic Sea, is considered to be one of the most polluted seas of the world. Many new pollutants are constantly entering the environment, such as brominated flame-retardants (BFRs). BFRs represent a group of compounds that structurally resemble hydrophobic organic contaminants, but only scarce data about their toxicity to marine organism exist. Thus, the purpose of this study was to analyze long-term in vivo cytotoxicity and genotoxicity of hexabromocyclodododecane (HBCDD) to exposed marine invertebrates using a suite of cytogenetic biomarkers. This included a set of nuclear and nucleolar characteristics and the micronucleus test. The use of those parameters reflects different mechanisms of nuclear activity regulation in cells (as a parameter of cytotoxicity) and measures subcellular processes. The induction of nuclear abnormalities (like the formation of micronuclei) was also employed here as a parameter of genotoxicity. In order to reflect the proliferative and metabolic activity of the cells the number of argylophillic nucleolar organiser regions (NORs) in interphase cells was scored. Over a period of 50 days an in vivo exposure experiment with a clam Macoma balthica and different concentrations of HBCDD (nominal concentrations of 0, 100 and 250μg/l) with three replicates each was performed. Gill cells were used as “sentinel systems” considering specificity in metabolism, repair mechanisms, adaptative response and cell proliferation. A significant increase in nuclear and nucleolar abnormalities and in the frequency of dead cells was observed during the duration of the experiment with the highest peak occurring 10 days after exposure for nuclear abnormalities and 20-30 days after exposure for malfunction of ribosomal genes (NORs) (GLM analyses and Spearman correlation, p <0.05). Thus, the induction of micronuclei and other nuclear abnormalities reflected the toxic potential of HBCDD to marine invertebrates while an increase in the number of NOR may also reflect adaptive responses of the system as enhanced induction of proliferative regeneration of the gill tissue.