U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

Disease burden from simultaneous exposure of Cryptosporidium sp. and Giardia sp. and land use vulnerability assessment in a Costa Rican drinking water system

Author:
Eric Morales, Gabriel Ibarra, Liliana Reyes, Kenia Barrantes, Rosario Achí, Luz Chacón
Source:
Microbial risk analysis 2022 v.21 pp. 100213
ISSN:
2352-3522
Subject:
Cryptosporidium, Giardia, United States Environmental Protection Agency, diarrhea, feces, hazard identification, humans, land use planning, microbiological risk assessment, pollution, risk, watersheds, Latin America
Abstract:
Human and animal feces are one of the main pollutants in drinking water systems (DWS). Both sources of fecal pollution are related to environmental conditions, such as poor land use management and little micro-basin protection. Cryptosporidium sp. and Giardia sp. are zoonotic protozoan water and foodborne transmitted parasitic pathogens and a frequent cause of diarrhea in children in low- and middle-income countries. In Latin America, DWS microbial risk assessment of these parasites is scarce. The aim of this study was to apply land use analysis, quantitative microbial risk assessment (QMRA), and disease burden (DALY; disability-adjusted life years) estimation of Cryptosporidium sp. and Giardia sp. for DWS that supplies 1.4% of the Costa Rican population. Land use analysis showed pollution sources and urban activities at the catchment area of all micro-basins, demonstrating the pollution's vulnerability, especially near to catchment sites of the DWS. The risk of infection by Cryptosporidium sp. and Giardia sp. was higher than US EPA standards, and the health burdens were above WHO recommendations. The higher risk of infection was observed in the micro-basins with the higher area of urban use, mainly in the buffer zones. QMRA and land use analysis are useful tools for the characterization of possible pollution foci in hazard identification.
Agid:
7709117