U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

PubAg

Main content area

How Münch's adaptation of Pfeffer's circulating water flow became the pressure-flow theory, and the resulting problems — A historical perspective

Author:
Winfried S. Peters, Michael Knoblauch
Source:
Journal of plant physiology 2022 v.272 pp. 153672
ISSN:
0176-1617
Subject:
cytoskeleton, hydrostatic pressure, organelles, plant physiology, water flow
Abstract:
Long-distance transport of photoassimilates in the phloem of vascular plants occurs as bulk flow in sieve tubes. These tubes are arrays of cells that lose nuclei, cytoskeleton, and some organelles when they differentiate into mature sieve elements. Symplasmic continuity is achieved by perforations that turn the cell walls between adjoining sieve elements into sieve plates. These structural features are interpreted as adaptations that reduce the resistance sieve tubes offer to cytoplasmic bulk flow. According to the common reading of Ernst Münch's pressure-flow theory, the driving forces for these flows are osmotically generated gradients of hydrostatic pressure along the sieve tubes. However, the significance of pressure gradients in the flow direction has also been questioned. Münch himself stated that no detectable pressure gradients existed between the linked osmotic cells that he used to demonstrate the validity of his ideas, and the earliest explanation of osmotically driven flows by Wilhelm Pfeffer, on which Münch based his theory, explicitly claimed the absence of pressure gradients. To resolve the apparent contradiction, we here reconstruct the history of the idea that osmotically driven transport processes in organisms necessarily require steps or gradients of hydrostatic pressure along the transport route. Our analysis leads us to conclude that some defects of overly simplifying interpretations of Münch's ideas (such as the sieve plate fallacy) could be avoided if our descriptions of his theory in textbooks and the scientific literature would follow the logics of the theory's earliest formulations more closely.
Agid:
7716064