Main content area

The adoption of non-inversion tillage systems in the United Kingdom and the agronomic impact on soil, crops and the environment—A review

Morris, N.L., Miller, P.C.H., Orson, J.H., Froud-Williams, R.J.
Soil & tillage research 2010 v.108 no.1-2 pp. 1-15
innovation adoption, soil stabilization, seedbed preparation, soil structure, crop yield, sustainable agriculture, soil aggregates, weed control, soil organic matter, crop residues, seedbeds, plant establishment, erosion control, resistance management, clay soils, herbicides, environmental impact, conservation tillage, crops, United Kingdom
This paper seeks to review the current knowledge on soil cultivation and its effects to both soil physical properties and consideration to soil management to optimise crop productivity and yield when using non-inversion tillage within the United Kingdom (UK). There are many terms used to describe conservation tillage, more commonly referred to within the UK as non-inversion tillage, but it has generally been defined as any tillage system that maintains at least 30% residue cover on the soil surface after drilling to reduce the risk of soil erosion, conserve soil organic matter and improve soil structural stability. Consideration to a number of important factors needs to be given if successful adoption of non-inversion tillage is to be made in the UK. Soil type can have a substantial influence on the relative success of the adoption of non-inversion tillage. For example, on self-structuring clay soils the system can be relatively well suited and allow for timely cultivations that reduces the risk for creating very dry, cloddy seedbeds following ploughing wet soil that are difficult for establishing a successful crop. However, in contrast some unstructured light sand soils tend not to be suitable for non-inversion tillage because the soil aggregates tend to form an angular structure that fit tightly together excluding the movement of air and water through the soil profile that are fundamental requirements for healthy crop growth. Further agronomic management factors including crop residue handling at harvest and the consideration to weed control strategies that seek to reduce the risk to increasing herbicide resistance, in particular grass weeds, from the use of selective herbicide groups, e.g. sulfonylurea herbicides (e.g. Atlantis). If these factors are carefully managed then the opportunities in reducing fuel use, timeliness of cultivations and improved soil erosion control that non-inversion tillage can offer are potentially of great value in adopting sustainable cultivation strategies for maintaining or improving crop performance in a period of increased economic and environmental uncertainty.