Main content area

Genetic diversity of piroplasms in plains zebra (Equus quagga burchellii) and Cape mountain zebra (Equus zebra zebra) in South Africa

Bhoora, Raksha, Buss, Peter, Guthrie, Alan J., Penzhorn, Barend L., Collins, Nicola E.
Veterinary parasitology 2010 v.174 no.1-2 pp. 145-149
Piroplasmia, wildlife diseases, babesiosis, genetic variation, polymerase chain reaction, sequence analysis, molecular genetics, nucleotide sequences, ribosomal RNA, Equus zebra, Equus, South Africa
Seventy EDTA blood samples collected from plains zebra (Equus quagga burchellii) and Cape mountain zebra (Equus zebra zebra) were screened for the presence of piroplasm parasite DNA using quantitative T. equi-specific and B. caballi-specific TaqMan real-time PCR (qPCR) tests. T. equi parasite DNA was detected in 60 samples, 19 of which were also positive for B. caballi. Approximately 1480bp of the piroplasm 18S rRNA gene was amplified and sequenced from 17 samples, while the V4 hypervariable region of the 18S rRNA gene was amplified, cloned and sequenced from 31 samples. BLASTN analysis revealed that all of the sequences obtained were most similar to T. equi genotypes and not B. caballi genotypes. Although Babesia parasites were present in some of these samples, as indicated by qPCR, the parasitaemia may have been too low to allow detection by cloning of PCR products from a mixed infection. Sequence analyses of both the full-length and the V4 hypervariable region of the T. equi 18S rRNA gene revealed the existence of 13 new T. equi sequences from zebra, confirming the existence of sequence heterogeneity in the rRNA genes of the parasites that cause equine piroplasmosis, and further suggesting that there may be additional, as yet unidentified, T. equi and B. caballi 18S rRNA sequences present in the horse and zebra populations in South Africa. The occurrence of previously unrecognized sequence variation could pose a potential problem in the implementation of diagnostic tests targeting the 18S rRNA gene.