Main content area

Genome wide association mapping to identify aluminium tolerance loci in bread wheat

Navakode, S., Neumann, K., Kobiljski, B., Lohwasser, U., Börner, A.
Euphytica 2014 v.198 no.3 pp. 401-411
Triticum aestivum, acid soils, aluminum, breeding, crop production, crops, cultivars, genes, loci, models, toxicity, winter wheat
Aluminium (Al) toxicity in acid soils continues to be a major concern for crop production, especially for wheat which is a moderately tolerant cereal crop species. So far, Al tolerance was known to be controlled by few genetic loci detected clearly by classical mapping studies. Here, we report the outcome of a genome wide association mapping approach in bread wheat (Triticum aestivum L.) using 525 Diversity Array Technology markers genotyped in a core collection of 96 winter wheat accessions. Marker-trait associations (MTAs) were detected using both general linear model (GLM) and mixed linear model (MLM). Five significant MTAs were identified as shared by models on chromosomes 1A, 1D, 3B and 6A. Highly significant MTAs were identified by MLM on chromosomes 1D and 3B which could be new candidate loci for future studies. Some of our results are in line with prior reports, but some appear to be novel. Potential candidate genes have been searched in respective chromosomal bins for highly significant MTAs detected by MLM. The loci identified in our study have the potential to improve Al tolerance in wheat and hence need to be verified and utilized for breeding tolerant cultivars worldwide.