PubAg

Main content area

Generalized regression neural network (GRNN)-based approach for colored dissolved organic matter (CDOM) retrieval: case study of Connecticut River at Middle Haddam Station, USA

Author:
Heddam, Salim
Source:
Environmental monitoring and assessment 2014 v.186 no.11 pp. 7837-7848
ISSN:
0167-6369
Subject:
case studies, color, correlation, dissolved organic matter, linear models, neural networks, prediction, turbidity, water temperature, Connecticut River, United States
Abstract:
The prediction of colored dissolved organic matter (CDOM) using artificial neural network approaches has received little attention in the past few decades. In this study, colored dissolved organic matter (CDOM) was modeled using generalized regression neural network (GRNN) and multiple linear regression (MLR) models as a function of Water temperature (TE), pH, specific conductance (SC), and turbidity (TU). Evaluation of the prediction accuracy of the models is based on the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (CC), and Willmott’s index of agreement (d). The results indicated that GRNN can be applied successfully for prediction of colored dissolved organic matter (CDOM).
Agid:
820445