Main content area

A comprehensive review of earthquake-induced building damage detection with remote sensing techniques

Dong, Laigen, Shan, Jie
ISPRS journal of photogrammetry and remote sensing 2013 v.84 pp. 85-99
disasters, earthquakes, lidar, people, remote sensing, spatial data
Earthquakes are among the most catastrophic natural disasters to affect mankind. One of the critical problems after an earthquake is building damage assessment. The area, amount, rate, and type of the damage are essential information for rescue, humanitarian and reconstruction operations in the disaster area. Remote sensing techniques play an important role in obtaining building damage information because of their non-contact, low cost, wide field of view, and fast response capacities. Now that more and diverse types of remote sensing data become available, various methods are designed and reported for building damage assessment. This paper provides a comprehensive review of these methods in two categories: multi-temporal techniques that evaluate the changes between the pre- and post-event data and mono-temporal techniques that interpret only the post-event data. Both categories of methods are discussed and evaluated in detail in terms of the type of remote sensing data utilized, including optical, LiDAR and SAR data. Performances of the methods and future efforts are drawn from this extensive evaluation.