Main content area

Improvement of decay resistance of wood via combination treatment on wood cell wall: Swell-bonding with maleic anhydride and graft copolymerization with glycidyl methacrylate and methyl methacrylate

Li, Yongfeng, Dong, Xiaoying, Liu, Yixing, Li, Jian, Wang, Fenghu
International biodeterioration & biodegradation 2011 v.65 no.7 pp. 1087-1094
Fourier transform infrared spectroscopy, Gloeophyllum trabeum, Phanerochaete chrysosporium, Populus, X-radiation, X-ray diffraction, boron compounds, cell walls, decay fungi, decay resistance, maleic anhydrides, polymers, wood, wood treatment
Poplar wood (Populus ussuriensis Kom) was modified by a novel combined two-step treatment to improve its decay resistance. Maleic Anhydride (MAN) was first employed to swell and bond to wood cell wall, and then mixed monomers of glycidyl methacrylate/methyl methacrylate (GMA/MMA) were used to graft copolymerization within wood cell lumen. The swelling and bonding of cell wall by MAN, interfacial compatibility between resultant polymer from GMA/MMA monomers and wood cell wall, and decay resistance of all composites were tested and analyzed by Scanning electron microscopy–Energy dispersive X-ray (SEM–EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) apparatus. The results indicate that the volume of poplar wood treated by MAN swells about 9% with about 15% of weight percent gain, and MAN chemically bonds to the cell wall through substitution reaction with hydroxyl group, and the grafting adduct mainly remains as an amorphous form. The resultant Poplar-MAN shows improved decay resistance of 69.79% against brown fungus (Gloeophyllum trabeum (Pers. ex Fr.) Murr.) and 81.42% against white fungus (Phanerochaete chrysosporium Burdsall.) over those of untreated Poplar, respectively. After the combined two-step treatment, GMA and MMA are copolymerized within wood cell lumen, and the resultant polymer is also grafted onto wood cell wall, resulting in the improvement of interfacial compatibility between polymer and wood substance without obvious gaps. The decay resistance of the resultant composite from the combined two-step treatment against the brown decay fungus and the white decay fungus is improved by 97.64% and 99.17%, respectively, compared with those of untreated poplar wood; and also more excellent than those of MMA treated wood, GMA/MMA monomers treated wood, organic 3-Iodo-2-Propynyl Butyl Carbamate (IPBC) treated wood and inorganic boron compounds treated wood, respectively.