U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.


Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.


Main content area

Enhancement of propionic acid fraction in volatile fatty acids produced from sludge fermentation by the use of food waste and Propionibacterium acidipropionici

Yinguang Chen, Xiang Li, Xiong Zheng, Dongbo Wang
Water research 2013 v.47 pp. 615-622
activated sludge, fermentation, volatile fatty acids, mixing, sterilizing, Propionibacterium acidipropionici, carbon, propionic acid, response surface methodology, chemical oxygen demand, synergism, food waste, lactic acid
Volatile fatty acids (VFA) can be used as the additional carbon source of biological nutrient removal (BNR), and the increase of propionic acid percentage in VFA has been reported to facilitate the performance of BNR. In this study a new method for significantly improving the propionic acid fraction in VFA derived from waste activated sludge was reported, which included (1) mixing food waste with sludge and pre-fermenting the mixture (first stage), and (2) separating the mixture, sterilizing the pre-fermentation liquid and fermenting it after inoculating Propionibacterium acidipropionici (second stage). By optimizing the first stage with response surface methodology, a propionic acid content of 68.4% with propionic acid concentration of 7.13 g COD/L could be reached in the second stage, which was much higher than that reported previously. Lactic acid was found to be the most abundant product of the first stage and it served as the substrate for propionic acid production in the second stage. Further investigation showed that during the first stage the addition of food waste to the pre-fermentation system of sludge significantly increased the generation of lactic acid due to the synergistic effect, which resulted in the improvement of propionic acid production in the second stage. Finally, the use of propionic acid-enriched VFA as a superior carbon source of BNR was tested, and its performance was observed to be much better than using acetic acid-enriched VFA derived from sludge by the previously documented method.