PubAg

Main content area

The biological properties of iron oxide core high-density lipoprotein in experimental atherosclerosis

Author:
Skajaa, Torjus, Cormode, David P., Jarzyna, Peter A., Delshad, Amanda, Blachford, Courtney, Barazza, Alessandra, Fisher, Edward A., Gordon, Ronald E., Fayad, Zahi A., Mulder, Willem J.M.
Source:
Biomaterials 2011 v.32 no.1 pp. 206-213
ISSN:
0142-9612
Subject:
animal tissues, apolipoproteins, atherosclerosis, biocompatible materials, excretion, high density lipoprotein, image analysis, in vivo studies, iron oxides, magnetic resonance imaging, nanoparticles, phospholipids, transmission electron microscopy, transportation, triacylglycerols
Abstract:
Lipoproteins are a family of plasma nanoparticles responsible for the transportation of lipids throughout the body. High-density lipoprotein (HDL), the smallest of the lipoprotein family, measures 7–13 nm in diameter and consists of a cholesteryl ester and triglyceride core that is covered with a monolayer of phospholipids and apolipoproteins. We have developed an iron oxide core HDL nanoparticle (FeO-HDL), which has a lipid based fluorophore incorporated in the phospholipid layer. This nanoparticle provides contrast for optical imaging, magnetic resonance imaging (MRI) and transmission electron microscopy (TEM). Consequently, FeO-HDL can be visualized on the anatomical, cellular and sub-cellular level. In the current study we show that the biophysical features of FeO-HDL closely resemble those of native HDL and that FeO-HDL possess the ability to mimic HDL characteristics both in vitro as well as in vivo. We demonstrate that FeO-HDL can be applied to image HDL interactions and to investigate disease settings where HDL plays a key function. More generally, we have demonstrated a multimodal approach to study the behavior of biomaterials in vitro as well as in vivo. The approach allowed us to study nanoparticle dynamics in circulation, as well as nanoparticle targeting and uptake by tissues and cells of interest. Moreover, we were able to qualitatively assess nanoparticle excretion, critical for translating nanotechnologies to the clinic.
Agid:
902579