PubAg

Main content area

Hot Spots for Allosteric Regulation on Protein Surfaces

Author:
Reynolds, Kimberly A., McLaughlin, Richard N., Ranganathan, Rama
Source:
Cell 2011 v.147 no.7 pp. 1564-1575
ISSN:
0092-8674
Subject:
active sites, amino acids, catalytic activity, dihydrofolate reductase, proteins
Abstract:
Recent work indicates a general architecture for proteins in which sparse networks of physically contiguous and coevolving amino acids underlie basic aspects of structure and function. These networks, termed sectors, are spatially organized such that active sites are linked to many surface sites distributed throughout the structure. Using the metabolic enzyme dihydrofolate reductase as a model system, we show that: (1) the sector is strongly correlated to a network of residues undergoing millisecond conformational fluctuations associated with enzyme catalysis, and (2) sector-connected surface sites are statistically preferred locations for the emergence of allosteric control in vivo. Thus, sectors represent an evolutionarily conserved “wiring” mechanism that can enable perturbations at specific surface positions to rapidly initiate conformational control over protein function. These findings suggest that sectors enable the evolution of intermolecular communication and regulation.
Agid:
926102