PubAg

Main content area

Oral processing, texture and mouthfeel: From rheology to tribology and beyond

Author:
Stokes, Jason R., Boehm, Michael W., Baier, Stefan K.
Source:
Current opinion in colloid & interface science 2013 v.18 no.4 pp. 349-359
ISSN:
1359-0294
Subject:
beverages, consumer preferences, food intake, materials science, mouthfeel, rheology, saliva, sensation, texture
Abstract:
Texture and mouthfeel arising from the consumption of food and beverages are critical to consumer choice and acceptability. While the food structure design rules for many existing products have been well established, although not necessarily understood, the current drive to produce healthy consumer acceptable food and beverages is pushing products into a formulation space whereby these design rules no longer apply. Both subtle and large scale alterations to formulations can result in significant changes in texture and mouthfeel, even when measurable texture-related quantities such as rheology are the same. However, we are only able to predict sensations at the initial stages of consumption from knowledge of material properties of intact food. Research is now on going to develop strategies to capture the dynamic aspects of oral processing, including: from a sensory perspective, the recent development of Temporal Dominance Sensation; from a material science perspective, development of new in vitro techniques in thin film rheology and tribology as well as consideration of the multifaceted effect of saliva. While in vivo, ex vivo, imitative and empirical approaches to studying oral processing are very insightful, they either do not lend themselves to routine use or are too complex to be able to ascertain the mechanism for an observed behaviour or correlation with sensory. For these reasons, we consider that fundamental in vitro techniques are vital for rational design of food, provided they are designed appropriately to capture the important physics taking place during oral processing. We map the oral breakdown trajectory through 6 stages and suggest a dynamic multi-scale approach to capture underlying physics. The ultimate goal is to use fundamental insights and techniques to design new food and beverages that are healthy yet acceptable to consumers.
Agid:
941301