Main content area

Validity analysis of maximum entropy distribution based on different moment constraints for wind energy assessment

Liu, Feng Jiao, Chang, Tian Pau
Energy 2011 v.36 no.3 pp. 1820-1826
algorithms, cumulative distribution, entropy, probability, wind power, wind speed, Taiwan
Knowing about wind speed distribution for a specific site is very essential step in wind resource utilizations. In this paper, a probability density function with the maximum entropy principle is derived using different algorithm from previous studies. Its validity considering various numbers of moment constraints is tested and compared with the conventional Weibull function in terms of computation accuracy. Judgment criterions include the Chi-square error, root mean square error, maximum error in cumulative distribution function as well as the relative error of wind power density between theoretical function and observation data. Wind sample data are observed at four wind farms having different weather conditions in Taiwan. The results show that the entropy quantities reveal a negative correlation with the number of constraints used, regardless of station considered. For a specific site experiencing more stable weather condition where wind regimes are not too dispersive, the conventional Weibull function may accurately describe the distribution. While for wind regimes having two humps on it, the maximum entropy distributions proposed outperform a lot the Weibull function, irrespective of wind speed or power density analyzed. For the consideration of computation burden, using four moment constraints in calculating maximum entropy parameters is recommended in wind analysis.