Main content area

Comparative study of different nuclear fuel cycle options: Quantitative analysis on material flow

Park, Byung Heung, Gao, Fanxing, Kwon, Eun-ha, Ko, Won Il
Energy policy 2011 v.39 no.11 pp. 6916-6924
economics, electricity, material flow analysis, nuclear fuels, nuclear power, quantitative analysis, recycling, uranium, waste utilization, South Korea
As a nation develops its nuclear strategies, it must consider various aspects of nuclear energy such as sustainability, environmental-friendliness, proliferation-resistance, economics, technologies, and so on. A nuclear fuel cycle study could give convincing answers to many questions in regard to technical aspects. However, one nuclear fuel cycle option cannot be superior in all aspects. Therefore a nation must identify its top priority and accordingly evaluate all the possible nuclear fuel cycle options. For such a purpose, this paper examined four different fuel cycle options that are likely to be plausible under situation of Republic of Korea: once-through cycle, DUPIC recycling, thermal recycling using MOX fuel in PWR (pressurized water reactor), and SFR (sodium cooled fast reactor) employing fuel recycling by a pyroprocess. The options have been quantitatively compared in terms of resource utilization and waste generation based on 1TWh electricity production at a “steady-state” condition as a basic analysis. This investigation covered from the front-end of the fuel cycles to the final disposal and showed that the Pyro-SFR recycling appears to be the most competitive from these material quantitative aspects due to the reduction of the required uranium resources and the least amount of waste generation.