Main content area

Ability of plasmid DNA complexed with histidinylated lPEI and lPEI to cross in vitro lung and muscle vascular endothelial barriers

Gomez, Jean-Pierre, Pichon, Chantal, Midoux, Patrick
Gene 2013 v.525 pp. 182-190
blood circulation, cultured cells, endothelial cells, endothelium, gene therapy, humans, in vitro studies, luciferase, mice, models, myoblasts, plasmids, polymers, skeletal muscle, transfection
DNA complexes made with cationic polymers (polyplexes) developed as nonviral vectors for gene therapy must be enabled to cross through vascular endothelium to transfect underlying tissues upon their administration in the blood circulation. Here, we evaluated the transendothelial passage (TEP) of DNA complexes made with histidinylated linear polyethylenimine (His-lPEI) or linear polyethylenimine (lPEI). In vitro studies were performed by using established transwell lung and skeletal muscle vascular endothelial barriers. The models were composed of a monolayer of human lung microvascular endothelial (HMVEC-L) cells and mouse cardiac endothelial (MCEC) cells formed on a PET insert and immortalized human tracheal epithelial (ΣCFTE29o-) cells and mouse myoblasts (C2C12) as target cells cultured in the lower chamber, respectively. When the vascular endothelium monolayer was established and characterized, the transfection efficiency of target (ΣCFTE29o- and C2C12) cells with plasmid DNA encoding luciferase was used to evaluate TEP of polyplexes. The luciferase activities with His-lPEI and lPEI polyplexes compared to those obtained in the absence of endothelial cell monolayer were 6.5% and 4.3% into ΣCFTE29o- cells, and 18.5% and 0.23% into C2C12 cells, respectively. The estimated rate for His-lPEI polyplexes was 0.135μg/cm2.h and 0.385μg/cm2.h through the HMVEC-L and MCEC monolayers, respectively. These results indicate that His-lPEI polyplexes can pass through the lung and skeletal muscle vascular endothelium and can transfect underlying cells.