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Abstract

Spatial and temporal mismatches between coarse resolution projections of global climate models (GCMs) and fine resolution

data requirements of ecosystemsmodels are the major obstacles for assessing the site-specific climatic impacts of climate change on

natural resources and ecosystems. The objectives of this study were to: (i) develop a simple method for statistically downscaling

GCM monthly output at the native GCM grid scale to station-scale using transfer functions, and (ii) further demonstrate the site-

specific impact assessment of climate change on water resources, soil erosion, and crop production at Kingfisher, OK, US using the

water erosion prediction project (WEPP) model. Monthly precipitation and temperature projected by the UK Hadley Centre’s

ClimateModel (HadCM3) under the GGa emissions scenariowere downloaded for the periods of 1900–1999 and 2070–2099 for the

grid box containing the target station. Univariate transfer functions were derived by calibrating probability distributions of GCM-

projected monthly precipitation and temperature to match those of local climatology for the 1950–1999 period. Derived functions,

which were tested for 1900–1949, were used to spatially downscale the HadCM3 monthly projections of 2070–2099 to the target

station. Downscaled monthly data were further disaggregated to daily weather series using a stochastic weather generator

(CLIGEN) for driving the WEPP model. Disaggregated daily series preserve the monthly means and variances of precipitation and

temperature of the downscaled HadCM3 output. Simulated annual runoff under the changed climate, compared with the present

climate, increased by 40–48% despite the projected 5% decrease in precipitation. Simulated plant transpiration, soil evaporation,

and long-term soil water reserve decreased by 5, 16.5, and 5.5%, respectively. Simulated soil loss rates were increased by some 44%

under conventional tillage and doubled under conservation tillage and no-till. Simulated wheat yield increased by approximately

14% in all three tillage systems. The overall results show that the proposed downscaling technique is simple and sound, which

provides an effective alternative for assessing the site-specific impacts of climate change on soil erosion and crop production.

Nevertheless, the technique suffers from the same shortcomings as all other statistical downscaling methods, as it largely relies upon

the accuracy of GCM projections as well as the applicability of transfer functions to future climate.
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1. Introduction

The review of ‘‘Climate Change 2001: The Scientific

Basis’’ prepared by the Intergovernmental Panel on

Climate Change (IPCC Working Group I, 2001) has
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concluded that globally averaged mean evaporation,

precipitation, and rainfall intensity will very likely

increase in response to increased concentrations of

greenhouse gases in the atmosphere. The upward trend

in total precipitation and a bias toward more intense

rainfall events are of great concern for assessing the

potential impacts on water resources, soil erosion,

and ecosystems, because catastrophic environmental

destruction is often caused by infrequent severe storms.
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Under climate changes, the potential for such

projected changes to increase the risks of floods, soil

erosion, and related environmental consequences is

clear, but the potential damages in particular regions

need to be assessed (SWCS, 2003). This information is

needed for determining: (i) whether a change in soil and

water management practices is warranted under climate

change and (ii) what practices should be taken to

adequately protect soil and water resources and to

alleviate catastrophic damages if a change is warranted.

Due to the interactive, integrated nature of agro-

ecosystems, the impacts of climate change on natural

resources may be best assessed using agricultural

systems models such as the water erosion prediction

project (WEPP) model.

The WEPP model is a physically based, continuous

simulation model that simulates hydrology, daily water

balance, plant growth, soil, and erosion at field,

hillslope, and small watershed scales (Flanagan and

Nearing, 1995). The plant growth and water balance

components of the model were modified to account for

the CO2 effects on evapotranspiration and biomass

production. The modified WEPP model has been used

by many researchers to study the impacts of climate

change on runoff and erosion (e.g., Savabi et al., 1993;

Pruski and Nearing, 2002a,b; Zhang et al., 2004).

Overall results from those studies indicated that a 1%

increase in precipitation would result in a 0.5–4%

increase in soil loss and a 1–4% increase in surface

runoff. In those studies, changes in mean monthly pro-

jections at the native grid scale of global climate models

(referred to as GCMs in this study) were directly

incorporated into station daily weather series using a

stochasticweather generator. This type of approachwith-

out explicit spatial downscaling tends to provide a first-

order sensitivity of regional response to climate change

(Hewitson, 2003; Zhang, 2006; Zhang and Liu, 2005).

Two major obstacles exist in assessing the site-

specific impacts of climate change on natural resources

of a particular field or farm. These obstacles are spatial

and temporal scale mismatches between coarse resolu-

tion projections of GCMs and fine resolution data

requirements of agricultural systems models (Hansen

and Indeje, 2004). Both dynamic and empirical

(statistical) approaches are used to bridge the spatio-

temporal gaps. Dynamic downscaling is used to achieve

higher spatial resolutions by nesting regional climate

models (RCM) within GCM output fields. RCM output

is computationally costly (Solman and Nuñez, 1999),

and is only available for limited regions. Therefore,

statistical methods are frequently used to downscale

GCM projections to finer spatiotemporal scales.
A diverse range of statistical downscaling techniques

has been developed. Those techniques in principle fall

in three categories: weather generators, transfer func-

tions, and weather typing schemes (von Storch et al.,

2000; Wilby et al., 1998b). The transfer function

approach involves deriving statistical relationships

between observed local climatic variables (predictands)

and large-scale GCM output (predictors) using regres-

sion-type methods such as multivariate linear or non-

linear regressions, principal component analysis (PCA),

canonical correlation analysis (CCA), Kriging, and

artificial neural networks (ANN). Most commonly used

predictors from GCM output include vorticity, airflow

indices, wind strength and direction, mean sea-level

pressure, geopotential heights at 500 and 700 hPa, and

relative humidity (Wilby andWigley, 2000; Solman and

Nuñez, 1999; Wilby et al., 1998b; Sailor and Li, 1999;

Trigo and Palutikof, 2001). In addition, Kilsby et al.

(1998) included altitude, distance from coast, and

geographical location of the target station as predictors

in their regression equations.

Widmann et al. (2003) found that statistical

precipitation downscaling directly using GCM pre-

cipitation as a predictor performed considerably better

than conventional methods using other predictors as

listed above. The successful use of precipitation as the

predictor is primarily because the climate model is

most likely to capture the effects of changes in the

climate state on precipitation within its internal

parameterization and calibration. For a similar reason,

Wood et al. (2004) used GCM precipitation as the sole

predictor for bias correction using quartile plots

between GCM output and measured-precipitation at

the same (regional) spatial scale. Overall, compared

with the dynamic methods, the advantages of the

statistical approaches are their easiness to implement

and the ability to calibrate to local conditions (Solman

and Nuñez, 1999). However, the major concern of the

statistical approaches is whether statistical relation-

ships derived based on the present climate are fully

applicable to future climate.

Generation of daily weather series of future climate,

which is required by many process-based agricultural

systems models for impact assessment, is often achieved

using stochastic weather generators. Model parameter

values of future climate are developed by perturbing

parameter values of the present climate under the

guidance of GCM-projected relative changes (e.g.,

Wilks, 1992; Katz, 1996; Semenov and Porter, 1995;

Semenov and Barrow, 1997; Mavromatis and Jones,

1998; Zhang et al., 2004), or are directly estimated

using statistical relationships developed between model
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parameters and GCM output fields (Wilby et al., 1998a;

Kilsby et al., 1998).

Stochastic daily weather generators such as WGEN

(Richardson and White, 1984) and CLIGEN (Nicks and

Gander, 1994) have been widely used in the US to

generate daily weather series from monthly GCM

projections (e.g., Wilks, 1992, 1999; Katz, 1996;

Hansen and Indeje, 2004; Pruski and Nearing, 2002b;

Zhang et al., 2004). Model parameters of these weather

generators can be readily manipulated to simulate

arbitrary changes in mean and variance quantities for

sensitivity analysis, or be deliberately modified to

mimic changes in mean and variance as predicted by

GCM for impact assessment. As stated in the SWCS

(2003) report, precipitation intensity would increase at a

rate greater than the rate of increases in mean. This trend

toward precipitation occurring in more intense and

more extreme events may be simulated through

modifying mean and variance of daily precipitation

distributions. A change in mean would largely result

in a shift in daily precipitation distribution, but changes

in variance would change the shape of the distribution,

especially in the tail region, which controls the intensity

and frequency of extreme events.

Zhang et al. (2004) developed a method for

disaggregating GCM monthly projections to daily

weather series using CLIGEN by adjusting both means

and variances of precipitation and temperature. This

temporal downscaling or disaggregation method has

been further used in central Oklahoma (Zhang, 2006)

and in the Changwu tableland region of southern Loess

Plateau of China (Zhang and Liu, 2005). These studies

without an explicit spatial downscaling tend to reflect

more of a first-order regional sensitivity of natural

resources to climate change. To simulate the site-

specific impacts of climate change on natural resources

and ecosystems using agricultural systems models,

explicit spatial downscaling methods for deriving

statistical relationships pertaining to particular loca-

tions need to be developed.

The objectives of this study are to: (i) develop a

simple method for spatially downscaling GCM esti-

mates of climate change at the native GCM grid scale to

station-scale for monthly precipitation and temperature

using transfer functions derived by matching prob-

ability distributions of GCM output with those of local

climatology for the calibration period of 1950–1999,

(ii) at the station-scale further disaggregate monthly

values to daily weather series following the method of

Zhang et al. (2004), and (iii) assess, as an example, the

site-specific impacts of climate change on water

resources, soil erosion, and crop production using the
WEPP model on the Kingfisher site, Oklahoma, US.

The GCM-projected monthly precipitation and tem-

perature for the GGa emissions scenario are temporally

and spatially downscaled by considering distributions

including mean and variance to generate daily weather

input for driving the WEPP model.

2. Materials and methods

2.1. Climate change scenario

The climate change scenario of GGa1, projected

under the GGa emissions scenario using the Hadley

Centre’s third generation climate model (HadCM3),

was used in this study. The GGa forcing used the

historical increase in the individual greenhouse gases

from 1860 to 1990, and then the individual increases in

greenhouse gases as described in the IS95a (a 1% per

year compound rise in radiative forcing) emissions

scenario. Note that the CO2 increase in IS95a is similar

to the CO2 increase in IS92a. In this scenario, for

example, the total CO2 concentration in the atmosphere

would increase by approximately 80% by year 2085.

The IS92a scenario was considered benchmark and

widely used in the impact studies in the past.

The HadCM3 model was configured with grid boxes

that extended 2.58 by 3.758 (latitude by longitude). The
grid box (between 358N and 37.58N and from 101.258W
to 97.58W), containing the target station of Kingfisher,

Oklahoma (35.878N and 97.938W), was selected. The

monthly precipitation, mean maximum temperature,

and mean minimum temperature that were projected for

the box for the periods of 1900–1999 and 2070–2099

were extracted from the HadCM3 GGa1 output.

Projected data of 1950–1999 were used as the control

to develop transfer functions in conjunction with

measured data of the same period, and data from 1900

to 1949 were used to test those transfer functions.

Projected data from 2070 to 2099 were assumed to

represent a changed climate, and were temporally and

spatially downscaled to daily weather data for the

Kingfisher station for impact assessment, as an example.

2.2. Spatial downscaling

The GCM-projected monthly precipitation from

1950 to 1999 (referred to as hindcast) was used as

the control, and the historical monthly precipitation

between 1950 and 1999 as the baseline. For each

calendar month, the ranked observational monthly

precipitation (Y-axis) was plotted with the ranked GCM-

projected precipitation (i.e., paired by their ranks or



X.-C. Zhang / Agricultural and Forest Meteorology 135 (2005) 215–229218
corresponding quartiles of the observed versus pro-

jected monthly precipitation, also called qq-plot). A

simple univariate linear and a non-linear function were

fitted to each plot to obtain transfer functions for each

month using the LAB-fit Software (Universidade

Federal de Campina Grande, Brazil). This curve fitting

software automatically searches through about 200 non-

linear functions having one independent variable and up

to four fitting parameters, and produces a list of

functions ranked by their residual errors.

Those transfer functions were used to downscale the

1900–1949 monthly precipitation of the GCM grid box

to monthly precipitation at the Kingfisher station. The

probability distributions of the downscaled monthly

precipitation were compared with those of the measured

monthly precipitation at the station during 1900–1999

for preliminary testing. For impact assessment, those

transfer functions were further used to downscale 2070–

2099 monthly precipitation at the native GCM scale to

those at the Kingfisher station under the premise that the

transfer functions developed under the present climate

are applicable to the changed climate. For each calendar

month, the non-linear function was used to transform

the projected monthly precipitation values that were

within the range in which the non-linear function was

fitted, while the linear function was used for the values

outside the range. The use of linear functions for the

out-of-range values is to generate conservative, first-

order approximations. The downscaled monthly pre-

cipitation values, which represent the future monthly

precipitation distribution at the Kingfisher station, were

then used to calculate monthly mean and variance of the

changed climate for the location. Those calculated
Table 1

Mean and variance of spatially downscaled GCMmonthly precipitation of 20

downscaled monthly temperatures of 2070–2099 vs. measured local month

Month

January February March April May Ju

Monthly precipitation

Mean Rm (mm) 33.9 39.5 67.1 70.6 127.6

Variance s2
m (mm2) 1002 1150 2517 2297 9532 24

Monthly maximum temperature

Mean (8C) 14.3 16.5 21.0 25.6 29.2

Mean shift (8C) 5.25 4.26 3.92 2.82 1.94

Variance ratioa 0.28 0.67 0.89 1.17 0.53

Monthly minimum temperature

Mean (8C) 0.5 2.0 7.6 12.9 17.9

Mean shift (8C) 4.32 3.23 4.70 4.16 3.74

Variance ratio 0.40 0.55 0.84 0.94 0.92

a Ratios were calculated as 2070–2099 over 1950–1999.
mean and variance of the downscaled monthly

precipitation were used in the temporal downscaling

method of Zhang et al. (2004) to generate daily weather

series of the changed climate at the Kingfisher station as

presented in Section 2.3.

Likewise, the GCM-projected monthly maximum

and minimum temperatures were downscaled spatially

in the same manner as was for monthly precipitation.

Mean temperature shifts as well as variance ratios

between the downscaled monthly GCM projections of

2070–2099 and the local monthly measurements of

1950–1999 were calculated for each month and were

further used in temporal downscaling. In addition, two

non-parametric tests, the Wilcoxon Rank Sum and the

Kolmogorov–Smirnov (K–S) tests, which are applic-

able to any distribution, were used to test the null

hypothesis that two populations such as measured

versus downscaled values are identical.

2.3. Temporal downscaling

2.3.1. Precipitation

Measured daily weather data of 1950–1999 at

Kingfisher were used to estimate the baseline CLIGEN

input parameters, which were subsequently adjusted for

the relative changes in Table 1 to generate the changed

climate scenario for the target station. Adjusted preci-

pitation parameters (Table 2) include mean (Rd) and

variance (s2
d) of daily precipitation depths (excluding

zeros) and conditional transition probabilities of a wet

day following a dry day (Pw/d) and a wet day following a

wet day (Pw/w). For transition probability adjustment,

linear relationships between transition probabilities and
70–2099 for Kingfisher, and shift and variance ratio calculated for the

ly data of 1950–1999

ne July August September October November December

59.0 47.0 37.3 104.5 66.7 57.7 29.9

01 799 1464 6221 2698 3155 866

36.1 38.9 38.5 33.3 27.8 19.6 12.9

3.82 3.53 3.62 3.16 3.64 3.60 2.39

0.94 1.03 0.79 1.49 1.29 0.71 0.67

25.2 26.6 26.1 21.6 15.1 9.2 1.3

5.96 4.88 5.21 5.05 5.11 6.25 3.38

0.77 1.17 0.91 0.80 0.76 0.91 0.92
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Table 2

Adjusted CLIGEN input parameters for generating GGa1 climate scenario of 2070–2099 for Kingfisher

Month

January February March April May June July August September October November December

Mean Rd (mm) 6.7 7.7 8.8 9.7 12.1 8.7 7.8 7.8 13.9 11.0 10.2 7.2

Variance s2
d (mm2) 152.9 163.3 266.4 235.0 841.3 306.1 73.6 261.8 679.5 313.7 459.5 160.5

Pw/w 0.34 0.36 0.38 0.36 0.42 0.31 0.30 0.26 0.37 0.38 0.38 0.27

Pw/d 0.12 0.13 0.18 0.18 0.26 0.18 0.15 0.12 0.19 0.13 0.13 0.10

Mean Tmax (8C) 14.3 16.5 21.0 25.6 29.2 36.1 38.9 38.5 33.3 27.8 19.6 12.9

S.D. Tmax (8C) 3.9 6.3 6.6 6.0 3.3 3.8 3.9 3.6 6.4 6.3 5.4 5.5

Mean Tmin (8C) 0.5 2.0 7.6 12.9 17.9 25.2 26.6 26.1 21.6 15.1 9.2 1.3

S.D. Tmin (8C) 3.8 4.4 5.5 5.5 4.5 3.3 3.4 3.3 4.4 4.8 5.6 5.4

Rd, mean precipitation per wet day; s2
d, variance of wet day precipitation; Pw/w, probability of wet day following wet day; Pw/d, probability of wet day

following dry day, S.D., standard deviation, Tmax, maximum temperature; Tmin, minimum temperature.
mean monthly precipitation (Rm) were developed for

each calendar month using historical station records.

For each calendar month (say January), approximately

20–25 wettest and driest months were selected to

compute Pw/w, Pw/d, and Rm for each group. Linear

relationships between Pw/w and Rm as well as between

Pw/d and Rm were then established using the two data

points (one pair for wet group and another for dry

group). Adjusted Pw/w and Pw/d for the changed climate

were interpolated for the downscaled Rm of Table 1

using the linear relationships. Caution must be taken to

ensure that the projected monthly mean precipitation is

within the range in which the linear relationships are

developed. For convenience, the adjusted conditional

transition probabilities are equivalently expressed in

term of an unconditional probability of daily precipita-

tion occurrence (p) and a dependence parameter (r)

defined as the lag-1 autocorrelation of daily precipita-

tion series:

p ¼
Pw=d

1þ Pw=d � Pw=w
(1)

r ¼ Pw=w � Pw=d (2)

The adjusted mean daily precipitation per wet day

(Rd, Table 2) was estimated as:

Rd ¼
Rm

Ndp
(3)

where Nd is the number of days in the month and

Ndp is the average number of wet days in the month.

Since the downscaled variances of GCM monthly

precipitation of 2070–2099 were available for the

target station (s2
m, Table 1), the adjusted daily pre-

cipitation variances (s2
d, Table 2) were approximated
using Eq. (11b) of Wilks (1999) instead of the propor-

tional method of Zhang et al. (2004) as follows:

s2
d ¼

s2
m

Ndp
� ð1� pÞð1þ rÞ

1� r
R2
d (4)

All adjusted precipitation parameter values were input

to CLIGEN to generate 100 years of daily precipitation

for preliminary tests. The generated average annual

precipitation was approximately 8% greater than the

downscaled target annual average. Thus, to match the

target precipitation, the initially adjusted mean daily

precipitation using Eq. (3) was scaled down by 8% for

each of the 12 calendar months, and the results are given

in the first row of Table 2. The overestimation might

have resulted from a combined effect of a general

increase in daily precipitation variance in the changed

climate and a skewed (or transformed) normal distribu-

tion of daily precipitation employed in CLIGEN, as

well as model approximation errors.

2.3.2. Maximum and minimum temperature

Downscaled monthly temperature means and tem-

perature variance ratios between spatially downscaled

monthly projections of 2070–2099 and measured

monthly values of 1950–1999 were calculated for each

calendar month (Table 1). Downscaled mean maximum

and minimum temperatures were directly used in

CLIGEN as the adjusted monthly means for the changed

climate (Table 2). Adjusted daily temperature variances

were obtained by multiplying the baseline daily

temperature variances by the calculated variance ratios

of Table 1 for each month. This method is appropriate if

autocorrelation coefficients of all orders in the baseline

climate are similar to those in the downscaled future

climate (Katz, 1985). All new parameter values (Table 2)

were input to CLIGEN, and 100 years of daily weather
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data of the GGa1 climate scenario of 2070–2099 were

generated for Kingfisher.

2.4. WEPP model calibration

Three experimental watersheds, located at the US

Department of Agriculture, Agricultural Research

Service, Grazinglands Research Laboratory, 7 km west

of El Reno, Oklahoma were used in model calibration.

The watersheds are 80 m wide and 200 m long with a

drainage area of 1.6 ha each. The longitudinal slope of

the watersheds is approximately 3–4%. Soils (fine,

mixed, thermic, Udertic Paleustoll) are predominantly

silt loam with an average of 23% sand and 56% silt in

the tillage layer. The watersheds were in the annual

winter wheat-summer fallow rotation in contrasting

management and tillage systems including conventional

tillage, conservation tillage, and no-till from 1980 to

1995. Precipitation, surface runoff, and sediment were

recorded between 1985 and 1995, and wheat yields and

soil moisture contents were intermittently measured

during the period.

The hydrology, water balance, and plant growth

components were calibrated using the above measured

hydrological and winter wheat data on these water-

sheds. The calibrated WEPP model simulated annual

surface runoff and wheat above ground biomass at

harvest relatively well (Zhang, 2004). Specifically, the

model efficiency, which is a good measure of model

prediction relative to measured data, between WEPP-

predicted and measured annual runoff was 0.31 on the

conservation tillage watershed. The model efficiency

between predicted and measured above ground biomass

at harvest was 0.50.

In this study, the WEPP erosion component was

further calibrated on the threewatersheds usingmeasured

sediment data. Since soil properties in the three water-

sheds are similar, one set of the erodibility parameters

(interrill erodibility, rill erodibility, and rill critical shear

stress) is calibrated. These three parameters were

adjusted to minimize the differences between measured

and simulated average annual soil losses for each of the

three watersheds under contrasting tillage. Since the

proportion of interrill to rill erosion normally vary with

tillage systems such as no-till versus conventional tillage,

the estimated soil erodibilities should be more depend-

able than those when only one tillage system was used in

calibration. The measured and calibrated average annual

soil losses at the El Reno site were 5712 and 5600 kg/ha,

respectively, for the conventional tillagewatershed, 2262

and 2464 kg/ha for the conservation tillage watershed,

and 269 and 672 kg/ha for the no-till watershed. The
good agreement indicates that the relative effects of crop

management including tillage operations on soil erosion

are adequately represented in WEPP.

The WEPP model (Version 2004.7), which was

modified to be CO2-sensitive, was used in the

simulation. The modified WEPP model as described

by Favis-Mortlock and Savabi (1996) automatically

invokes CO2-sensitive biomass production and plant

transpiration subroutines when CO2 concentration is

above the present level.

2.5. Simulated management systems under future

climate

Four input files (i.e., slope, soil, climate, and crop

management) are needed to run the WEPP model.

Measured slope profile, soil properties, as well as

calibrated crop and soil erodibility parameters were used

to build the slope and soil input files. A common regional

cropping system (annual winter wheat-summer fallow)

and three contrasting tillage systems (conventional,

conservation, and no-till) were used. For the simulations

under the present climate, winter wheat was planted on

October 15 and harvested on June 15 of the following

year. However, for the simulations of the future climate

(2070–2099), a new planting date of November 1 and a

harvest date of June 1, which are representative of

northern Texas where the present temperature regime is

similar to the projected temperature in central Oklahoma,

were used to accommodate the elevated temperature. For

tillage operations, one moldboard plow and three disk

operations, approximately 1 month apart in the summer,

were used in the conventional tillage treatment. In

contrast, three disk operations, which left about 50% of

residue on the soil surface for each operation, were used

in the conservation tillage treatment. The WEPP model

was run for 100 years for the three tillage systems under

the present and future climates of Kingfisher using the

slope and soil input files of El Reno. The simulation was

conducted as if the El Reno watershed were relocated to

the Kingfisher station, which is about 40 km north of El

Reno. Simulated surface hydrology, soil erosion, and

wheat production under the changed climate were

compared to those under the present climate.

3. Results and discussion

3.1. Spatial downscaling of monthly precipitation

Linear and non-linear univariate regressions between

the corresponding quartiles of monthly precipitation

depths at the native GCM grid box versus those
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measured at Kingfisher were carried out for each month

for the period of 1950–1999. The determination

coefficients (r2) of linear regressions ranged from

0.905 for July to 0.987 for September, and those of non-

linear regressions from 0.951 for November to 0.996 for

March, indicating that either linear or non-linear

functions will do a good job in reproducing measured

probability distributions (Table 3). A qq-plot is

illustrated in Fig. 1a, with July being the least linear,

September the most, and March an ‘S’ shape. Fig. 1a

also illustrates that the rawGCMprojections for the grid

box were consistently greater than the corresponding
Fig. 1. (a and b) qq-Plots of monthly precipitation depths measured at

Kingfisher vs. those projected by HadCM3 for the native grid box for

the period of 1950–1999 for March, July, and September. Note that

values are paired by their ranks within respective data series.
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Fig. 2. Cumulative probability distributions of measured and spatially

downscaled GCM monthly precipitation for the period of 1900–1949

for March and July.
measured monthly precipitation at Kingfisher for July

and consistently less for September, showing an overall

overprediction for the former and underprediction for
Table 4

Critical significance probability levels of the Wilcoxon rank sum and Kolm

Kingfisher and GCM-monthly precipitation downscaled to Kingfisher usin

distributions)

Month

January February March April May June

Measured 1900–1949 vs. measured 1950–1999

Wilcoxona 0.436 0.699 0.617 0.129 0.333 0.888

K–S 0.711 0.864 0.864 0.393 0.393 0.964

Downscaled GCM 1900–1949 vs. downscaled GCM 1950–1999

Wilcoxon 0.295 0.866 0.288 0.973 0.707 0.356

K–S 0.711 0.711 0.393 0.964 0.393 0.270

Measured 1900–1949 vs. downscaled GCM 1900–1949

Wilcoxon 0.321 0.579 0.080 0.081 0.493 0.156

K–S 0.864 0.393 0.178 0.393 0.178 0.270

Measured 1950–1999 vs. downscaled GCM 1950–1999

Wilcoxon 0.540 0.728 0.975 0.970 0.964 0.764

K–S 0.711 0.711 1.000 1.000 0.997 0.964

a Two sided test with normal approximation.
the latter. However for March, drier months were

overpredicted while wetter months were underpre-

dicted. Fig. 1b shows the qq-plot for the downscaled

GCM monthly precipitation of 1950–1999 using non-

linear transfer functions for the 3 months, indicating

how well the transfer functions reproduced the

probability distributions of measured monthly precipi-

tation, as was also evidenced by the great r2 values.

Probability distributions of the downscaled GCM

monthly precipitation and measured monthly precipita-

tion for the period of 1900–1949 are shown in Fig. 2 for

March and July. July illustrates a good match while

March is a poor match, as was also reflected in Table 4.

There were no statistical differences between the two

distributions at P = 0.05 for the Wilcoxon and K–S

tests, while there were two significant differences for

March and April at P = 0.1 for the Wilcoxon tests. The

critical significance probability levels (P) in Table 4 are

the probabilities of being wrong if we reject the null

hypothesis (the two distributions are identical) that is

actually true. Thus, the greater the critical probability

levels, the less confidence or evidence we have for

rejecting the null hypothesis. All P values between the

measured and spatially downscaled monthly precipita-

tion for the period of 1950–1999 were greater than 0.5

(Table 4), among which 15 were greater than 0.95,

indicating that the transfer functions reproduced the

measured distributions well. The absence of significant

differences in monthly precipitation distributions

between the first (1900–1949) and second half

(1950–1999) of the century at P = 0.1, for either

observations or downscaled GCM projections, suggest
ogorov–Smirnov (K–S) tests for measured monthly precipitation at

g transfer functions (both tests test for difference between the two

July August September October November December

0.888 0.890 0.132 0.347 0.759 0.839

0.964 0.964 0.544 0.544 0.711 0.544

0.945 0.931 0.644 0.152 0.515 0.191

0.964 0.393 0.864 0.178 0.178 0.711

0.702 0.785 0.211 0.712 0.285 0.145

0.964 0.864 0.393 0.711 0.544 0.112

0.931 0.959 0.962 0.964 0.931 0.942

0.997 0.864 0.997 0.997 0.964 0.997
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Fig. 3. Cumulative probability distributions of measured monthly

precipitation during 1950–1999 and spatially downscaled GCM

monthly precipitation for the period of 2070–2099.
that the precipitation at Kingfisher has been reasonably

stationary. The comparable P levels between measured

and downscaled precipitation over the century mirror

the similarity of probability distributions of the two.

When downscaling the GCM monthly precipitation of

1900–1949 using the transfer functions, 12 data points

(1, 2, 2, 3, 3, and 1 for January, February, June, July,

November, and December, respectively) were outside

the ranges, and were downscaled using the linear

functions instead.

For impact assessment, the GCM monthly pre-

cipitation of 2070–2099 was downscaled to the

Kingfisher station using the fitted transfer functions.

Eight data points (2, 2, 1, and 3 for January, May,

September, and November, respectively) were outside

the ranges, and were downscaled using the linear

functions. Probability distributions of downscaled

GCM monthly precipitation for the 2070–2099 period

and those of measured monthly precipitation for the

1950–1999 period are shown in Fig. 3 for March and

July as an example. Compared with the baseline

climate, downscaled precipitation of 2070–2099 would

increase by 21% for March and decrease by 27% for

July. In general, downscaled mean monthly precipita-

tion would decrease in summer (June, July, and

August) but increase in the remaining months except

December. Changes of precipitation variances fol-

lowed a similar seasonal pattern of changes in monthly

mean precipitation.

3.2. Spatial downscaling of monthly mean

temperature

The regression r2 between measured and raw GCM

monthly mean maximum temperature (Tmax) for the

1950–1999 period for any of the 12 months was greater

than 0.89 for linear regressions and 0.95 for non-linear

regressions (Table 3). However for minimum tempera-

ture (Tmin), it was greater than 0.70 for linear

regressions and 0.92 for non-linear regressions. Uni-

variate linear functions fitted ranked monthly mean

temperature better for Tmax than for Tmin for all months

except May, and non-linear functions consistently

outperformed linear functions for all 12 months for

both Tmax and Tmin. The better fits of non-linear transfer

functions encourage their use in downscaling the data

points within the ranges in which the regression

equations were fitted. However, for the data points

outside the ranges, linear functions were used for

reliable estimates. A qq-plot of Tmax is illustrated in

Fig. 4a for January (winter) and August (summer).

HadCM3 consistently underpredicted the correspond-
ing quartiles of monthly mean Tmax for January, and

underpredicted Tmax for cooler months but over-

predicted for warmer months of August, as compared

to the measured Tmax for the 1950–1999 period. The

downscaled GCM Tmax values are plotted in Fig. 4b for

January and August, illustrating howwell the non-linear

functions reproduced the probability distributions of the

measured Tmax. In general, the measured probability

distributions were well reproduced by the transfer

functions for both Tmax (Table 5) and Tmin (Table 6) for

the period of 1950–1999.

Probability distributions of downscaled GCM

monthly mean Tmax were shifted to smaller values

considerably for January and slightly for July, as

compared to those of measured Tmax in Fig. 5 for the

period of 1900–1949, indicating an underestimation of

downscaled GCM Tmax for both months. January

illustrates a typical ‘poor’ match between the measured

and downscaled GCM distributions for the period

(Table 5), while July reflects a typical ‘good’ match

among the 12 months. The Wilcoxon and K–S tests

show that the distributions are statistically different at
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Fig. 4. (a and b) qq-Plots of monthly mean maximum temperature

(Tmax) measured at Kingfisher vs. those projected by GCM for the

native grid box for 1950–1999 for January and August. Note that

values are paired by their ranks within respective data series.
P = 0.05 for 8 out of 12 months for both Tmax (Table 5)

and Tmin (Table 6) for the period of 1900–1949. Such

significant differences were most likely caused by

transient bias in the GCM integration rather than

transfer functions. This bias likely results from internal

stochastic inter-decadal variability in the climate model.

While such variability, which constitutes a large portion

of the observed 20th Century trends, may be realistic,

there is no expectation that it will match the observed

inter-decadal variability since it is not related to external

forcing. This type of bias may be balanced out if
multiple ensemble simulations or climate models are

used in aggregate.

There were no significant differences in measured

distributions between 1900–1949 and 1950–1999 for

the Wilcoxon and K–S tests at P = 0.05 for both Tmax

and Tmin for all 12 months except for Tmax of September.

However, downscaled GCM distributions of 1900–1949

were different from those of 1950–1999 at P = 0.05 for

Tmin for 7 out of 12 months for both tests (Table 6), and

for Tmax for 6 out of 12 for the Wilcoxon test and for 3

out of 12 for the K–S test (Table 5). The contrasting

results between measured and downscaled GCM

distributions over the century indicated that there was

a non-stationary bias in the GCM integration during the

1900–1999 period as discussed above. Note that a

stationary bias or a systematic error would be filtered

out by those transfer functions. The non-stationary bias

was that HadCM3-projected mean temperature

increased at a rate greater than the observed rate at

Kingfisher during 1900–1999. This bias was also

contributed to the differences between measured and

downscaled GCM distributions of 1900–1949. As

discussed in Section 1, all statistical downscaling

techniques are based on the premise that GCM output is

accurate (e.g., Wilby et al., 1998a; Wilby and Wigley,

2000; von Storch et al., 2000). This simple downscaling

method is unable to correct any non-stationary bias in

the GCM output. It should be mentioned that when

downscaling the 1900–1949 GCM temperatures, three

data points per calendar month, on an average, for Tmax

and two for Tmin were outside the ranges, and were

downscaled using the linear functions.

The monthly mean Tmax and Tmin projected for the

2070–2099 period were downscaled to the Kingfisher

station using the fitted transfer functions. On an

average, 8 data points per calendar month for Tmax

and 15 for Tmin were above the ranges and were

downscaled using linear functions. Probability distribu-

tions of downscaled GCM monthly mean Tmax for the

2070–2099 period and those of measured monthly mean

Tmax for the 1950–1999 period are shown in Fig. 6 for

January and August as an example. Compared with the

baseline climate, downscaled Tmax of 2070–2099

consistently shifted to higher values for both months,

with a mean increase of 5.25 8C for January and 3.62 8C
for August. In general, the downscaled Tmax shifts were

greater in the winter season than in the others, with a

mean annual increase being 3.50 8C (Table 1). The

variance ratios were less than 1 except for April, July,

September, and October, indicating an overall decrease

in variance. The downscaled Tmin shifts were greater in

June thru November than in the remaining period, with
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Table 5

Critical significance probability levels of the Wilcoxon rank sum and Kolmogorov–Smirnov (K–S) tests for measured monthly maximum

temperature at Kingfisher and GCM-monthly maximum temperature downscaled to Kingfisher using transfer functions

Month

January February March April May June July August September October November December

Measured 1900–1949 vs. measured 1950–1999

Wilcoxona 0.155 0.880 0.100 0.720 0.570 0.973 0.530 0.056 0.014* 0.187 0.053 0.730

K–S 0.270 0.864 0.178 0.864 0.864 0.864 0.544 0.068 0.040* 0.178 0.068 0.544

Downscaled GCM 1900–1949 vs. downscaled GCM 1950–1999

Wilcoxon 0.009* 0.042* 0.029* 0.007* 0.004* 0.099 0.292 0.248 0.314 0.060 0.046* 0.152

K–S 0.012* 0.112 0.178 0.040* 0.003* 0.270 0.544 0.393 0.544 0.178 0.178 0.393

Measured 1900–1949 vs. downscaled GCM 1900–1949

Wilcoxon 0.001* 0.059 0.001* 0.001* 0.019* 0.101 0.059 0.006* 0.001* 0.002* 0.001* 0.075

K–S 0.001* 0.112 0.012* 0.006* 0.040* 0.178 0.270 0.006* 0.006* 0.006* 0.002* 0.068

Measured 1950–1999 vs. downscaled GCM 1950–1999

Wilcoxon 0.984 0.984 0.861 0.912 0.956 0.940 0.956 0.923 0.942 0.995 0.992 0.890

K–S 0.997 1.000 0.964 0.711 0.711 0.864 0.997 0.997 0.864 0.544 0.544 0.964

a Two sided test with normal approximation.
* Significant difference at P < 0.05.
a mean annual increase of 4.67 8C (Table 1). The

monthly variance ratios were less than 1 except July.

The mean monthly variance ratios calculated using

the downscaled GCM values of 2070–2099 and the

measured data of 1950–1999 were 0.87 for Tmax and

0.82 for Tmin (Table 1). The mean variance ratios

calculated using the downscaled GCM data of 2070–

2099 and 1950–1999 were 0.90 for Tmax and 0.85 for

Tmin, while those calculated using the raw GCM grid

data of 2070–2099 and 1950–1999 were 0.94 and 0.87,

respectively. In general, these variance ratios from these

three methods were quite similar. However, the variance
Table 6

Critical significance probability levels of theWilcoxon rank sum andKolmogo

at Kingfisher and GCM-monthly minimum temperature downscaled to Kin

Month

January February March April May June

Measured 1900–1949 vs. measured 1950–1999

Wilcoxona 0.182 0.572 0.926 0.533 0.558 0.893

K–S 0.270 0.544 0.964 0.178 0.393 0.864

Downscaled GCM 1900–1949 vs. downscaled GCM 1950–1999

Wilcoxon 0.095 0.108 0.200 0.006* 0.001* 0.001*

K–S 0.178 0.068 0.270 0.022* 0.022* 0.012*

Measured 1900–1949 vs. downscaled GCM 1900–1949

Wilcoxon 0.011* 0.196 0.133 0.001* 0.003* 0.001*

K–S 0.040* 0.040* 0.393 0.002* 0.002* 0.003*

Measured 1950–1999 vs. downscaled GCM 1950–1999

Wilcoxon 1.000 0.888 0.992 0.907 0.978 0.931

K–S 0.997 0.544 0.997 0.964 1.000 0.711

a Two sided test with normal approximation.
* Denotes significant difference at P < 0.05.
ratios calculated using the downscaled GCM data of

1950–1999 (denominator) were approximately 1–4%

greater than those calculated using the measured data of

1950–1999. This is because the curve fitting (transfer

function) smoothed the measured distributions of mean

monthly temperatures. The use of the measured data of

1950–1999 assumes a perfect fit, i.e., r2 = 1. Since the r2

values of the non-linear fits are close to 1 for most

months, the differences between the two are very small.

Actually, either one can be used in the temporal

downscaling process. The use of the measured data as

was done in this paper stresses the facts that those data
rov–Smirnov (K–S) tests for measuredmonthlyminimum temperature

gfisher using transfer functions

July August September October November December

0.228 0.314 0.381 0.828 0.804 0.904

0.393 0.393 0.544 0.864 0.997 0.997

0.058 0.010* 0.005* 0.003* 0.001* 0.203

0.068 0.022* 0.022* 0.040* 0.006* 0.270

0.379 0.001* 0.001* 0.001* 0.001* 0.154

0.068 0.001* 0.001* 0.003* 0.006* 0.544

0.926 0.882 0.975 0.970 0.992 0.858

0.864 0.711 0.964 0.997 0.864 0.964
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Table 7

WEPP-simulated average-annual surface runoff, plant transpiration (Ep), soil

1.4-m profile (Sw), soil loss rate, wheat grain yield for the present and cha

Variable

Runoff (mm) Ep (mm) Es (mm)

Present (baseline) climate, CO2 = 350 ppmv, precipitation = 782 mm/year

Conventional 77 465 233

Conservation 67 465 245

No-till 67 453 260

Changed (2070–2099) climate of GGa1, CO2 = 640 ppmv, precipitation = 7

Conventional 108 441 194

Conservation 99 439 206

No-till 97 433 215

Lateral flow in soil was less than 0.03 mm/year in all simulations.

Fig. 5. Cumulative probability distributions of measured and spatially

downscaled monthly mean maximum temperature (Tmax) for the

period of 1900–1949 for January and August.

Fig. 6. Cumulative probability distributions of monthly mean max-

imum temperature (Tmax) measured (M) during 1950–1999 vs. those

of downscaled (D) GCM of 2070–2099 for January and August.
were used to derive the baseline climate parameters and

the calculated variance ratios were used to modify those

parameters to generate the changed climate. The small

differences in variance are expected to have little impact

on simulated responses of runoff, soil loss, and wheat

yield to climate change.

3.3. Temporal downscaling of monthly precipitation

and temperature

The adjusted CLIGEN input parameters (Table 2),

which were derived from the data in Table 1, were used

to generate the changed climate of 2070–2099 for the

Kingfisher station. The generated daily weather series

for the 2070–2099 period would reflect the relative

changes of Table 1 as compared to the present climate.

The disaggregated daily weather series would preserve

the changes of the monthly means and variances of

Table 1 for both precipitation and temperature (Zhang

et al., 2004). Specifically, mean monthly precipitation

depths would increase in most months except June, July,

and August. Averaged monthly variance of daily

precipitation of the changed climate would be 64%

greater than that of the baseline climate. Mean annual

temperature increases would be 3.50 8C for Tmax and

4.67 8C for Tmin. Temperature variances would decrease

for most months for both Tmax and Tmin.

3.4. Impact assessment

The average annual precipitation at the location under

the present (baseline) climate conditions was 782 mm,

and that of the downscaled GCM-projections for the

2070–2099 period was 745 mm, showing an approxi-

mately 5% decrease in annual precipitation. Despite the

projected decrease in precipitation, simulated surface

runoff increased 40–48% under the changed climate in
evaporation (Es), deep percolation (Dp), mean soil water reserve in the

nged climates in three tillage systems for Kingfisher

Dp (mm) Sw (mm) Soil loss (kg/ha) Yield (kg/ha)

7.0 323 5152 2220

5.4 320 448 2200

3.5 314 224 2120

45 mm/year

2.4 305 7392 2510

1.7 302 896 2490

1.2 298 448 2440
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the three tillage systems as compared to the correspond-

ing tillage systems under the present climate (Table 7).

The increase in runoff was mainly caused by the overall

increase in precipitation variability. As mentioned in the

preceding section, overall variance of downscaled daily

precipitation of the changed climate was increased by

some 64% as compared with the variance of the baseline

climate. An increase in precipitation variability would

lead to an increase in occurrence of heavy storms, which

would produce more surface runoff (Zhang et al., 2004).

As a combined effect of the runoff increase and

precipitation decrease, the simulated average annual

plant transpiration and soil evaporation in all three tillage

systems decreased by some 5 and 16.5%, respectively.

The lesser decrease in plant transpiration was because of

the slight increase in precipitation during the growing

seasonofwinterwheat. Likewise, thegreater reduction in

soil evaporation was attributed to the considerable

decrease in precipitation during the fallow period,

especially from June to August. The simulated deep

water percolation decreased from about 5 mm per year

under the present climate to 2 mm under the changed

climate. The simulated long-term daily soil moisture

reserve in the 1.4 m soil profile decreased by some 5.5%

in all tillage systems. The reduction in percolation and

soil moisture reserve was mainly attributed to the

decrease in precipitation and increase in runoff, and was

probably compounded by better crop growth.

Simulated wheat grain yield increased by about

14% under the changed climate (Table 7). The yield

increase was an integrated result of: (i) a slight increase

in precipitation during the growing season, (ii) an 80%

increase in CO2 concentration, and (iii) a moderate

increase in temperature. Simulated soil losses under

the changed climate, compared with the present

climate, increased by 44% under the conventional

tillage, and doubled under the conservation tillage and

no-till due to the increases in runoff depths. However,

the average annual soil losses under the changed

climate were less than 900 kg/ha under the conserva-

tional tillage and no-till, indicating that these tillage

systems would be sufficient in controlling soil erosion

under the changed climate.

3.5. Caveat and implications of the proposed

approach

The crux of this simple spatial downscaling method is

its emphasis on reproducing probability distributions of

local observations rather than searching for and building

strong correlationships between local variables (pre-

dictands) and GCM output variables (predictors) using
complex statistical methods such as ANN, PCA, and

CCA. This simple method directly calibrates GCM

monthly hindcast to probability distribution of observed

data while disregarding the 1:1 correspondence between

the two. This is in sharp contrast to the conventional

statistical downscaling methods in literature, which are

entirely built upon the existence of strong correlation-

ships between observed local variables and GCM output

variables (e.g., Wilby et al., 1998b; Wilby and Wigley,

2000; Solman and Nuñez, 1999). The justification for

taking this simple approach is that the impacts of a certain

climate on natural resources and ecosystems can be

adequately assessed under any climate scenario statis-

tically similar or identical to the climate in consideration.

The proposed method guarantees that transformed GCM

hindcast reproduces probability distributions of observed

data at the station-scale (i.e., ensure statistical equality),

while relaxing the demands upon the existence of strong

correlationships between predictands and predictors. For

similar reasons,Wood et al. (2004) have used qq-plots to

correct GCM climatology using observed climatology at

the same spatial scales.

As reviewed in Section 1, two groups of predictors

have been traditionally used in the statistical down-

scaling. One group includes variables from GCM

output, and another local physiographic variables. The

proposed method assumes that the key processes and

variables that affect GCM-projected precipitation and

temperature have been adequately simulated during the

GCM integration, and thus it is unnecessary to re-

consider them during the downscaling process. This

assumption is consistent with the findings of Widmann

et al. (2003), who have reported that GCM-projected

precipitation was a good predictor for downscaling

regional precipitation. On the other hand, the calibra-

tion of GCM output directly to the target station is

intended to account for the effects of local physio-

graphic features such as elevation, land–water dis-

tribution, land use, and land surface properties on local

climate, which are not considered in GCMs. Never-

theless, this approach assumes, as all statistical

downscaling methods do, that GCM projections are

skillful and transfer functions developed under the

present climate are applicable to future climate (e.g.,

Wilby and Wigley, 2000; Solman and Nuñez, 1999;

Busuioc et al., 1999; von Storch et al., 2000).

4. Conclusions

Linear and non-linear univariate functions fit the

corresponding quartiles of the monthly precipitation

and temperature projected at the native GCM grid scale



X.-C. Zhang / Agricultural and Forest Meteorology 135 (2005) 215–229228
and those measured at the target station well. The

measured and downscaled probability distributions

using the fitted transfer functions were quite similar

for the 1950–1999 period for both precipitation and

temperature, with the significant probability levels

being close to 1 for most months for the Wilcoxon and

K–S tests. The determination coefficients (r2) of linear

regressions were greater than 0.91 for precipitation,

0.89 for Tmax, and 0.70 for Tmin for all 12 months; and

those of nonlinear regressions were greater than 0.95,

0.95, and 0.92, respectively. In general, non-linear

functions fit better and should be used to downscale data

points inside the ranges in which the transfer functions

are fitted. However, for data points falling outside the

ranges, linear functions should be used for conservative

estimation. A considerable number of data points of

Tmax and Tmin fell outside (above) the ranges when

downscaling the GCM projections of 2070–2099 in this

study. This result suggests that the proposed method is

better suited to assess the climatic impacts of the next

20–30 years, simply because (i) lesser temperature rise

in the nearer future will lead to fewer outliers and (ii) it

is less likely to violate the assumption that transfer

functions fitted under the present climate are applicable

to future climate.

The average annual precipitation of downscaled

GCM-projections for the 2070–2099 period was

742 mm, showing an approximately 5% decrease

compared with the present climate. Despite the

projected decrease in precipitation, simulated annual

surface runoff increased 40–48% under the changed

climate in all three tillage systems, resulting from an

overall 64% increase in daily precipitation variance.

Consequently, simulated annual plant transpiration, soil

evaporation, and long-term soil moisture balance in all

three tillage systems decreased. Due to the runoff

increase, simulated annual soil loss was increased by

about 44% under the conventional tillage. Though

simulated soil losses under the conservation tillage and

no-till were doubled, the absolute amounts were fairly

small, suggesting these tillage systems would be

sufficient to keep soil erosion low under the changed

climate. Simulated wheat yield increased by some 14%,

resulting from a slight increase in precipitation during

the growing season, an 80% increase in CO2

concentration, and a moderate increase in temperature.

It should be reiterated that the impact assessment in this

work is mainly for demonstration purpose, and more

comprehensive assessment should be conducted using

multiple climate models and emissions scenarios.

The overall results show that the proposed method is

simple to use and viable for downscaling GCM-
projections for site-specific impact assessment. The

approach emphasizes the parity of probability distri-

butions between measured monthly quantities and

downscaled GCM-projections while it relaxes the

prerequisite of strong correlationships between local

measurements (predictands) and GCM output (pre-

dictors). The justification for taking this approach is that

the impacts of a certain stationary climate on natural

resources and ecosystems can be adequately assessed

under any climate scenario similar or statistically

identical to the climate under consideration. As one of

the statistical downscaling techniques, the method is

also built upon the assumption that GCMs are skillful

and transfer functions derived under the present climate

are applicable to future climate.
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