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Th e Langmuir model is commonly used for describing the 
sorption behavior of reactive solutes to surfaces and is often 
fi t to sorption data using nonlinear least squares regression. 
An important assumption of least squares regression is that 
the predictor variable is error free. In the case of sorption data, 
this assumption is not valid, and therefore the potential for 
parameter bias exists. Although alternative regression methods 
exist that either explicitly account for error in the predictor 
variable (Model II regression) or minimize the error in the 
predictor variable, these methods are not commonly used. 
Th erefore, this paper more fully explores the diff erences in fi tted 
parameters and model fi ts between these diff erent data fi tting 
methods by fi tting P sorption data collected on 26 diff erent soil 
samples using three diff erent regression methods. For a majority 
of soils tested in this study, the diff erences in model fi ts between 
the three regression methods were not statistically signifi cant. 
Statistical diff erences were observed in over a third of the soils, 
however, suggesting that errors in the predictor variable may 
be large enough to produce biased parameter estimates. Th ese 
results suggest that multiple regression methods should be used 
when fi tting the Langmuir model to sorption data to better 
assess the potential impact of error on model fi ts.

Revisiting a Statistical Shortcoming when Fitting the Langmuir Model to Sorption Data

Carl H. Bolster* USDA-ARS

The transport behavior of environmentally signifi cant 

reactive solutes such as phosphorus and heavy metals is 

controlled in large part by the sorption behavior of the solute to 

soil surfaces. A commonly used model for describing sorption 

behavior of reactive solutes to surfaces is the Langmuir model 

(Altin et al., 1998; Kleinman and Sharpley, 2002; Kumar and 

Sivanesan, 2005; Tsai and Juang, 2000; Wang and Harrell, 

2005). Th is nonlinear model was originally developed for 

describing the adsorption of gases to a surface but has been used 

extensively for describing solute and metal sorption to soils. Th is 

model assumes a fi nite sorption capacity at the surface; therefore, 

as the sorption capacity is approached, sorption decreases 

(Langmuir, 1916). Th e Langmuir model is expressed as:
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where S is the sorbed concentration (mg kg−1), S
max

 is the 

maximum sorption capacity of the soil (mg kg−1), K is the 

Langmuir binding-strength coeffi  cient (L mg−1), and C
e
 is the 

equilibrium concentration (mg L−1).

To obtain estimates of K and S
max

 for a given soil, the Lang-

muir model is usually fi t to sorption isotherm data by linear or 

nonlinear least squares regression. Because the transformation 

of data required for linearization can result in modifi cations of 

error structure, introduction of error into the independent vari-

able, and alteration of the weight placed on each data point, 

several researchers have recommended that linearized versions 

of the Langmuir equation not be used (Bolster and Hornberger, 

2007; Harrison and Katti, 1990; Kinniburgh, 1986; Persoff  and 

Th omas, 1988). Statistical problems also exist, however, when 

using nonlinear least squares regression for obtaining Langmuir 

sorption constants (Barrow, 1978; Bothwell and Walker, 1995; 

Kinniburgh, 1986; Schulthess and Dey, 1996). For example, an 

important assumption of least squares regression (also known 

as Model I regression) is that the predictor variable is error free 

(Draper and Smith, 1998; Seber and Wild, 2003). However, the 

predictor variable (i.e., C
e
) in Eq. [1] is the variable that is ex-

perimentally measured and therefore has error associated with it.

When both model variables (i.e., the response and predictor) 

are subject to experimental error (often referred to as an errors-in-

variables model), Model I regression has been shown to generate 

biased parameter estimates (de Brauwere et al., 2005; Seber and 
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Wild, 2003; Valsami et al., 2000). Model II regression, on the 

other hand, accounts for errors in the predictor and response 

variables and is therefore more appropriate for fi tting errors-in-

variables models to data (de Brauwere et al., 2005; Ebert and 

Russell, 1994; Ko et al., 1997; Seber and Wild, 2003; Valsami 

et al., 2000). Schulthess and Dey (1996) used a form of Model 

II regression known as normal nonlinear least squares (NNLS) 

regression for fi tting the Langmuir model to sorption data. 

With NNLS regression, the distance between observation and 

model fi t in the normal (i.e., shortest) direction is minimized. 

Using this method, Schulthess and Dey (1996) obtained dif-

ferent parameter estimates than those obtained using Model 

I regression, although these diff erences were not statistically 

compared. In a later study, Wijnja and Schulthess (2000) ob-

served nearly identical model fi ts using Model I and Model II 

regression. It is unclear, therefore, whether Model II regression 

provides signifi cantly diff erent parameter estimates than Model 

I regression when fi tting the Langmuir model to sorption data.

An additional statistical concern when fi tting the Lang-

muir model to sorption data is that the predictor and response 

variables are not measured independently, and therefore the 

errors in the response and predictor variables are correlated. 

Valsami et al. (2000) found that Model I and Model II regres-

sion provided unsatisfactory parameter estimates for the Hill 

protein-binding model (an equation similar to the Langmuir 

model) when errors in the response and predictor variables 

were correlated. Th e authors recommended the use of more 

sophisticated methods, such as the method of scoring, when 

errors associated with the two variables are correlated.

Bothwell and Walker (1995) took a diff erent approach to ad-

dressing these statistical concerns. As fi rst suggested by Barrow 

(1978) and later by Kinniburgh (1986), Bothwell and Walker 

(1995) recognized that because S is a function of C
e
 and the ini-

tial concentration, Eq. [1] could be modifi ed so that the initial 

concentration replaced the equilibrium concentration as the 

independent variable in the Langmuir equation. By replacing C
e
 

with the initial concentration—the true independent variable—

the errors in the predictor and response variables are no longer 

correlated, and the predictor variable is usually relatively error 

free. Th e authors found that fi tting the modifi ed Langmuir equa-

tion to cellulose binding data yielded nearly identical parameter 

estimates but slightly better fi ts and smaller parameter uncertain-

ties than the original Langmuir equation. Because the authors 

used only a single data set for comparing the two equations, it is 

unknown whether this approach yields signifi cantly diff erent fi ts 

or parameter estimates than the original Langmuir equation.

Even though the data-fi tting methods used by Schulthess and 

Dey (1996) and Bothwell and Walker (1995) are arguably more 

statistically valid approaches for fi tting the Langmuir model to 

sorption data than the traditional method of fi tting Eq. [1] using 

Model I regression, it is unclear whether these methods provide 

signifi cantly diff erent model fi ts and parameter estimates than 

the traditional method of fi tting the Langmuir model to sorption 

data because only a few data sets were tested in these studies and 

statistical comparisons were not performed. Th erefore, in this 

paper I more fully explore the diff erences in fi tted parameters 

and model fi ts between these data-fi tting methods by fi tting P 

sorption data collected on 26 diff erent soil samples using three 

regression methods: (i) fi tting Eq. [1] using Model I regression, 

(ii) fi tting Eq. [1] using Model II regression, and (iii) fi tting a 

modifi ed version of the Langmuir equation using Model I re-

gression. Results of this study will provide information on how 

robust Model I regression is to violations of the assumption of an 

error-free predictor variable.

Methods

Sorption Data
Two sets of sorption data were analyzed as part of this study. 

Th e fi rst set of sorption data was obtained from surface soils 

(0–15 cm depth) collected at seven locations in western Ken-

tucky and one location in Alabama, representing eight diff erent 

soils series as follows: Belknap (Fluvaquentic Endoaquepts), 

Collins (Aquic Udifl uvents), Hartsells (Typic Hapludults), 

Lakin (Lamellic Udipsamments), Loring (Oxiaquic Fragiu-

dalfs), Melvin (Fluvaquentic Endoaquepts), Pembroke (Mollic 

Paleudalfs), and Zanesville (Oxiaquic Fragiudalfs). Th e second 

set of sorption data represents soils collected at three depths 

(0–5, 5–15, and 15–30 cm) from six locations in Mississippi 

representing three diff erent soil series: Brooksville (Aquic Hap-

luderts), Okolona (Oxyaquic Hapluderts), and Vaiden (Aquic 

Dystruderts). For the second data set, soil samples were taken 

from adjacent fi elds within each soil series where one fi eld 

received long-term application of swine effl  uent (T) and the 

other fi eld received no manure application (C).

All soils were air dried and passed through a 2-mm sieve 

before use. Soil samples were equilibrated with a 0.01 mol L−1 

CaCl
2
 solution containing various concentrations of P added 

as KH
2
PO

4
 in 50-mL centrifuge tubes. Sorption experiments 

were performed in duplicate for the second data set. Th e soil 

mixture was placed on a reciprocating shaker and allowed to 

equilibrate for 24 h. After equilibration, the mixture was cen-

trifuged at 4000 rpm for 10 min, and the liquid was decanted 

and fi ltered through a 0.45-μm fi lter (Whatman). Dissolved 

reactive phosphorus was measured colorimetrically (Murphy 

and Riley, 1962) using a QuickChem Autoanalyzer (Lachat 

Instruments, Chicago, IL). Further details of the soils and 

methods can be found in Bolster and Sistani (2008) and 

Adeli et al. (2008).

Data Analysis
Sorption data were fi t by three diff erent methods, and the 

resultant model fi ts were statistically compared. For two of the 

methods, the traditional Langmuir equation (Eq. [1]) was fi t 

to the data using two diff erent objective functions. In the third 

approach, the modifi ed Langmuir equation of Bothwell and 

Walker (1995) was fi t to the data. Th is equation uses the initial 

concentration—the true independent variable—as the predic-

tor variable. Th e initial concentration can be used as the predic-

tor variable by recognizing that the response variable, S, is de-

termined from the diff erence between the initial concentration 

and the equilibrium concentration by the following equation:
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S = (C
i
 − C

e
) × V  [2]

where V (L kg−1) is the solution to soil mass ratio, and C
i
 

(mg L−1) is the initial concentration fi xed by the experimenter. 

Rearranging Eq. [2] and substituting into Eq. [1] yields a 

quadratic equation with either S or C
e
 as the response variable 

and C
i
 as the predictor variable. Th e solutions to the resultant 

quadratic equations are (Bothwell and Walker, 1995):

2
max max

i

e

1 1 4

2

i i
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Equations [3] and [4] are mathematically equivalent to the 

Langmuir equation. Unlike Eq. [1], however, the response 

and predictor variables in Eq. [3] and [4] are measured 

independently. Even though some measurement error is 

associated with the predictor variable, because this error is 

usually minimal compared with the error associated with S 

(often referred to as a controlled errors-in-variables model), 

vertical least squares regression can be safely used for parameter 

estimation (Ratkowsky, 1990; Seber and Wild, 2003).

Sorption data were fi t with Eq. [1], [3], and [4] using un-

weighted nonlinear least squares regression using Microsoft 

Excel (Bolster and Hornberger, 2007). Least squares regression 

seeks to minimize the sum of the squared errors (SSE) between 

observed and calculated values of the dependent variable:

[ ]
2

obs cal
1

SSE
N

i i

S S
=

= −∑
 [5]

where SSE is the objective function to be minimized, N is the 

number of observations, and S
obs

 and S
cal

 refer to observed and 

calculated values, respectively, of the sorbed concentration. 

Alternative objective functions, and therefore defi nitions 

of what constitutes the best model fi t, do exist. Indeed, the 

minimization of alternative objective functions can yield 

estimates of the Langmuir sorption constants diff erent from 

those obtained by minimizing Eq. [5] (Allen et al., 2004). 

Nonetheless, because Eq. [5] is the most commonly used 

objective function, it was used in this study for quantifying and 

assessing model fi ts. Preliminary analyses showed that Eq. [3] 

and [4] provided identical parameter estimates and parameter 

uncertainties; therefore, only results from Eq. [4] are shown 

because this allows direct comparisons of SSE with the original 

Langmuir equation because both equations predict S.

Initial parameter estimates required for optimization were 

obtained using two approaches. Th e fi rst approach involved 

using a grid point procedure (Draper and Smith, 1998). In this 

procedure, SSE values were calculated for a range of parameter 

values (K ranged from 0.1 to 2.6 in increments of 0.5, and S
max

 

ranged from 100 to 1200 in increments of 100). Th e combina-

tion of parameter values that gave the lowest SSE values was 

then used as the initial parameter estimates during optimiza-

tion. In the second approach, initial values were obtained by 

fi tting transformed data with the Langmuir linearization of 

Eq. [1] (Langmuir, 1918). Initial values obtained with the two 

methods yielded identical model fi ts and parameter estimates, 

suggesting that the use of initial parameter estimates obtained 

with the Langmuir linearization will result in model conver-

gence on the global minimum of the objective function.

Equation [1] was also fi t to the sorption data with the 

Model II regression method of Schulthess and Dey (1996) 

using LLMpro software (Schulthess, 2007). Th is method is a 

modifi cation of the traditional normal least squares approach 

in that the regression results in a model fi t in which the data 

are evenly distributed above and below the curve. To maintain 

parity of units in the objective function, this method requires 

an axes conversion factor, which in this study was set equal 

to the inverse of the soil to solution ratio (V−1). Th roughout 

the remainder of this paper, the three methods used to obtain 

Langmuir sorption constants are referred to as C
e
–VNLS, C

e
–

NNLS, and C
i
–VNLS, representing Eq. [1] with vertical non-

linear least squares regression, Eq. [1] with normal nonlinear 

least squares regression, and Eq. [4] with vertical nonlinear 

least squares regression, respectively.

To determine whether the parameter estimates obtained 

with the three methods were signifi cantly diff erent, model 

predictions of the data were statistically compared using an F 

test (Draper and Smith, 1998):

95 minSSE SSE 1 (0.95, , )
P F P N P

N P
⎡ ⎤

= + −⎢ ⎥
⎢ ⎥−⎣ ⎦  [6]

where SSE
min

 is the value of the minimized objective function, 

SSE
95

 is the maximum SSE value for which the parameter values 

are within the 95% confi dence range of the fi tted parameter 

values, N is the number of data points, and P is the number of 

fi tting parameters (n = 2). Th e F value was obtained using the 

FINV command in Excel for a 0.95 probability and P degrees 

of freedom in the numerator and N-P degrees of freedom in the 

denominator. Combinations of values of K and S
max

 that yield 

an SSE value equal to SSE
95

 represent the outer boundary of the 

95% confi dence region; therefore, all combinations of K and 

S
max

 resulting in SSE values equal to or less than SSE
95

 are not 

considered signifi cantly diff erent at the 95% confi dence level 

than the best-fi t parameter values. Model fi ts were statistically 

compared by calculating values of S using the best-fi t parameter 

estimates obtained from the three regression methods and 

comparing the resultant SSE values with the SSE
95

 value obtained 

from Eq. [6]. Statistical comparisons were made for C
e
 (Eq. [1]) 

and C
i
 (Eq. [4]) as the predictor variable.

Results and Discussion
For 23 of the 26 soil samples tested in this study, fi tted K 

values obtained with the C
i
–VNLS and C

e
–NNLS methods 

were lower than fi tted values obtained with the traditional 

C
e
–VNLS method, with values of K ranging from 9 to 60% 
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lower for the C
i
–VNLS method and 6 to 57% lower for the 

C
e
–NNLS method (Fig. 1A). For these same 23 soil samples, 

fi tted S
max

 values were higher for the C
i
–VNLS and C

e
–NNLS 

methods, with increases in S
max

 ranging from 2 to 15% for 

the C
i
–VNLS method and from 2 to 16% for the C

e
–NNLS 

method (Fig. 1B). Schulthess and Dey (1996) also observed 

that the C
e
–NNLS method generally yielded small increases 

in estimates of S
max

 and relatively large decreases in estimates 

of K when compared with the C
e
–VNLS method. With the 

exception of the Belknap, Collins, and Hartsells soils, fi tted 

parameter values obtained with the C
i
–VNLS and C

e
–NNLS 

methods were more similar to each other than to those ob-

tained with the traditional C
e
–VNLS method. Indeed, the 

C
i
–VNLS and C

e
–NNLS methods produced nearly identical 

model fi ts for most soils (Fig. 2).

Model fi ts obtained by the diff erent methods were sta-

tistically compared using an F-test. When using the best-fi t 

parameter estimates obtained with the C
i
–VNLS method to 

predict values of S using Eq. [1], the resultant SSE values ex-

ceeded the SSE
95

 of the C
e
–VNLS method in 11 of the soils 

tested, whereas using the best-fi t parameters obtained with the 

C
e
–NNLS method resulted in SSE values exceeding the SSE

95
 

of the C
e
–VNLS method for nine of the soils tested (Table 

1). Statistical diff erences in model fi ts between the regression 

methods are due primarily to large diff erences in estimates of 

K between the diff erent methods. When signifi cant diff erences 

were observed between the three regression methods, parameter 

estimates obtained with the C
i
–VNLS and C

e
–NNLS methods 

produced better predictions of high concentrations of S at the 

expense of low concentrations of S, whereas fi tted parameter 

values obtained with the C
e
–VNLS method better captured low 

concentrations of S at the expense of high concentrations of S 

when C
e
 was used as the predictor variable (Fig. 2).

Comparisons between the diff erent regression methods were 

based solely on statistical comparisons of the SSE in the vertical 

direction. Because this method assumes that error is associated 

only with the response variable and not with the predictor vari-

able, vertical SSE cannot be used to determine which method 

provides the best fi t; it can only be used to determine whether 

the diff erences in SSE are statistically diff erent. Th erefore, even 

though parameter estimates obtained with the C
e
–VNLS meth-

od provided the lowest SSE values when C
e
 was used as the pre-

dictor variable, this does not mean that the C
e
–VNLS method 

provides the best model fi ts and parameter estimates.

When sorption data are plotted against the initial con-

centration, the amount of scatter in the data is noticeably 

reduced, and the Langmuir model is better able to capture 

high and low concentrations of S (Fig. 2). Indeed, for all soils 

tested in this study, SSE values were much lower when C
i
 was 

used as the predictor variable rather than C
e
, regardless of how 

the parameter estimates were obtained (Table 1). When using 

the best-fi t parameter estimates obtained with the C
e
–VNLS 

method to predict values of S using Eq. [4], the resultant SSE 

values exceeded the SSE
95

 of the C
i
–VNLS method in 15 of 

the soils tested, whereas for the C
e
–NNLS method, the re-

sultant SSE values never exceeded the SSE
95

 of the C
i
–VNLS 

method, further highlighting the strong similarities in model 

fi ts between these two alternative regression methods.

Previous studies have reported biased parameter estimates 

when using Model I regression with errors-in-variables models 

due to the fact that an inherent assumption in vertical least 

squares regression is that the predictor variable is error free (de 

Brauwere et al., 2005; Valsami et al., 2000). Because the predic-

tor variable, C
e
, in the original Langmuir equation is not er-

ror free, the potential exists that Langmuir sorption constants 

obtained by fi tting Eq. [1] to sorption data using vertical least 

squares regression may be biased. For the majority of soils tested 

in this study, the diff erences in model fi ts between the three re-

gression methods were not statistically signifi cant, indicating that 

vertical least squares regression is relatively robust to the presence 

of error in the predictor variable, at least when fi tting the Lang-

muir model to sorption data. For about a third of the samples, 

however, the C
i
–VNLS and C

e
–NNLS methods did provide 

Fig. 1. Fitted values for (A) K and (B) S
max

 for the three regression 
methods tested in this study. Panel A is plotted with logarithmic 
axes. Fitted parameter values obtained with the traditional least 
squares method (C

e
–VNLS) are plotted on the x axis, and the fi tted 

parameter values obtained with the two alternative methods 
(C

i
–VNLS and C

e
–NNLS) are plotted on the y axis. The solid line 

represents a one-to-one line. For 23 of the 26 soils, the C
i
–VNLS 

and C
e
–NNLS methods provided lower values of K and higher 

values of S
max

 than the C
e
–VNLS method. For most soils, the C

i
–

VNLS and C
e
–NNLS produce very similar parameter estimates.
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statistically diff erent model fi ts than the C
e
–VNLS method, sug-

gesting that under some conditions, errors in the predictor vari-

able may be large enough to produce biased parameter estimates.

An additional limitation to using least squares regression for 

fi tting the original Langmuir equation is that S is calculated 

from measured concentrations of C
e
; therefore, S and C

e
 are 

not measured independently, and any measurement error in C
e
 

leads to a negatively correlated error in S. Th us, an overestimate 

of C
e
 leads to an erroneously low calculated value of S, with 

the resultant data point being shifted downward and to the 

right on the isotherm plot. Valsami et al. (2000) reported that 

neither Model I nor Model II regression could provide good 

parameter estimates when errors in the response and predic-

tor variables were correlated. In this study, however, fi tting the 

original Langmuir equation using Model II regression yielded 

nearly identical parameter estimates and model fi ts as the modi-

Fig. 2. Observed data and model predictions using the original (left) and modifi ed (right) Langmuir equations. For brevity, only four 
representative data sets are shown. The Belknap soil (A) is representative of the three soils (Belknap, Collins, and Hartsells) in which the 
C

e
–NNLS method provided more similar parameter estimates to the C

e
–VNLS method than the C

i
–VNLS. The Vaiden 5- to 15-cm untreated 

soil (B) is representative of the soils in which all three regression methods provided very similar parameter estimates. The Brooksville 0- 
to 5-cm untreated (C) and Okolona 15- to 30-cm treated (D) soils are representative of soils in which the C

i
–VNLS and C

e
–NNLS methods 

produced signifi cantly diff erent model fi ts than the C
e
–VNLS method.
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fi ed Langmuir equation, an equation in which the response and 

predictor variables are measured independently, and thus the 

errors are uncorrelated. Th ese results, therefore, suggest that the 

inherent correlation between errors in the predictor and re-

sponse variables in the original Langmuir equation do not have 

a signifi cant impact on parameter estimation, at least for the 

experimental conditions found in this study.

Statistical concerns to using linearized versions of the 

Langmuir equation have been raised for several decades (Bol-

ster and Hornberger, 2007; Colquhoun, 1969; Colquhoun, 

1971; Dowd and Riggs, 1965; Harter, 1984; Kinniburgh, 

1986; Kumar and Sivanesan, 2005; Persoff  and Th omas, 

1988; Schulthess and Dey, 1996). Statistical problems also 

exist when using regression analysis to fi t the nonlinear Lang-

muir equation to sorption data (Barrow, 1978; Bothwell and 

Walker, 1995; Kinniburgh, 1986; Schulthess and Dey, 1996). 

One such problem is that the use of Model I regression as-

sumes an error-free predictor variable, yet this assumption is 

violated when equilibrium concentrations are used as the pre-

dictor variable. Th e two alternative regression methods tested 

here specifi cally address this problem by either explicitly ac-

counting for (C
e
–NNLS) or reducing the magnitude of (C

i
–

VNLS), the error in the predictor variable. For the majority of 

soils tested in this study, the diff erences in model fi ts between 

the three regression methods were not statistically signifi cant. 

In about a third of the studies, statistical diff erences were 

observed, suggesting that under some conditions errors in the 

equilibrium concentration may be large enough to produce 

biased parameter estimates. Th erefore, it is recommended 

that the C
e
–NNLS or C

i
–VNLS method be used in addition 

to the C
e
–VNLS method when fi tting the Langmuir model 

to sorption data to determine the potential for parameter 

bias. Th e modifi ed normal least squares method of Schulthess 

and Dey (1996) is available at www.alfi sol.com (Schulthess, 

2007), and an easy-to-use Microsoft Excel spreadsheet capable 

of fi tting Eq. [3] and [4] to sorption data is available at ars.

usda.gov/msa/awmru/bolster/Sorption_spreadsheets. Due 

to its complex structure, the modifi ed Langmuir equation 

can diverge during optimization if initial estimates are far 

removed from the best-fi t parameter values. Th erefore, initial 

parameter estimates should be obtained with Eq. [1] or the 

Langmuir linearization of Eq. [1].
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