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Abstract

Soil moisture plays a critical role in many hydrological processes including infiltration, evaporation, and runoff. Satellite-

based passive microwave sensors offer an effective way to observe soil moisture conditions over vast areas. There are currently

several satellite systems that can detect soil moisture. Calibration, validation, and characterization of data received from these

satellite systems are an ongoing process. One approach to these requirements is to collect and compare long-term in situ (field)

measurements of soil moisture with remotely sensed data. The in situ measurements for this paper were collected at the Little

River Watershed (LRW) Tifton, Georgia and compared to the Tropical Rainfall Measurement Mission Microwave Imager

(TMI) 10.65 GHz vertical and horizontial (V and H) sensors and vegetation density Normalized Difference Vegetation Index

(NDVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS) for the period from 1999 through 2002. The in situ

soil moisture probes exist in conjunction with rain gauge stations throughout the sampling region. It was found that the TMI was

able to observe soil moisture conditions when vegetation levels were low. However, during several months each year high

vegetation levels mask the soil moisture signal from the TMI. When the monthly averaged observation from the TMI, MODIS,

and in situ probes were subjected to a multivariable comparison the correlation value increased slightly, improving the accuracy

of the TMI—soil moisture correlation. Our results show that the TMI estimate would not result in an adequate monitoring of

large land areas but when used in conjunction with other satellite sensors and in situ networks and model output can constitute

an effective means of monitoring soil moisture of the land surface.
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1. Introduction

Soil moisture is an important variable in land

surface hydrology. The amount of moisture in the soil
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has a direct effect on the hydraulic conductivity.

Accurate measurement of volumetric soil moisture

helps hydrologists predict amount of runoff, recharge

rate, evaporation and other important variables

(Jackson and Schmugge, 1996). Precise assessment

of these variables will aid in the development of

meteorological forecasting, flood management

schemes, impact assessments, wetland delineation

and hydrological models. Unfortunately, in situ

measurements of soil moisture are often time-

consuming and require a large work force to

adequately sample even small watersheds (Rawls

et al., 1982). Permanently automated sampling sites

are able to cover specific areas, but it is not feasible to

have such sites located everywhere. Satellites offer a

solution to these problems as they can observe large

areas and are not restricted by rough terrain and/or

adverse weather conditions (Jackson, 1993).

Thermal emissions from soils in the microwave

region are sensitive to variations of the moisture in the

soil (Guha and Lakshmi, 2002). It has been shown that

microwave radiation in lower frequencies can pene-

trate several centimeters into most soils (Jackson and

Schmugge, 1989; Zhan et al., 2002). Any moisture

that is present in the top 5 cm of soil can affect the

amount of microwave radiation that is emitted at low

frequencies (Schmugge et al., 2002). Longer wave-

lengths penetrate deeper into the soil and are less

likely to be affected by cloud cover or vegetation. The

amount of microwave energy that is emitted to space

is primarily dependent on the amount of water in the

soil. Surfaces covered with water will emit low

amounts of microwave radiation, whereas dry soils

emit much more radiation in the microwave frequen-

cies (Wang and Schmugge, 1980). It is impossible to

separate the effects of surface roughness and veg-

etation unless one of the variables is known a priori

(Schmugge, 1985; Bindlish et al., 2003).

In this study the effectiveness of the TMI to

observe soil moisture in the southern costal plain

region of Georgia is evaluated. Specifically, the

affects of vegetation on the TMI soil moisture

observations will be investigated. If the observations

from a passive microwave remote sensing system can

be calibrated to the conditions in this watershed then

vast areas of the land surface can also be mapped and

studied. As our ability to map soil moisture improves

so will our understanding of the hydrological cycle.
2. Background

There have been several attempts to assess the

feasibility of using passive microwave remote sensing

technology to measure soil moisture. Studies have

been conducted on ground based, airborne, and

satellite based sensors. The remotely measured soil

moisture values have been compared to in situ soil

moisture observations and predicted soil moisture

values generated using hydrological and climate

models. Numerous studies involving several space-

borne sensors have been preformed at many frequen-

cies in various locations around the globe.

Data gathered from Skylab’s 1.4 GHz radiometer

were compared to Scanning Multichannel Micro-

wave Radiometer (SMMR) brightness temperatures

(Wang, 1985). In 1988 6.6 GHz brightness tem-

peratures recorded by the SMMR were correlated

with soil moisture values (Choudhury and Golus,

1988). L band microwave (1.4 GHz) data gathered

by the Pushbroom Microwave Radiometer (PBMR)

have been used to make soil moisture maps (Wang,

1985). Soil moisture observations were collected

over Southeastern Botswana using the 6.6 GHz

channel on the SMMR (Owe et al., 1992). The

sensitivity of the Special Sensor Microwave/Imager

(SSM/I) channels to soil moisture, vegetation, and

surface temperature has also been explored

(Lakshmi, 1998; Choudhury et al., 1994). In 1995

the relationship between Antecedent Precipitation

Index (API) and 6.6 GHz SMMR observed bright-

ness temperatures was analyzed. The evidence

showed that at 6.6 GHz, nighttime observations

were more accurate and that vertical polarized

microwave energy is less affected by vegetation

(Ahmed, 1995). It was observed that at 19 GHz

there is a nearly linear relationship between

brightness temperatures and the soil moisture

(Lakshmi et al., 1997). The hydraulic properties

of the Little Washita watershed in Oklahoma were

studied using the Electronically Scanned Thinned

Array Radiometer (ESTAR) at 1.4 GHz (Mattikalli

et al., 1998). Microwave observations from 6 to

18 GHz obtained by SMMR were used to observe

land surface parameters over West Africa (Njoku

and Li, 1999). Dual polarization passive microwave

and multi-frequency (5–90 GHz) sensors were used

to study vegetation and soil moisture in West
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Africa (Magagi et al., 2000). TMI 10.65 GHz

channel observations are being recorded with the

long-term goal of developing a daily 4-year soil

moisture pathfinder data set. This effort to utilize a

remote sensing satellite platform to observe soil

moisture conditions over an extensive period of

time is the first of its kind (Bindlish et al., 2003).
3. Data and methods

3.1. Field site

The Little River Watershed is located in the

Southern Coastal Plain region of Georgia with

primarily loamy sand soil. The watershed encom-

passes 334 km2 and the topography is generally flat

with meandering streams (Fig. 1). The major land use

is agricultural (36%) with forested land surrounding

the riparian zones. The bulk of agricultural land is

used for cotton, peanuts, and vegetables. Woodlands

occupy 40% of the watershed and are dominated by

pines interspersed with a few hardwoods (Bosch et al.,
Fig. 1. Little River Watershed Tifton, Georgia.
1999). The USDA (United States Department of

Agriculture) chose this site to represent the costal

plains regions of the North American East Coast

(Sheridan, 1997).

3.2. Soil climate analysis network (SCAN) site

The National Weather and Climate Center (NWCC)

have installed a weather station, known as a Soil Climate

Analysis Network (SCAN) site, in Tifton (Paetzold and

Schaefer, 2000). This site measures the air temperature,

humidity, incoming radiation, rainfall, wind speed and

barometric pressure, and also has soil moisture probes

buried in the subsurface that can measure soil

temperature, conductivity, salinity, and soil moisture.

The probes are placed at depths of 5, 10, 20, 50, and

102 cm. Observations at the SCAN site are taken every

half an hour and are available on the internet (http://

www.wcc.nrcs.usda.gov/scan/site.pl?sitenumZ2027

andstateZga).

3.3. Rain gauge probe sites

Beginning in the summer of 2001, placement of a

series of stationary soil moisture probes began

throughout the Little River Watershed in Tifton,

Georgia These probes were installed at 5, 20 and

30 cm depths at existing automated rain gauge sites

with radio transmitter towers. Observations are taken

every half an hour, and each observation contains data

for soil moisture (buried capacitance probes), tem-

perature, and conductance (Stevens Soil moisture

Company, 1994: Please note that product names are

provided for completeness in descriptions only and do

not suggest endorsement by University of South

Carolina or the United States Department of Agri-

culture). By the end of 2002, there were 11 fixed soil

probe sites that were operational. There are plans to

expand the network of probes throughout the

watershed. The current probes have been placed in

pastures, tilled soils, brush, and grassy fields with soil

types including Tifton loamy sand, Dothan loamy

sand, Fuquay loamy sand and Sunsweet loamy sand

(Table 1). A complete listing of all the monthly

averaged data gathered from the soil moisture probes,

TMI 10.65 GHz sensors, MODIS 16-day average

500 m resolution normalized difference vegetation

index (NDVI), SCAN soil moisture site, and rainfall

http://www.wcc.nrcs.usda.gov/scan/site.pl?sitenum=2027andstate=ga
http://www.wcc.nrcs.usda.gov/scan/site.pl?sitenum=2027andstate=ga
http://www.wcc.nrcs.usda.gov/scan/site.pl?sitenum=2027andstate=ga


Table 1

Rain gauge site numbers, activation dates, land use, and soil types

Site Activation

date

Land use Soil type

SCAN Site 19-May-99 Grass Dothan LS

Gibbs Farm 03-Mar-00 Tilled Tifton LS

Station Z 02-Jul-02 Tilled Cowarts LS

Bellflower

Farm

26-Jun-02 Tilled Dothan LS

RG 12 19-Oct-01 Pasture Fuquay LS

RG 16 03-Jan-01 Grass Tifton LS

RG 22 29-Oct-01 Brush Tifton LS

RG 26 19-Dec-01 Pasture Tifton LS

RG 31 12-Dec-01 Pasture Tifton LS

RG 32 03-Jan-01 Grass Tifton LS

RG 34 12-Dec-02 Pasture Fuquay LS

RG 39 29-Jan-02 Pasture Fuquay LS

RG 43 29-Jan-02 Field border Tifton LS

RG 50 24-Jan-02 Pasture Sunsweet

GSL

RG 63 17-Oct-01 Grass Fuquay LS

J. Cashion et al. / Journal of Hydrology 307 (2005) 242–253 245
in the Little River Watershed (LRW) for 2002 is

provided in Table 2.
3.4. TMI

The Tropical Rainfall Measurement Mission

Microwave Imager (TMI) was launched in 1997.

The original orbital altitude was 350 km. However,

the TMI was boosted in August 2001 to a higher orbit

of 402.5 km, and the original swath width of 780 km

was increased by 15% to 897 km. TMI has an orbit

that extends from 358N to 358S, limiting the amount of

land area that is covered. This orbit is designed to

keep the TMI over the tropics as much as possible.

When the orbit is mapped out in two dimensions it

resembles a sinusoidal wave. The sensors on board the

TMI have nine channels, with frequencies as follows:

85.5 GHz HV (horizontal and vertical polarizations),

37 GHz HV, 21.3 GHz V, 19.4 GHz HV, and

10.7 GHz HV. These frequencies/channels are hori-

zontally and vertically polarized, with the exception

of the 21.3 GHz channel. The effective field of view

(EFOV), or surface area that contributes to the

remotely sensed data, varies for each wavelength;

the EFOV increases as the size of the corresponding

wavelength increases. Channels 1 and 2 (10.65 GHz

V and H) have an EFOV of 63 km by 37 km; channels

3 and 4 (19.35 GHz V and H) have a EFOV of 30 km
by 18 km; channel 5 (21.3 GHz V) has an EFOV of

23 km by 18 km; channels 6 and 7 (37 GHz V and H)

have a EFOV of 16 km by 9 km; and channels 8 and 9

(85.5 GHz V and H) have a EFOV of 7 km by 5 km.

Channels 8 and 9 are also set to collect data at double

resolution. Any data obtained within the coordinates

31.48N to 31.78338N and 83.36678W to 83.81678W

corresponding to the LRW Tifton, Georgia were used

in the calculations. The TMI completes an orbit every

91 min, making 15.7 orbits per day. Thus, the TMI

overpasses Tifton at different local times each day,

providing one to three overpasses over the LRW. The

TRMM repeats its orbital cycle every 42 days, passing

over the same spot at the same local time.

In this study, the polarization difference brightness

temperature of the 10.65 GHz channels, viz., the

difference of the vertical and the horizontal polariz-

ation brightness temperatures is used.

We have used monthly average data throughout

this study. This is to minimize day-to-day variability.

In addition, it is our aim to use results of this study for

long-term monitoring in a ‘climate’ sense rather than

instantaneous changes associated with daily vari-

ations. Monthly averaged data are more stable and

hence easier to use.

The Little River Watershed in located in a

relatively homogenous region with the area outside

the watershed having similar land cover, cropping

practices and soil types. Therefore, we were justified

in using the TMI to study the variability of soil

moisture over the smaller watershed.
4. Results

4.1. Analysis of data

The SCAN site data were downloaded from the

NWCC website and then sorted so that only data

points within a half an hour of a TMI overpass were

retained (http://www.wcc.nrcs.usda.gov/scan/site.

pl?sitenumZ2027andstateZga). Only the data from

the 5 cm depth probe were used here, as any deeper

soil moisture would have no effect on the 10.65 GHz

polarization difference. Even though we have instan-

taneous, simultaneous observations from the in situ

and satellite sensors, we however average up to a

monthly time period. Daily/instantaneous data

http://www.wcc.nrcs.usda.gov/scan/site.pl?sitenum=2027andstate=ga
http://www.wcc.nrcs.usda.gov/scan/site.pl?sitenum=2027andstate=ga


Table 2

Monthly average data from all rain gauge site soil moisture probes (volumetric soil moisture), TMI (K), and the average rainfall (inches) within

the LRW for 2002

Month TMI (K) NDVI SCAN RG 12 RG 16 RG 22 RG 26

Jan 11.51 0.652 0.097 0.1168 0.109 0.106 0.277

Feb 9.03 0.652 0.077 0.0896 0.136 0.090 0.268

Mar 11.77 0.665 0.091 0.1009 0.110 0.086 0.263

April 10.28 0.657 0.099 0.0866 0.120 0.068 0.277

May 9.13 0.669 0.064 0.0500 0.043 0.032 0.125

June 8.52 0.698 0.030 0.0485 0.046 0.067 0.179

July 6.62 0.755 0.059 0.073 0.068 0.242

Aug 5.47 0.752 0.053 0.0260 0.050 0.047 0.217

Sept 6.40 0.732 0.083 0.0809 0.106 0.084 0.247

Oct 8.29 0.723 0.094 0.0918 0.141 0.106 0.345

Nov 9.01 0.699 0.100 0.1054 0.157 0.102 0.414

Dec 11.96 0.651 0.097 0.1213 0.148 0.122 0.392

Month Rain (in.) RG 31 RG 32 RG 34 RG 43 RG 50 RG 63

Jan 0.40 0.074 0.094 0.116 0.184

Feb 0.80 0.086 0.112 0.089 0.011 0.136 0.174

Mar 4.84 0.123 0.098 0.100 0.025 0.149 0.223

April 4.84 0.092 0.085 0.086 0.018 0.118 0.189

May 2.44 0.042 0.035 0.050 0.007 0.060 0.100

June 2.53 0.043 0.046 0.048 0.010 0.059 0.075

July 0.60 0.119 0.079 0.008 0.101 0.090

Aug 2.61 0.039 0.034 0.026 0.009 0.072 0.068

Sept 2.40 0.102 0.054 0.080 0.014 0.109 0.068

Oct 6.46 0.151 0.104 0.091 0.037 0.142 0.227

Nov 5.19 0.162 0.142 0.105 0.028 0.142 0.313

Dec 3.87 0.107 0.142 0.128 0.038 0.146 0.322
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exhibits greater range of fluctuations which are not of

interest to this study as we attempt to deal with the

seasonal/climatic variability. A comparison of the

probes at each depth was carried out, the results

showed a near constant vertical profile of soil

moisture. The SCAN site became operational in

1999; therefore the comparison of the data set starts

at that time. Unfortunately, the soil surrounding the

soil moisture probes collapsed in late 1999, leaving

the probes partly exposed and slanted; in order to

function properly the probes need to be completely

buried in the soil layer. The SCAN site was not

repaired until early 2000. The observations during the

time when the probes were exposed varied from very

high (nearly 100% water by volume) to absolute zero.

The rain gauge based soil moisture probes became

operational in early 2002. Only data from the 5 cm

depth probes were used, as with the SCAN site only

readings taken within a half an hour of a TMI overpass

were retained. (This is to ensure almost simultaneous
observations by the in situ probes and the TMI

satellite sensor.) All of the volumetric soil moisture

values were then averaged together and an average

monthly value was calculated. The average monthly

soil moisture probe readings were further averaged

with the monthly average SCAN site reading to create

a new variable labeled SCANall (Figs. 2 and 3). Fig. 2

illustrates in detail the TMI, MODIS, rainfall, and

SCANall observations for the LRW in 2002. All of the

data sets follow the same seasonal cycle of high at the

beginning and end of the year with a decline during

the middle, except the NDVI data set which follows

an inverted pattern. When a linear regression of the

SCAN site verses the soil moisture probes were

calculated a high R2 value of 0.7072 was found,

indicating that there is a strong relationship between

the observations of the SCAN site and the average

observations of the soil moisture probes (Fig. 3). This

high correlation validates the use of the SCAN site as

a stand alone soil moisture gauge for the entire LRW



Fig. 2. Comparison of TMI 10.65 GHz polarization difference, average soil moisture based on SCAN site and all soil moisture probes, and the

rainfall observed by the SCAN site for the year 2002.

Fig. 3. Regression of the SCAN site and the average of all the soil

moisture probes. This graph shows that the monthly average SCAN

site is representative of the LRW monthly average soil moisture

conditions in 2002.
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for the years prior to the soil moisture probes

installation.

Seasonal variations of the precipitation, vegetation,

SCAN site soil moisture, and TMI 10.65 GHz

polarization difference for the LRW are illustrated

in Fig. 4. The TMI data follows the soil moisture

observations, excluding the fall months, with a range

of 8K (14–6K). A maximum polarization difference

was recorded in the spring of both 2000 and 2001 at

14K. Conversely, a minimum value of 6K can be seen

during the fall of every year on record. The faulty soil

probe data is marked by the abnormally low soil

moisture values starting in the 8th month of 1999 and

continuing until the 5th month of 2000. The data

points from these months were eliminated from the

final analysis. The resulting regression lines for 2000–

2002 are shown in Fig. 5. It can be seen that as the soil

moisture increases the corresponding polarization

differences also increase. There is however an

exception for year 2000 wherein the polarization

difference decreases with increase in soil moisture. On

examination of the time series of soil moisture,

precipitation and polarization difference, it is seen that

the largest increases in soil moisture correspond to the

months with high vegetation cover. As a result
the polarization difference decreases due to attenu-

ation by the vegetation canopy even though the soil

moisture has increased. Even though this is generally

true in the region for any particular year, i.e.

vegetation cover is maximum for the summer months

corresponding to high soil moisture, in the other years

(viz., 2001, 2002), there is large soil moistures and

corresponding large polarization differences for

the low vegetation cover (i.e. winter months, i.e.

January–March and October–December) as well. A

similar relationship can be seen in the latter half of

2001, and to a far lesser extent in the fall months of



Fig. 4. Monthly average TMI polarization difference, soil moisture, NDVI and precipitation from the LRW in Tifton, GA.
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2002. The linear regression for 2000 is by necessity

based only on the final months of the year (months

that were thrown out due to inaccuracies caused by

vegetation) if data for the whole year were available

the resulting linear regression might more closely

match the results for the subsequent two years.

NDVI vegetation density estimations are based on

a simple ratio of red and infrared light (Tucker, 1979).

The NDVI data used in this paper were obtained from
Fig. 5. Regression between monthly average polarization difference
the MODIS and are 16-day average 500 m resolution

product (http://edcimswww.cr.usgs.gov/pub/imswel-

come/). These NDVI observations were averaged

over an area based on the TMI sampling box, which

contains the entire Little River watershed and some of

the area immediately surrounding it. Fig. 6 is a linear

regression of volumetric soil moisture vs. NDVI; the

low R2 value of 0.125 indicates that there is little or no

relationship between vegetation levels and the soil
and in situ soil moisture for the years 2000, 2001, and 2002.

http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://edcimswww.cr.usgs.gov/pub/imswelcome/


Fig. 6. The low correlation between the SCAN site VSM

observation and MODIS NDVI show that there is no significant

relationship between vegetation and soil moisture.
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moisture in this region. Fig. 7 is a plot of the linear

regression of polarization difference vs. NDVI. This

function has an R2 value of 0.4333, indicating that

there is a strong relationship between the level of

vegetation and the corresponding TMI polarization

difference observation. The lower NDVI values

observed during the winter months were assumed to

represent mostly fallow fields surrounded by pine

forests. The mild winter conditions and high abun-

dance of evergreens in the watershed implies that

there should be a background amount of green

vegetation throughout the year. The rise in NDVI

values in the spring and summer months are thus

attributed to agriculture.
4.2. Interpertation of time series

The observed monthly values of the 10.65 GHz

polarization difference brightness temperature and
Fig. 7. The high correlation between NDVI and the TMI observed

polarization difference shows that there is an inverse relationship

between vegetation density and polarization difference.
soil moisture display a seasonal cycle. The polariz-

ation difference typically peaks early in the year and

drops off during the summer months, only to rise once

more in the winter. Whereas the soil moisture

observations follow a similar but more dynamic

pattern that varies especially in the fall of every

recorded year. Overall the seasonal patterns match up

for most of the year. However, as the level of

vegetation increases; as indicated by the NDVI

values; the TMI readings begin to show less

correlation to the soil moisture. When the NDVI

values were compared to the corresponding polariz-

ation difference and soil moisture values it was found

that higher levels of NDVI lowered the resulting TMI

readings (Figs. 6 and 7). In essence the vegetative

canopy shielded the soil moisture observations from

the TMI, lowering the accuracy of the soil moisture

prediction. This phenomenon is expected based upon

microwave radiative transfer theory. Thus, during

several months of each year, the TMI polarization

difference is almost exclusively the product of

vegetation and not soil moisture.

In 2002 a relatively higher correlation between the

remotely sensed TMI data and the observed in situ

volumetric soil moisture was found (Fig. 5). The other

two years showed little relationship between the

variables and in 2000 the slope of the line was

negative. When the months with high vegetation

levels were removed (July through October) the

regression line R2 values increased to 0.4454

(Fig. 8a). Examination of the high vegetation density

months of July–October (Fig. 8b) shows a greatly

reduced sensitivity (slope of the line is 4.9 versus 50.1

in Fig. 8a) as well as little correlation (0.161 vs. 0.45).

Fig. 7 shows the linear relationship between the TMI

polarization difference and the MODIS NDVI read-

ings had an R2 value of 0.4333. To further investigate

the affect of vegetation on the TMI observations,

correlations between the TMI and NDVI observations

were made when vegetation was high (NDVI of more

than 0.7) and when vegetation was low (Fig. 9). The

relatively higher level of correlation between TMI

polarization difference and the NDVI when vegetation

levels were low compared to high shows that as the

level of vegetation increased the TMI soil moisture

observations are increasingly inaccurate. Further-

more, Fig. 6 shows that there is little correlation

between NDVI and the soil moisture.



Fig. 8. (a) Regression of monthly average polarization differences

and in situ soil moisture minus data from the months of July,

August, September, and October. (b) Regression of monthly

average polarization differences and in situ soil moisture for the

months of July, August, September, and October.
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It was found that the TMI tended to overestimate

soil moisture at the beginning and end of the year, and

underestimate soil moisture during the middle of the

year. In order to explain this pattern of error and
Fig. 9. The regression line labeled low vegetation was calculated using onl

labeled high vegetation was calculated based only on months that had an N

increase the polarization difference starts to level off at around 7K.
reduce its affects, an NDVI dataset was compiled

(Table 3). The multi-linear regression of the average

monthly soil moisture, polarization difference, and

NDVI had an R2 value of 0.337 with a p value of 0.158

(Table 3). Thus, when vegetation levels were high the

TMI observations are based primarily on vegetation

water content, where as when there was less

vegetation the TMI was able to observe the soil

moisture signal. Ultimately, the best fit line was found

by normalizing the TMI signal against the NDVI

values (Eq. (1))

VSM ZK0:102 C0:00849!TMI C0:151!NDVI

(1)

where VSM is the SCAN site volumetric soil moisture

(expressed as percent), TMI is 10.65 GHz polarization

difference, and NDVI is the MODIS 16 day 500 m

average (R2 equal to 0.337, pZ0.158).

The data used to generate Eq. (1) can be found

in Table 3. The level of correlation between

polarization difference and soil moisture increased

slightly when vegetation conditions were taken into

account, but the confidence level was reduced. This

equation describes the dependence of polarization

difference brightness temperature on vegetation

index and volumetric soil moisture. This is used

in a purely diagnostic mode without any attempt

for predictive purposes.
y months that had NDVI values of less than 0.7. The regression line

DVI value of greater than 0.7. It can be seen that as the NDVI values



Table 3

Monthly average multi-linear regression data relating the polariz-

ation difference from TMI (K), SCAN site and other rain gauge site

volumetric soil moistures (percentage) to the MODIS NDVI

Polarization difference

(K)

Volumetric soil

moisture (%)

NDVI

TMI SCANall MODIS

11.51 11.645 0.652

9.03 9.877 0.652

11.77 11.004 0.665

10.28 10.695 0.657

9.13 5.941 0.669

8.52 4.679 0.698

6.62 7.864 0.755

5.46 5.655 0.752

6.40 8.906 0.731

8.28 11.906 0.723

9.01 13.415 0.699

11.96 13.229 0.651
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5. Conclusions and discussions

It was shown in the previous section that there is a

relation between polarization difference and volu-

metric soil moisture. However, during months of high

vegetation (NDVI value of over 0.7), the TMI was not

sensitive to the soil moisture conditions. When

data points from July through October were removed,

the R2 value of a linear relationship increased to 0.4454

(Figs. 5 and 8). This exercise emphasizes two main

issues, first the TMI polarization difference responds to

variations in soil moisture and secondly that vegetation

can mask this response. There appears to be an NDVI

threshold of 0.7, over which the soil moisture signal is

masked from the TMI 10.65 GHz channel.

In the past rain gauge and stream gauge readings

were the only constant source of hydrologic data that

could be used to predict soil moisture. When a

comparison of the correlation between monthly

rainfall and the monthly average soil moisture was

carried out, it was found that there was virtually no

relationship. This implies that the remotely sensed

data is a better indicator of the near surface soil

moisture conditions than the monthly in situ rainfall

measurements (Figs. 2 and 4). However, the LRW,

unlike most watersheds, has a well-established net-

work of rain gauges that provide updated rainfall

information every half an hour. In areas that are

observed with this level of rainfall data it should be
possible to predict the resulting soil moisture using a

model. In ungauged watersheds the TMI can provide

an additional source of soil moisture observations.

The high conductivity of the sandy soils in the

research area must be taken into account. With the

5 cm soil moisture probe measurements only taken

every half an hour, rain events could be missed, or only

captured in a few data points. Additionally, much of the

cropland in Tifton is irrigated. Water from irrigation

systems is not accounted for by either the rain gauges or

soil moisture probes. The TMI sensor observing the

watershed as a whole is affected by water from

irrigation systems. In this soil type more frequent

sampling both by the in situ probes and the satellite

system is needed to better understand the dynamics of

the hydrologic cycle within the LRW. However, the

strength of the TMI is its ability to observe vast land

areas around the globe on a monthly basis. Most

importantly, the results show that it is feasible to use a

satellite system to detect the soil moisture changes in

Tifton, Georgia during most of the year.

The equation of the line generated from the multi-

linear regression of NDVI, TMI 10.65 GHz polariz-

ation difference, and soil moisture is expressed in Eq.

(1). It is hoped that with additional data an equation of

this type can be developed that can be used to improve

the TMI’s ability to estimate the soil moisture signature

through vegetation. Attempts to improve the accuracy

of the TMI soil moisture observations using Eq. (1)

yielded only a slight improvement in accuracy. The

combined data set from the SCAN site, TMI, and

MODIS show that there is a relationship between soil

moisture, vegetation, and polarization brightness

temperature. The affects of vegetation on the polariz-

ation brightness temperature are evident when the

values are compared to the NDVI values. The

vegetation acts as a mask that prevents the TMI

10.65 GHz channel from sensing the soil moisture

conditions on the ground. Herein lies the primary

difficulty with current passive microwave remote

sensing technology; large amounts of ground data are

needed to accurately calibrate the measurements.

Measurements taken by the satellite without ground

based data and/or remotely sensed NDVI values cannot

be considered highly accurate. Currently, a four-year

daily record of TMI soil moisture observations is being

compiled, all of the data used within this paper were

based on monthly averages (Bindlish et al., 2003).
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The resulting relationships between soil moisture,

NDVI, and observed microwave brightness tempera-

ture reinforce those findings. The relatively high levels

of vegetation in the LRW present both a challenge and

an opportunity to explore the ability of this technology

to function in the south-eastern region of the United

States of America. It is hoped that this paper will help

support future work done in the field of passive

microwave remote sensing.

The use of TMI alone would not result in an

adequate product for soil monitoring in vast land

areas. However, a combination of TMI and the

AMSR (Advanced Microwave Scanning Radio-

meter) current in orbit onboard the AQUA satellite

and the vegetation data from MODIS (Moderate

Resolution Imaging Spectroradiometer) may accom-

plish this task. The 6.6 GHz (C-band channel) of

the AMSR suffers from radio frequency interfer-

ence (RFI) and the use of TMI data (in the tropics)

to supplement the AMSR 10 GHz X band with

temporally frequent observations would help in (a)

RFI mitigation and (b) greater temporal frequency

of observations. It is our hope that the algorithms

developed by using the 4-years and more of the

TMI X-band data set will establish a basis for

utilization of AMSR data which will lead to L-

band sensors (HYDROS, SMOS) in the future.

The use of remotely sensed data to predict soil

moisture is an emerging technology that shows

promise. This technology is still in its infancy and

has several hurdles still to overcome. The bulk of

the data currently being used is from systems that

were not originally designed to detect soil moisture.

The promising results of many of these projects

should help provide support and funding for new

satellite systems. The addition of new satellite

platforms with better resolution and lower gega-

hertz frequency channels should help to improve

the quality and resolution of the data. The recently

launched AMSR has a 6 GHz channel that is hoped

will provide better quality soil moisture measure-

ments to date.
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