
In the Southeastern United States, long
and often drought-prone growing seasons
necessitate management practices that
improve agricultural water use efficiency.
Agricultural water use efficiency is particu-
larly critical in the Southeastern United States
where increasing public demand on water
and increasingly expensive operation costs
continue to challenge producers.The USDA
National Agricultural Statistics Service esti-
mates that the average fuel expenses per farm
have increased nearly two-fold between 1997
and 2006 (USDA 2007). However, conserva-
tion tillage with residue management shows
promise as a tool to maximize agricultural
water use efficiency, which may lessen fuel
costs associated with irrigation. In a recent
study, Sullivan et al. (2006a) estimated conser-
vation tillage adoption can potentially reduce
statewide irrigated water requirements from
4% to 14% in Georgia. Estimates were based

on the current conservation tillage adoption
rate (-.30%) for row-crop agriculture in the
state. More importantly, this research showed
that increasing conservation tillage adoption
to 40% in intensively row-cropped counties
could increase overall water savings by 1% to
6% compared to estimated savings at the cur-
rent adoption rate. Considering the impact
that conservation tillage can have at the farm,
watershed, and state scales, methodologies
for rapid assessments of conservation tillage
adoption are necessary. Remote sensing of
crop residue cover is one method that shows
promise for watershed-scale delineation of
conservation tillage adoption.

Research regarding crop residue spectra
has varied according to the spectral and spa-
tial resolution of the remote sensing platforni.
surface soil characteristics, and crop residue
composition. Most studies have shown that
crop residue and soil are spectrally similar,

increasing in reflectance throughout the
visible and near-infrared, differmg primar-
ily in the magnitude of spectral response
(Baumgardner et al. 1985; Aase and Tanaka
1991; Daughtry et al. 1995; Sullivan et al.
2004). Some plot-scale research indicates
that differences in the magnitude of response
in visible and near-infrared is sufficient to
separate conventional from conservation
tillage and, in some cases, to quantify per-
cent residue cover (Aase and Tanaka 1991;
Biard and Baret 1997; Sullivan et al. 2004;
McMurtrey et al. 1993). Others suggest
spectral differences in the visible and near-
infrared regions are poorly correlated with
crop residue coverage, demonstrating instead
the usefulness of middle infrared spectra
where residues exhibit an absorption feature
that is absent from soil spectra (Daughtry et
al. 1996,2001; Nagler et al. 2000).

More recently, investigations using thermal
infrared spectra have shown great promise as
a tool for rapid delineation of conservation
tillage and estimation of crop residue cover
(Sullivan et al. 2004). Sullivan et al. (2004)
demonstrated that high resolution thermal
infrared imagery was more sensitive to dif-
ferences in crop residue cover amounts (0%,
10%, 30%, 50%, or 80%) compared to reflec-
tance spectra. Under dry conditions, thermal
infrared data explained greater than 95% of
the variability in crop residue cover amount
compared to >77% using reflectance spectra.

Within the last decade, researchers have
investigated both multispectral and hyper-
spectral satellite remote sensing platforms,
such as Landsat TM and EQ-i Hyperion,
as tools to derive maps of conservation till-
age adoption (van Deventeer et al. 1997;
Gowda et al. 2001, 2003; Thoma et al.
2004; Daughtry et al. 2005, 2006). Early
efforts by van Deventeer et al. (1997) used
a combination of Landsat TM bands to
differentiate between conventional tillage
and conservation tillage at 27 farm sites in
Ohio. Conventional and conservation till-
age sites were differentiated using logistical
regression analysis and the resulting prob-
ability cut-off values. Results indicated that
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Abstract: Conservation tillage is a commonly adopted best management practice for improv-
ing soil quality and reducing erosion. However, there are currently no methods in place to
monitor conservation tillage adoption at the watershed scale. The primary objective of this
study was to evaluate the usefulness of Landsat TM data as a tool to depict conservation
tillage in a small Coastal Plain watershed. Satellite imagery was used to calculate four com-
monly used indices: Normalized Difference Vegetation Index, Crop Residue Cover Index,
Normalized Difference Tillage Index, and the Simple Tillage Index. Ground truth data
consisted of a windshield survey, assigning each site a tillage regime (conventional or conser-
vation tillage) at 138 locations throughout the watershed and surrounding areas. A logistical
regression approach was used on two subsets of the data set (n = 20 or ii = 44) to determine
the influence of the number of ground control points on the success of modeling the occur-
rence of conservation tillage. The most accurate model was re-applied to the satellite image
and evaluated using an independent sample of 94 survey sites. Results indicate that the nor-
malized difference tillage and simple tillage indices performed best, with an overall accuracy
of7l% and 78% for models developed using ii = 20 and ii = 44 sample locations, respectively.
Errors were typically in the form of commission. Results are encouraging and suggest that
currently available satellite imagery can be used for rapid assessment of conservation tillage
adoption using minimal a priori information.
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Figure i
Little River Experimental Watershed boundaries and windshield survey locations.

a combination of Landsat bands 5 and 7
(Simple Tillage Index [Sil] and Normalized
Difference Tillage Index [NDTI]) provided a
classification accuracy of 93% using 15 inde-
pendent field locations for verification.

Gowda et al. (2001) tested the strength
of the tillage indices developed by van
Deventeer et al. (1997) at 84 field locations
in Minnesota. Using the same probability
cut-off values assigned by van Deventeer et
al. (1997), Gowda et al. (2001) demonstrated
that Landsat band 5 accurately classified
77% of the field locations as conservation
or conventional tillage. Alternately, using a
combination of Landsat bands 3 and 5, along
with a site-specific probability cut-off value,
70% of field sites were accurately classified.
Gowda et al. (2001) attribute the observed
accuracies to the strong relationship observed
between increasing cover and reflectance in
Landsat band 5 (1.55 to 1.75 prn).A primary
limiting factor in greater classification accu-
racy was likely associated with soil organic
carbon, which was greater than 4% for many
of the soils studied. After evaluating the clas-
sification accuracy, Go\vda et al. (2003) used
the conservation tillage map as a means to
identify (or eliminate) factors related to the
adoption of conservation tillage. To do this,
the relationship between conservation tillage
placement and slope steepness was evaluated
across several subwatersheds in the Minnestoa
River basin. Because soil loss is often a func-
tion of terrain steepness, terrain steepness
was chosen to determine if the reason for
conservation tillage adoption was related to
soil conservation or some other factor. Across
subwatersheds, conservation practice place-
ment was weakly correlated with terrain
steepness, suggesting something other than
soil loss was a driving factor in conservation
tillage adoption.

More recently, researchers have applied
the tillage indices suggested by van Deventeer
et al. (1997) over a greater number of field
sites and soils.Thoma et al. (2004) compared
the accuracies of satellite-derived tillage
maps to windshield surveys and line-transect
estimates of cover. Results suggested that
tillage indices developed by van Deventeer
et al. (1997) poorly explained variability in
cover amount ( = 0.02 to 0.56). Daughtry
et al. (2006) reported similar results in Iowa,
showing tillage indices were only weakly
correlated with crop residue cover. However,
Thorna et al. (2004) showed classification
improvement using the Crop Residue Index

4
Survey locations
Watershed boundaries

7	 0	 7	 14
km

Multiband Model (Biard and Barer 1997),
having coefficients of determination rang-
ing from 30% to 64%. Actual classification
accuracies using the Crop Residue Index
Multiband Model were within 9% of the
traditional windshield survey approach when
tillage regime was divided into two till-
age categories: conventional (residue cover
< 30%) and conservation tillage (residue
cover > 30%).

Hyperspectral satellites also show promise
as tools for delineation of conservation tillage
adoption. Daughtry et al. (2005) and (2006)
used hyperspectral remote sensing data to cal-
culate the cellulose absorption index based on
absorption features in crop residue at 2.103,
2.113 and 2.123 Jam. Daughtry et al. (2005)
demonstrated a strong linear relationship
between crop residue cover and the Cellulose
Absorption Index. Perhaps more importantly,
land use separation using a combination of
the normalized difference vegetation index
and the Cellulose Absorption Index resulted
map classification accuracies of 72% to 86%
(classes: conventional tillage, reduced tillage,
conservation tillage, and green vegetation).

Currently, there is no national monitor-
ing of conservation tillage adoption in the
United States.The ConservationTechnology
Information Center conducted the most
recent survey in 2004. Considering the

Watershed center
N 31.61

W 83.66

need for spatially representative assessments
of conservation tillage a rapid and repeat-
able method of watershed scale assessments
is critical. Currently available satellite imag-
ery shows promise as a tool for delineating
conservation tillage adoption. The objec-
tives of this study were to (1) evaluate four
different reflective indices as tools to iden-
tify conservation tillage adoption in a small
Coastal Plain Watershed, (2) determine a
minimuni number of survey sites necessary
to develop a reliable conservation tillage
model and (3) develop and assess a satellite
derived conservation tillage map using an
independent data set.

MateriaLs and Methods
Study Site. The Little River Experimental
Watershed (LREW), near Tifton, Georgia,
is approximately 334 km2 (129 mi2) and is
located in the headwaters of the Upper
Suwannee River Basin (figure 1). The
LREW is typical of a Southeastern Coastal
Plain watershed consisting primarily of low
gradient streams and sandy to sandy loam
surface soil textures. While a range in sur-
face soil properties can be found (coarse
sand, sand, loamy fine sand, loamy sand, and
sandy loam), loamy sand surface textures
comprise nearly 80% of the watershed. Land
use within the watershed is made up of3l%
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Table I
Landsat 5 specifications and indices calculated.

agriculture, 10% pasture, 28% riparian for-
est, 22% upland forest, and 7% urban area
based on the classification of 2003 Landsat
5 imagery (Bosch et al. 2006). Agricultural
areas consist predominantly of row-crop
(cotton I GosSypuhi) i /ursti tHin L], corn
Zea ways L.], peanut [Arac/iis hypoiaca[), and

vegetable production.
Tillage practices are typically either a rip and

bed operation or conservation tillage in the
form of strip tillage. In a strip tillage system, a
winter cover crop is established late October
or early November and killed approximately
three weeks prior to planting in the spring.
Beds are prepared using a fluted coulter to
cut debris in front of an in-row subsoil shank
(depth = 33 cm [13 m ]), followed by a set
of two wavy coulters, which till a 30 to 46
cut (12 to 18 in) strip for planting. Rip and
bed operations are designed to incorporate a
majority of crop residue cover using a subsoil
shank followed by two bed shapers (concave
disks), which create a round bed. In 2004,
the Conservation Technology Information
Center reported that approximately 30%
of row crop producers used some form of
conservation tillage in Georgia (2004).

The LREW is one of twelve USDA
Agricultural Research Service benchmark
watersheds participating in the USDA
Natural Resources Conservation Service
Conservation Effects Assessment Project-
Watershed Assessment Studies. Monitoring
conservation tillage adoption within the
watershed will contribute to national efforts
designed to evaluate the impact that federal
conservation programs may be having on soil
and water quality.

Ground Truth. In the spring of 2007,
a comprehensive windshield survey was
conducted throughout the LREW and sur-
rounding areas (figure 1).Windshield surveys
were conducted coincident with satellite data
acquisition on March 25, 2007. Surveyed
fields were selected from three sub-water-
sheds as well as two new transects identified
during a 2005 windshield survey as having a
range in conventional and conservation till-
age sites. All surveyed fields were delineated
on the satellite image and numbered. The
survey identified each field as conventional
(<30% crop residue cover), conservation
(>30% cover), pasture, or live vegetative cover.
The conservation tillage cut-off amounts
were based on USDA Natural Resources
Conservation Service requirements for crop
residue cover at planting. In all there were

Wavelength
Band	 (pm)

Bi	 0.45 to 0.52
B2	 0.52 to 0.60
B3	 0.63 to 0.69
B4	 0.76 to 0.90
135	 1.55 to 1.75
137	 2.08 to 2.35

138 farm locations consisting of 61 conser-
vation tillage sites and 77 conventional tillage
sites.

Satellite Imagery. Satellite imagery was
acquired via Landsat 5 on March 25, 2007.
Data were provided in 8-bit digital for-
mat, corrected for sensor gains and offsets
only. Reflective bands used in this study
encompass the 0.45 to 2.35 m spectral
range (table I) and have a spatial resolution of
30 m (98 ft).The spatial resolution of Landsat
imagery was previously evaluated for conser-
vation tillage mapping in the Southeastern
Coastal Plain of Georgia (Sullivan et al.
2007a). Results indicated that sod variability
was adequately captured within 40 ni (131 ft)
of the sampling location. Thus, background
contributions to crop residue assessment
were similar within the range of Landsat spa-
tial resolution.

An area centered on the LREW measur-
ing 930 km 2 (359 mi2) was extracted from
the satellite image. The subset image was
geo-referenced in ERDAS using 1999 US
Geological Survey digital ortho-quadrangles.
Twenty distributed and easily identifiable
ground control points were selected within
each image.

Digital information corresponding to
surveyed fields was extracted and used
to calculate four remotely sensed indices:
(1) Normalized Difference Vegetation Index
(NDVI) (Rouse et al. 1974), (2) modified
Crop Residue Cover (CRC) Index (Sullivan
et al. 2006b), (3) STI (van Deventeer et al.
1997), and (4) NDTI (van Deventeer et al.
1997) (table 1). The CRC is typically cal-
culated as a ratio of Landsat band 5 and
Landsat band 1; however, due to noise in
band 1, the CRC Index was calculated using
band 2.

To extract data, a 20-m (66-ft) buffer was
created around each sampling location. The

Spatial resolution
(m)

30
30
30
30
30
30

20-m buffer was selected to correspond with
the spatial resolution of Landsat 5 and ensure
that an area representative of the sample loca-
tion was extracted. All pixels falling within
the buffered area were extracted and aver-
aged. Data were collated within a spreadsheet
along with the corresponding tillage regime.

Model Development. A logistical regres-
sion analysis (SAS Institute, Cary, North
Carolina) was used to distinguish conven-
tional from conservation tillage sites using
remotely sensed data. Two subsamples of the
surveyed dataset were randomly selected for
analysis (n = 20 and n = 44). Within each
dataset an equivalent number of conventional
and conservation tillage sites were selected.
The remaining sites were retained for model
validation (n = 94).

All sampling locations identified as conser-
vation tillage were assigned a value of 1, and
all other sampling locations were assigned a
value of 0. The linear regression was used to
determine the relationship between remotely
sensed data and tillage regime using the
following equation:

Logit(p) = ct+X,	 (1)

where p is the response variable (predictor
of tillage regime), a is the intercept, 0 is the
slope (alpha = 0.10), and X is the observed
tillage index value. The logistical regres-
sion proceeds iteratively using a jack-knife
approach to generate parameter estimates
of ordinal data. The jack-knife approach
reduces bias in the error term by using a
random selection of data points with each
iteration, thus generating an independent
data set for error term estimation.

The logistic regression is a non-linear
approach designed to estimate the prob-
ability of occurrence. In this study,we were
interested in determining the probability of

Notes: Normalized Difference Vegetation Index (Rouse et al. 1974( = (134 - B3(/(B4 + 133).
Modified Crop Residue Cover Index (Sullivan et al. 2006b) = (135 - 82(/(B5 + 132(. Simple Tillage
Index (van Deventeer et al. 1997( = (135/137(. Normalized Difference Tillage Index
(van Deventeer et al. 1997) = (135 - B7(/(B5 + 137(.
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observing conservation tillage. The prob-
ability (p) of observing conservation tillage is
calculated using the predictor as follows:

p = "°'"/ + 1,Irp	 (2)

Probability cut-off values were then
determined by comparing the calculated
probability at each sample location to the
observed tillage regime. A cut-off value was
selected for each remotely sensed index,
where a majority of sample locations were
accurately identified as conservation tillage
(van Deventeer et al. 1997). Based on the
probability cut-off value, all observations
where p was less than the cut-off were clas-
sified as conventional, and all observations
where p was greater than or equal to the cut-
off were classified as conservation tillage.

Model results were evaluated based on
three different metrics: (1) Akaike criterion,
(2) probability cut-off value, and (3) observed
errors (total, comniission, and omission). The
Akaike criterion is a relative measure of the
goodness of fit. Models exhibiting low Akaike
values are an indication that those models
explain a greater proportion of the variabil-
ity in tillage regime. The probability cut-off
level was used as a qualitative indication of
the likelihood that a tillage regime would be
accurately classified. Thus, higher probability
cut-off values suggest greater confidence in
tillage classification. Finally, errors of coin-
mission and omission were determined by
comparing the observed tillage regime to the
classified tillage regime. Errors of commis-
sion convey the percentage of conventional
tillage Sites that were mislabeled as conserva-
tion tillage. Errors of omission indicate the
percentage of conservation tillage sites that
were mislabeled as conventional tillage.

Model Validation. The tillage model hav-
ing the lowest Akaike criterion and greatest
overall accuracy was applied to the LREW
satellite image as a test of robustness. Once
a classified tillage map was produced, an
accuracy assessment was conducted using
sample locations retained for model valida-
tion (n = 94).

The tillage model was applied in a series
of steps (figure 2). First, the georeferenced
LREW image was entered into an unsuper-
vised classification to locate all farms within
the image field of view. The unsupervised
classification assigns pixels to a specified
number of classes based on an Iterative
Self-Organizing Data Analysis Technique

Model validation
(n = 94)

(Tou and Gonzalez 1974). The Iterative
Self-Organizing Data Analysis procedure
repeatedly groups pixels within a mini-
mum Euclidean distance to a specified class.
The iterative procedure continues until a
ininimiun convergence factor or maximum
number of iterations has been reached. Ten
classes were established and used to identify
agricultural fields within the watershed.

Next, contiguous classes (clumps) were
identified within the classified image, and
clumps with fewer than two pixels per class
were "eliminated." The eliminate function
is an iterative smoothing procedure that
recodes pixel values in clumped areas with
the values associated with nearby larger

Unsupervised classification and
clump/eliminate

Mask satellite image to
extract agricultural fields

Eliminate all areas with
NDVI >0.30

Apply tillage model

Accuracy assessment

clumps (Leica Geosystems 2003). This was
done to smooth the classified image, so that
whole farms were accurately represented
based on the classification of surrounding
pixels. Whole farms were extracted from the
unclassified satellite image using the classi-
fied thematic map as a mask.

Prior to applying the logistical regres-
sion results to the image, all farm locations
with a corresponding NDVI > 0.30 were
eliininated.This was done to reduce errors of
estimation associated with vegetative inter-
ference (Sullivan et al. 2006b; Daughtrv et al.
2005). Finally, the conservation tillage model
having the highest overall accuracy and a low
Akaike value was applied to the image using

Figure 2
Schematic delineating the algorithms used to develop and validate conservation tillage map
(figure 4) using Landsat 5 imagery.

Model development
(n = 20, n = 44)

Buffer sample locations and
extract satellite data

Logistical regression and
calculate probabilities

Assign cut-off probability value

Accuracy assessment
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Table 2
Parameter estimates for the logistical regression used to develop a satellite-derived
conservation tillage map.

equations (1) and (2). The "tillage map" was
created by using the previously defined "cut-
off" value to assign a tillage classification
to each pixel (conventional or conserva-
tion tillage) The tillage map was validated
using corresponding windshield survey sites
retained for the accuracy assessment.

Results and Discussion
Model Development. Four different remotely
sensed indices vcrc used to develop a con-
servation tillage model based on o = 44 or
ii = 20 surveyed locations distributed
throughout the LREW and surrounding
areas. Each logistical regression model (CRC
Index, NDVI, NDTI, STI) was then evalu-
ated to determine (1) which model most
accurately identified conservation tillage
and (2) the minimum number of survey sites
necessary to identify conservation tillage.

Using a minimum of 20 survey sites, sig-
nificant model results were obtained using
only the NDTI and the STI (table 2). This
is not surprising when the spectral data are
considered (figure 3). For instance, the NDVI
is calculated using visible and near infrared
regions of the light spectrum, where the
spectral response properties of soil and crop
residue are very similar. While the NDVI
results in numerically higher values for con-
servation tillage sites, variability in NDVI
response limits its usefulness as an indicator
of tillage regime. The CRC Index combines
a middle infrared band (1.55 to 1.75 (.im)
with a visible band (0.52 to 0.60 lam). The
observed CRC Index values for conven-
tional and conservation tillage were nearly
indistinguishable. This is in contrast to pre-
vious studies, where the CRC Index more
clearly differentiated among tillage regimes
in similar soil conditions (Sullivan et al.
2006b, 2007b). However, those studies were
conducted at the field-scale using a handheld
radiometer, and Sullivan et al. (2006b, 2007b)
used a shorter visible band to calculate the
CRC Index (0.45 to 0.52 lam). Their study
suggested that differentiation between con-
ventional and conservation tillage may have
been attributable to differences in the mag-
nitude of response within these two regions.
Thus, spectral separation between Landsat
bands 2 and 5 may not have been sufficient
to delineate tillage regimes in this study.

The STI and NDTI resulted in significant
conservation tillage models. Although the
shape of the spectral response curve is similar
for conventional and conservation tillage sites

Akaike
i n	Index	criterion	Slope

44	NDVI	56.27	10.14
CRC	60.34	-22.61
STI	49.39	6.81
NDTI	49.44	27.55

20	II,1yI

CRC	-	-
STI	25.01	6.88
NDTI	25.17	27.33

in the middle infrared regions used to calcu-
late these indices, the difference in magnitude
of spectral response was much greater com-
pared to the visible and near-infrared regions.
Similar results were reported by Gowda et
al. (2001), attributing separation of tillage
regimes to the inclusion of Band 5. Based on
our results, it is likely that the inclusion of
two middle infrared bands (135 and 137) were
critical to tillage separation. Both models
were positively related to tillage, indicating
STI and NDTI values increase with the like-
lihood of observing conservation tillage.

Cut-off values for the NDTI and STI
were chosen by comparing probability esti-
mates to the observed tillage regime at the
20 survey points. The probability value that
resulted in the greatest number of accurately
identified sites was selected as the cut-off.
The cut-off probability values for the STI
and NDTI were 0.41 and 0.42, respectively.
The low to moderate values suggest that
there is a 41% to 42% chance of accurately
depicting conservation tillage adoption.
However, both models resulted in an over-
all accuracy of 75% with a majority of the
observed errors being errors of commission
(15%). In an earlier study, errors of commis-
sion were primarily a function of variability
in surface soil color (Sullivan et al. 2007a).
Sullivan et al. (2007a) evaluated surface soil
characteristics and percent crop residue cover
at five intensively sampled farm sites. Errors
of commission were mostly attributable to a
single field, where iron oxide contents were
more than two times that observed at any
other location. Because iron oxides tend to
darken soil surfaces, in the current study it
is likely that variability in surface soil color
contributed to the observed errors. Keeping

Intercept	p-value	Cut-off

-1.25	0.03	0.65
12.06	0.04	0.37

-12.34	0.00	0.60

	

-7.89	0.00	0.62
-	 NS
-	 NS
-12.50	0.05	0.41

	

-7.86	0.04	0.42

this in mind, a majority of the LREW (80%)
is considered a loamy sand, and errors of
commission represented only 10% of survey
locations.

Fitting the model using 44 survey loca-
tions resulted in significant model results for
all indices tested (table 2). The NDTI and
STI performed best having overall accuracies
of 75% using a cut-off value ranging from
0.60 to ((.62. The higher cut-off value is an
indication of greater confidence in model
performance. However, it is interesting to
note that model parameters were similar
compared to those using only 20 sample loca-
tions although errors were more commonly
in the form of omission. The NDVI had a
lower overall accuracy of 70% compared to
tillage indices. Like the STI and NDTI, the
NDVI exhibited a positive slope, indicating
the NDVI increases with the probability of
observing conservation tillage. Using the
NDVI, errors of omission represented 27%
of sampled locations.

Despite having the highest Akaike coeffi-
cient, the CRC exhibited an overall accuracy
of 73% and a cut-off value of0.37.The slope
of the model is negative suggesting that the
probability of observing conservation tillage
increases with decreasing values ofCRC.This
is in contradiction to previously published
work in this region, which suggests repeat-
edly that the CRC increases with increasing
crop residue cover (Sullivan et al. 2006b).
Using the CRC, errors were primarily com-
mission (25%), inaccurately identifying farm
sites as conservation tillage.

Model Validation. Because the NDTI
and STI performed similarly, only results
of the NDTI validation are reported here.
To validate the model, model parameters

Notes: Independent variables tested include the Normalized Difference Vegetation Index (NDVI(
(Rouse et al. 1974(, modified Crop Residue Cover (CRC) Index (Sullivan et al. 2006b), Simple
Tillage Index (STI( (van Deventeer et al. 1997), and the Normalized Difference Tillage Index
(NDTI) (van Deventeer et al. 1997).
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Figure 3

Average observed spectral response and index values observed for conventional (CV) and
conservation strip tillage (Si) sites (n = 138).
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Notes: Indices include the Normalized Difference Vegetation Index (NDVI) (Rouse et al. 1974),
modified Crop Residue Cover (CRC) Index (Sullivan et al. 2006b), Simple Tillage Index (STI)
(van Deventeer et al. 1997), and the Normalized Difference Tillage Index (NDTI)
(van Deventeer et al. 1997).
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were applied to the image and used to trans-
form digital values to probability estimates
(figure 4). Next, using the cut-off values
determined during the model development
phase, each survey location was classified as
conservation tillage or conventional tillage.
The overall accuracy of the model was deter-
mined by comparing observed tillage regime
to the .model-derived tillage regime. This

procedure was repeated for models devel-
oped using it = 20 and n = 44 points.

When the NDTI models were applied to
the LREW image, overall accuracy ranged
from 71% to 78% for models developed
using 20 and 44 survey points, respectively.
Although model parameters were similar
using either approach, slight differences in
the n = 44 parameters led to increased cer-

tainty in the resulting tillage map. This result
was manifested in the higher cut-off value
associated with the ii = model, suggest-
ing greater confidence iii tillage delineation.
Errors in either case were primarily errors
of commission and likely reflect variabil-
ity in surface soil nimneralogy as previously
mentioned. Using the ii = 44 model, errors
of commission represented only 15% of all
survey locations. Moreover, only 7% of con-
servation tillage sites were omitted from the
final tillage map. These results are slightly
lower than those reported by van Deventeer
et al. (1997) using the NDTI to segregate
conventional and conservation tillage fields
with 93% accuracy iii glacial till soils.

It should also be noted here that the use-
fulness of the model was tested within a 930
km 2 (359 mi2) area. Similarity in surface soil
attributes was key to the successful applica-
tion of our model. Application of the model
presented here over a larger or more variable
watershed would require some a priori infor-
mation regarding surface soil attributes and
how those attributes may affect the indices
used to derive a conservation tillage map.

Conservation TillageAdoption in the Little
River Experimental Watershed. A tillage
map was derived froni the Landsat 5 image
depicting the distribution of conventional
tillage, conservation tillage, and vegetated
agricultural areas as well as the distribution of
unclassified areas (figure 4). Unclassified areas
correspond to riparian or upland forest, sur-
face water bodies (ponds), or urban land use
categories. The vegetated fields are denoted
in green and correspond to areas where the
NDVI was > 0.30.These fields are very likely
either winter cover crops that have not yet
been killed or pasture. It is not uncommon
for producers in this region to maintain
a winter cover crop and then clean till in
preparation for the spring crop. Because the
satellite imagery was acquired prior to killing
the winter cover and bed preparation in these
areas, the model could not be used to assign
a tillage regime in those locations.These data
demonstrate the need for multiple satellite
images during the planting season to accom-
modate variable planting times for cotton,
corn and peanut. The vegetated fields repre-
sent 10% of the total area classified and 26%
of all agricultural areas.

The remaining 30% of the subset image
was classified as non-vegetated. These pix-
els were subdivided into conservation tillage
(>30% crop residue cover) and conven-
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Conventional tillage

Conservation tillage

Vegetated fields

Unclassified

Figure 4
Satellite (Landsat 5) derived map of probability and resulting conservation tillage map for the Little River Experimental Watershed and
surrounding areas.

tional tillage (<30% crop residue cover).
Conservation tillage has been adopted for
approximately 70% of the cropped area. This
estimate does not include currently vegetated
areas, and in practice this estimate would be
adjusted based on the analysis of subsequent
satellite images. Adoption was fairly evenly
distributed throughout the image.

Summary and Conclusions
Results suggest that satellite-derived con-
servation tillage maps can be rapidly pro-
duced with a high degree of confidence in
the Southeastern Coastal Plain of Georgia.
By combining a simple land use classification
algorithm, with two remotely derived indi-
ces, conservation (>30% crop residue cover
at planting) and conventional tillage (<30%
crop residue cover at planting) regimes were
delineated within the LREW. Results var-
ied based on the number of ground control
points used to generate model parameters,
ranging from 71% to 78% accuracyAccuracy
was best when a mininuim of 22 conven-
tional and 22 conservation tillage sites were

surveyed. With the model fit using 44 sites,
errors of commission represented 15% of all
surveyed locations, compared to 20% for the
model fit with 20 ground control points.

Remote sensing techniques show great
promise as a tool for rapid watershed scale
assessments of conservation tillage adoption.
Regular assessments of conservation till-
age adoption at the watershed scale could
facilitate federal conservation program
implementation, natural resource inventories,
soil and water quality models, and evaluation
of conservation practice effects. Methods
presented here demonstrate the usefulness
of currently available satellite imagery to
produce basic tillage maps using a limited
number of ground control points.
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