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ABSTRACT: The objective of this study was to com-
pare the use of thermal combustion (CNS) and induc-
tively coupled plasma (ICP) to measure the total S con-
tent in plant-, animal-, and mineral-based feedstuffs,
and to provide concentrations of other macro- and mi-
cro-minerals contained in these feedstuffs. Forty-five
feedstuffs (464 total samples) were obtained from sup-
pliers as well as swine feed and pet food manufactur-
ers throughout the United States. Mineral data from
IPC analysis were summarized on a DM basis using
sample mean and SD, whereas the comparison of to-
tal S content between CNS and ICP was examined by
bivariate plot and correspondence correlation. Analy-
ses of a wide range of feedstuffs by CNS and ICP for
total S were comparable for all but a few feedstuffs.
For potassium iodide and tribasic copper chloride, ICP
estimated total S to be lower than when analyzed by
CNS (bias = 2.51 + 0.15 SE, P < 0.01). In contrast, for
defluorinated phosphate and limestone, ICP estimat-
ed total S to be greater than when analyzed by CNS

(bias = —1.46 + 0.51 SE, P < 0.01). All other samples
had similar estimates of total S, whether analyzed by
CNS or ICP. As expected, S composition varied greatly
among feedstuffs. For total S, plant-based feedstuffs
generally had lower total S compared with animal-
based feedstuffs, whereas minerals supplied in sulfate
form had the greatest concentration of total S. In addi-
tion to total S, mineral composition data are provided
for all feedstuffs as obtained by ICP analysis. Within
specific feedstuffs, mineral composition was quite vari-
able, potentially due to low concentrations in the feed-
stuff causing high mathematical variation or due to the
source of feedstock obtained. In general, analyzed val-
ues of P were similar to previous tabular values. These
data provide feed formulators a database from which
modifications in dietary minerals can be accomplished
and from which mineral requirements can be met more
precisely to reduce losses of minerals into the environ-
ment.
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INTRODUCTION

Literature pertaining to S chemistry and metabo-
lism is both dated (Lewis, 1924; Du Vigneaud, 1952;
Dziewiatkowski, 1962) and recent (Stipanuk, 2004;
Shoveller et al., 2005; Baker, 2006), but little attention
has been given to inorganic S (Baker, 1977). Gastroin-
testinal ecology is a growing area of science (Anderson,
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2003), and it is well established that sulfate reduction
does not occur in mammalian cells, but does in sulfate
reducing bacteria (Gibson, 1990; Florin et al., 1991).
Because evidence suggests organic and inorganic S in
gastrointestinal tissues may be linked to chronic intes-
tinal disease (Burrin and Stoll, 2007), excess dietary S
reaching the intestinal tract is of great importance. In
addition, high concentrations of total dissolved solids in
drinking water are known to affect scour scores (Maenz
et al., 1994), with sulfate being suggested as the major
compound of concern (McLeese et al., 1991). Research
studies specifically evaluating increased inorganic sul-
fate intake showed an increase in diarrhea, but did not
show any adverse effect on pig BW gain or feed intake
(Veenhuizen et al., 1992; Gomez et al., 1995). Limited
research results have shown that reducing total di-
etary S reduces odor and hydrogen sulfide emissions
(Apgar et al., 2002). With S known to affect gastroin-
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testinal health, occurrence of diarrhea, nutrient utili-
zation, and odor emission, data are needed to quantify
the total concentration of S in feedstuffs commonly fed
to livestock. Because standard manure values reported
by the ASAE (2003) do not consider changes in dietary
mineral concentrations, updated mineral content of
ingredients are needed for nutritionists to modify di-
etary mineral intakes to ultimately reduce mineral ex-
cretion. Therefore, the objective of this research was
to analyze common feed ingredients for mineral con-
centration and to determine the difference in total S of
ingredients as measured by thermal combustion (CNS)
and inductively coupled plasma (ICP).

MATERIALS AND METHODS

Animal Care and Use Committee approval was not
obtained for this manuscript because no animals were
used in the research.

Four hundred sixty-four samples of 45 different feed-
stuffs were obtained from ingredient suppliers as well
as swine feed and pet food manufacturers throughout
the United States for total mineral analysis. To pro-
tect the confidentiality of ingredient sourcing, how-
ever, suppliers or locations of each feedstuff are not
provided in this manuscript. All samples were ground
through a 1-mm screen before analysis. Dry matter
was determined by drying 1-g samples at 70°C for
24 h. After drying, samples were either analyzed for
minerals by ICP and for total S by CNS. For ICP, 10-g
samples were shipped to the University of Minnesota
and analyzed for mineral content by the University of
Minnesota Soils Laboratory. Feedstuffs were digested
following methods described by Miller (1998) and then
analyzed in 10% HCI by ICP (model 3560, Applied Re-
search Laboratory, Sunland, CA). For thermal combus-
tion, total S was analyzed using a thermal combustion
analyzer (VarioMAX, Elementar Analysensysteme
GmbH, Hanau, Germany), which uses catalytic tube
combustion to volatilize the sample. The target gas is
converted to SO,, separated from other gases using ad-
sorption columns, and after heating, measured using a
thermal conductivity detector. For S analysis by CNS,
sulfadiazine was used as the S standard. Mineral data
obtained from ICP analysis were summarized on a DM
basis using sample mean and SD. Comparison of to-
tal S content between CNS and ICP was examined by
bivariate plot and correspondence correlation where it
is assumed that if CNS = ICP the slope would equal 1
and the intercept would equal, with deviation from the
line (i.e., bias) indicating a difference between analyti-
cal methods (Lin, 1989; Meek, 2007). For the purposes
of data reporting, the feedstuffs were classified into 1
of 3 groups: plant-based, animal-based, and mineral-
based feedstuffs.

RESULTS AND DISCUSSION

Mineral analysis of plant-, animal-, and mineral-
based feedstuffs are presented in Tables 1, 2, and 3,
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respectively, whereas only a subset of the ingredients
could be analyzed for Cl (Table 4). With the wide array
of feedstuffs analyzed, it was fully expected that total
S concentrations would vary greatly, ranging from less
than 500 mg/kg for feedstuffs such as calcium iodide,
tribasic copper chloride, defluorinated phosphate, and
potassium iodide; to concentrations over 100,000 mg/
kg for cobalt-, copper-, iron-, manganese-, and zinc-
sulfate. Bivariate plot and correspondence correlation
revealed a correspondence correlation coefficient (r =
0.941) for S analysis between CNS and ICP (Figure
1). Only 4 feedstuffs appeared to deviate from this re-
lationship. For potassium iodide and tribasic copper
chloride (group 1, Figure 1), S values determined by
ICP were lower than S determined by CNS (bias = 2.51
+ 0.15 SE, P < 0.01) In contrast, S values for defluo-
rinated phosphate and limestone (group 2, Figure 1)
determined by ICP were greater than S determined by
CNS (bias = —1.46 + 0.51 SE, P < 0.01). Feedstuffs in
group 3 representing the sulfate containing minerals
(cobalt-, copper-, iron-, manganese-, and zinc-sulfate),
were high in total S, but had similar S concentrations
whether measured by CNS or ICP.

For plant-based feedstuffs (Table 1), concentrations
of total S were relatively low compared with other feed-
stuffs, except for feedstuffs known to contain moderate
concentrations of total sulfur amino acids (NRC, 1998)
or by-products derived from corn or soybean processing.
Although various nutrients typically increase 3-fold
due to the removal of starch during dry-grinding and
fermentation of corn to produce ethanol (Spiehs et al.,
2002; Stein et al., 2006; Pedersen et al., 2007), the use
of sulfuric acid in the dry grind process appears to in-
crease the total S content of dried distillers grains with
solubles by 5-fold compared with corn (Table 1). Slight-
ly greater concentrations of S relative to corn were also
noted for corn gluten feed and corn gluten meal, which
are by-products of the wet-milling industry, where sul-
furic acid is used in the steeping process. In contrast,
this same magnitude of S increase was not noted when
comparing values from the NRC (1998) for corn relative
to its by-products, suggesting that either corn process-
ing methods have changed by-product composition or
the values reported in NRC (1998) may underestimate
the true S content. Because whole soybeans were not
analyzed, comparisons between soybean milling by-
products relative to whole soybeans could not be made.
However, S content would be expected to increase due
to removal of the oil during soybean processing, but
we are not aware of any S containing ingredients used
during processing that would increase S content.

Animal-based feedstuffs contained greater concen-
trations of total S relative to most plant-based ingre-
dients. Because sulfur amino acids are prevalent in
various body components (condroitin, glutathionine,
taurine, etc.) are high in S (21% in Met and 26% in Cys),
this was expected. Two examples of animal-based feed
ingredients with high S content are feather meal and
plasma protein. Both of these ingredients are known
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to have high concentrations of sulfur-containing amino
acids, 4.1 and 2.6% Cys, respectively (NRC, 1998); thus
they had high concentrations of total S (Table 2). For
comparison purposes, the value for feather meal is close
to that listed in the most recent swine NRC (1998), but
no such value exists for plasma protein.

The range in S concentration in mineral-based feed-
stuffs was the greatest, depending on whether the min-
eral source was sulfate- or nonsulfate-based. In addi-
tion, the method used to process specific minerals also
affected its total S concentration. For example, sulfuric
acid is used in the production of dicalcium- and mono-
calcium-phosphate, whereas phosphoric acid is used
in the production of defluorinated phosphate. Conse-
quently, total S in defluorinated phosphate is approxi-
mately 5% of that found in dicalcium- and monocalci-
um-phosphate (Table 3).

One key aspect of our research results is the large
variation that can be noted in feedstuff mineral concen-
trations. Overall, the variability of S content in whole
grains (corn, oats, rice, and wheat) was relatively low,
usually less than 10%. Depending upon the processing
technology, variation in S content may or may not be
affected. For example, the S concentration in corn from
the ICP analysis was 1,132 mg/kg with a CV of 9.4%,
whereas the S concentration for dried distillers grains
was 6,866 mg/kg with a CV of 33%. In contrast, no such
increase in variation was noted in the S content of corn
gluten feed and corn gluten meal (CV of 6.3 and 10.8%,
respectively). There was no consistent effect of wheat
milling on the variability of S analysis where the CV
for S was 14.8, 25.7, and 11.9% for wheat, wheat flour,
and wheat middlings, respectively (Table 1). Although
our data are limited, this suggests that technology that
uses S containing compounds in their process may add
additional variability to S analysis. Mineral sources
were not immune to variability. For example, the ana-
lyzed S value for cobalt carbonate was 12,669 mg/kg
with a CV of 108%. However, among the 6 samples, 3
samples from one supplier averaged 25,082 mg/kg of
S, whereas 3 samples from a different supplier aver-
aged 256 mg/kg of S. Likewise, calcium concentrations
of these samples was also variable, with the 3 high
S samples having a high Ca content (32,821 mg/kg),
whereas the 3 low S samples had a low Ca concentra-
tion (876 mg/kg).

With potential linkages of dietary S to chronic intes-
tinal disease (Deplancke et al., 2000; Attene-Ramos et
al., 2006; Burrin and Stoll, 2007), scour scores (Ander-
son and Stothers, 1978; Paterson et al., 1979; Maenz et
al., 1994), protein digestibility (Anderson et al., 1994),
and hydrogen sulfide emissions (Sutton et al., 1998;
Whitney et al., 1999; Apgar et al., 2002), data on total
dietary S is vital. In evaluation of the data in Tables 1,
2, and 3, a 3-pronged approach to reduce total dietary S
would be to 1) lower dietary protein and still maintain
Met and Cys requirements; 2) use defluorinated as the
P source; and 3) use oxide-based trace minerals.

Table 4. Chloride composition of selected feedstuffs’

Distiller dried

Wheat
middlings

Meat and Monocalcium Plasma Sodium Soybean

bone meal

Fish
meal

Dicalcium Dried
whey

grains with
solubles

meal

chloride

protein

phosphate

Limestone

phosphate

Corn

Item

Samples
DM, %
SD

Cl

87.94
0.88

88.29 97.48 94.74 92.93 99.99 97.16 96.87 92.97 99.96 89.03
948

85.72
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0.05 0.58
316

608,148

0.63

7,751

0.38

ND

0.83

9,283
6,868

0.01

0.98

9,673

1.49

18,718

0.44

ND

2.30

2,185

0.50

716

15,067 58.7 261.5

4,017

2,238 292.0

8,398

622

88.0

SD

!Chloride data expressed as mg/kg, DM basis. All feedstuffs analyzed by inductively coupled plasma-mass spectrophotometer.
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Log(CNS)

Log(ICP)

Figure 1. Bivariate plot and correspondence corre-
lation between the log of thermal combustion analysis
(CNS) and the log of inductively coupled plasma-mass
spectrometry analysis (ICP; correspondence correlation
coefficient, r = 0.941). Group 1 feedstuffs (potassium
iodide and tribasic copper chloride) show that S values
determined by ICP were lower than S determined by
CNS [bias = 2.51 + 0.15 (SE), P < 0.01]. Group 2 feed-
stuffs (defluorinated phosphate and limestone) show
that S concentrations determined by ICP were greater
than S determined by CNS [bias = —1.46 + 0.51 (SE), P
< 0.01]. Group 3 feedstuffs (cobalt-, copper-, iron-, man-
ganese-, and zinc-sulfate) were high in total S but had
similar S concentrations whether measured by CNS
or ICP. The gray lines refer to an empirical histogram
representing the distribution of the data.

Comparison of our values to table values is a daunt-
ing task depending upon which ingredient and miner-
al to compare. In light of this, we chose to compare 3
plant- and 3 animal-based feedstuffs in terms of their
P content and variability. On a DM basis, analyzed P
concentration compared with NRC (1998) values were
corn, 0.30 vs. 0.31; distillers dried grains with solubles,
0.89 vs. 0.83; soybean meal, 0.80 vs. 0.77; dried whey,
0.82 vs. 0.75; meat and bone meal, 4.78 vs. 5.35; and
plasma protein, 1.53 vs. 1.88% P, respectively. Despite
differences of when the samples were obtained and lo-
cation differences among samples, the average values
reported herein are similar to tabular values. Similar
to that in discussing the S concentrations previously,
there can be a large range of concentrations within an
ingredient. Coefficients of variations in corn, distillers
dried grains with solubles, soybean meal, dried whey,
meat and bone meal, and plasma protein were 14.1,
12.7, 28.7, 25.8, 25.1, and 10.9%, respectively. Conse-
quently, fine tuning of dietary levels of minerals, in
this case P, requires continual evaluation of each spe-
cific ingredient.
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For mineral-based feedstuffs, the NRC (1998) does
not report DM for minerals, consequently values we
reported in Table 3 were converted to an as-is basis
for comparison. In general, our values were relatively
close to those reported in the swine NRC (1998). For
macro-minerals, we reported 34.2% Ca and 20.3% P for
defluorineated phosphate vs. 32.0% Ca and 18.0% P in
the NRC (1998), 21.8% Ca and 17.8% P for dicalcium
phosphate vs. 22% Ca and 18.5% P in the NRC (1998),
16.6% Ca and 20.0% P for monocalcium phosphate vs.
17.0% Ca and 21.1% P in the NRC (1998), and 39.9%
Ca and 0.01% P for limestone vs. 38.5% Ca and 0.02% P
in the NRC (1998). Comparative evaluation of a several
micro-minerals were: copper sulfate, 27.2 vs. 25.2% Cu;
iron sulfate, 32.1 vs. 30.0% Fe; manganese sulfate, 26.4
vs. 29.5% Mn; tribasic copper chloride, 62.8 vs. 58.0%
Cu; zinc oxide, 79.8 vs. 72.0% Zn; zinc sulfate, 38.1 vs.
35.5% Zn; for the current data vs. NRC (1998), respec-
tively. Similar to plant- and animal-based feedstuffs,
mineral content of mineral-based feedstuffs was vari-
able.

We were only able to analyze a few feedstuffs for
chloride (Table 4). We selected ingredients that might
be used in swine nursery rations because past research
on electrolyte balance has generally focused in this
size of pig (Haydon and West, 1990; Patience, 1990;
Patience and Chaplin, 1997) but may also affect sow
and litter performance (Dove and Haydon, 1994) and
water consumption (Shaw et al., 2006). Our values
were comparable to the NRC (1998) for corn (0.08 vs.
0.05% Cl, respectively), distiller grains with solubles
(0.19 vs. 0.20% CI, respectively), dried whey (1.77 vs.
1.40% Cl, respectively), meat and bone meal (0.90 vs.
0.69% Cl, respectively), soybean meal (0.03 vs. 0.05%
Cl, respectively), and wheat middlings (0.08 vs. 0.04%
Cl, respectively). Our values were greater for fish meal
(0.90 vs. 0.55% CI, respectively) but lower for plasma
protein (0.72 vs. 1.40% Cl, respectively). We did not
detect chloride in our dicalcium or monocalcium phos-
phate sources, and like the NRC (1998), a very low level
was found in limestone. Sodium chloride was analyzed
to contain 35.9% Na and 60.8% Cl, similar to the 39.5%
Na and 59.0% Cl reported in the NRC (1998).

Data from this study show the relative abundance
of minerals in a wide array of ingredients and that di-
etary manipulation of mineral intake can be achieved
by altering feedstuff inclusion rates. In addition, data
from this feed ingredient survey indicate that care is
needed to determine the actual concentration of miner-
als, due to potential wide variation in mineral content
due to ingredient source or processing. These results
provide researchers and nutritionists relative concen-
trations of the mineral composition of feedstuffs com-
monly used in the livestock diets.
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