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Abstract: Recent interest in tracking environmental benefits of conservation practices on agricultural watersheds throughout the United
States has led to the development of the U.S. Department of Agriculture’s �USDA� Conservation Effects Assessment Project �CEAP�. The
purpose of CEAP is to assess environmental benefits derived from implementing various USDA conservation programs for cultivated,
range, and irrigated lands. Watershed scale, hydrologic simulation models such as the Soil and Water Assessment Tool �SWAT� will be
used to relate principal source areas of contaminants to transport paths and processes under a range in climatic, soils, topographic, and
land use conditions on agricultural watersheds. To better understand SWAT’s strengths and weaknesses in simulating streamflow for
anticipated applications related to CEAP, we conducted a study to evaluate the model’s performance under a range of climatic, topo-
graphic, soils, and land use conditions. Hydrologic responses were simulated on five USDA Agricultural Research Service watersheds that
included Mahantango Creek Experimental Watershed in Pennsylvania and Reynolds Creek Experimental Watershed in Idaho in the
northern part of the United States, and Little River Experimental Watershed in Georgia, Little Washita River Experimental Watershed in
Oklahoma, and Walnut Gulch Experimental Watershed in Arizona in the south. Model simulations were performed on a total of 30
calibration and validation data sets that were obtained from a long record of multigauge climatic and streamflow data on each of the
watersheds. A newly developed autocalibration tool for the SWAT model was employed to calibrate eleven parameters that govern surface
and subsurface response for the three southern watersheds, and an additional five parameters that govern the accumulation of snow and
snowmelt runoff processes for the two northern watersheds. Based on a comparison of measured versus simulated average annual
streamflow, SWAT exhibits an element of robustness in estimating hydrologic responses across a range in topographic, soils, and land use
conditions. Differences in model performance, however, are noticeable on a climatic basis in that SWAT will generally perform better on
watersheds in more humid climates than in desert or semidesert climates. The model may therefore be better suited for CEAP investiga-
tions in wetter regions of the eastern part of the United States that are predominantly cultivated than the dryer regions of the West that are
more characteristically rangeland.
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Introduction

The need to evaluate environmental benefits of conservation prac-
tices on farms and ranches throughout the United States during
the past few decades has led to the implementation of various
policies and programs that are designed to protect the nation’s soil
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and water resources. One such program that has been recently
implemented is a multiagency effort referred to as the Conserva-
tion Effects Assessment Project �CEAP�. Headed by the U.S.
Dept. of Agriculture �USDA� Natural Resource Conservation
Service, the focus of CEAP is to produce an assessment of envi-
ronmental benefits derived from implementing various USDA
conservation programs. Although it is well recognized that vari-
ous conservation programs have been designed to protect range
and agricultural lands from soil erosion, conserve water use, en-
hance water quality, and promote wildlife habitat restoration, the
environmental benefits derived from these programs at a water-
shed scale have not been well quantified. Scientists involved in
the CEAP effort will study and model USDA Agricultural Re-
search Service �ARS� experimental watersheds to quantify the net
cumulative effects of conservation practices within a watershed.
One objective of these watershed assessments will be to quantify
the net cumulative effects of conservation practices within a wa-
tershed. Quantitative relationships between implemented conser-
vation practices and changes in water quality, soil quality, and
water conservation will be developed.

One of the mathematical models that will be used to perform

these watershed scale CEAP assessments is the Soil and Water
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Assessment Tool �SWAT� �Arnold et al. 1998�. This model simu-
lates complex hydrologic processes on agricultural watersheds
and is useful as an analytical tool for estimating the effects of
conservation practices at various spatial and temporal scales on
the watershed. It can also be used to evaluate total maximum
daily load standards and select suitable land use and best manage-
ment practice scenarios that help reduce damaging effects of
storm-water runoff on water bodies and the landscape �Borah and
Bera 2003�. With regard to the nationwide CEAP effort, it is
important to quantify and document how well SWAT performs
across a variety of climatic, physiographic, and hydrologic con-
ditions. Previous investigations by Arnold and Williams �1987�,
Wilcox et al. �1990�, and Borah and Bera �2003� have demon-
strated the importance of examining model performance under a
range of such conditions. Arnold and Williams �1987� demon-
strated that Simulator for Water Resources in Rural Basins
�SWRRB�, the precursor to SWAT, realistically simulated water
and sediment yields for various physiographic and climatic con-
ditions on 11 USDA ARS watersheds. Borah and Bera �2003�
compiled simulation results from 17 SWAT applications for wa-
tersheds located throughout the United States. They reported that
the model was found suitable for predicting yearly flow volumes,
sediment and nutrient loads. They also reported that monthly pre-
dictions were generally good, except for months having extreme
storm events and hydrologic conditions.

To date, very few modeling studies that employ SWAT have
been undertaken to compare parameter values or simulation re-
sults obtained with the same calibration procedure for distinctly
different watershed applications throughout the United States. A
comparison of model results across distinct regions would pro-
vide valuable guidance to modelers in region-specific model pa-
rameterization and calibration. In particular, it would aid CEAP
researchers to more efficiently simulate region-specific impacts of
conservation practices on hydrologic responses for cropland,
rangeland, and irrigated agriculture throughout the United States.

A recent enhancement of the AVSWAT 2003 version of the
Soil and Water Assessment Tool consists of an autocalibration
tool developed by Van Griensven and Bauwens �2003�. The au-
tocalibration procedure utilizes the shuffled complex evolution
algorithm �SCE-UA� that allows for the calibration of model pa-
rameters based on the minimization of a single function �Duan et
al. 1992�. This global search algorithm consists of a controlled
random search �Nelder and Mead 1965�, a systematic evolution of
points in the direction of global improvement, competitive evolu-
tion �Holland 1975�, and the concept of complex shuffling. This
automated approach to model calibration holds promise as a labor
saving tool for practitioners who employ SWAT under a range of
climatic, soils, topographic, and land use conditions on agricul-
tural watersheds.

To better understand SWAT’s strengths and weaknesses under
conditions such as those anticipated for the CEAP effort, we con-
ducted an investigation to assess the performance of the model on
a variety of watersheds located throughout the United States. Al-
though output from SWAT includes streamflow, sediment loads,
and a host of water quality parameters, only the streamflow com-
ponent was compared in this study. Model tests to evaluate output
results from SWAT based on automated calibration were
conducted on five USDA ARS experimental watersheds. Unique
climatic, physiographic, and land management conditions charac-

terize each of these five watersheds, and they were considered

174 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRI
ideally suited for this study because of the availability of long
term climatic and runoff data, extensive coverage of precipitation
gauges, and the quality of data available for monitoring
streamflow. Watershed locations included Mahantango Creek Ex-
perimental Watershed in Pennsylvania, Little Washita River Ex-
perimental Watershed in Oklahoma, Little River Experimental
Watershed in Georgia, Walnut Gulch Experimental Watershed in
Arizona, and Reynolds Creek Experimental Watershed in Idaho.
The specific objectives of the study were to �1� identify SWAT’s
strengths and weaknesses in simulating streamflow responses at
monthly and daily time scales for agricultural watersheds; and to
�2� determine how climatic and physiographic conditions influ-
ence these model simulations.

Methods and Materials

Test Watersheds

A site map of the United States that shows the location of the five
experimental watersheds is presented in Fig. 1. Each watershed
was established in compliance with U.S. Senate Document 59 to
depict downstream, off-site impacts of watershed practices. The
watersheds selected for this study represent a range in climatic,
physiographic, and land use characteristics that are suitable for
testing the robustness of the SWAT model in simulating hydro-
logic responses.

Mahantango Creek Experimental Watershed
in Pennsylvania
Subwatersheds FD-36 �0.4 km2� and WE-38 �7 km2� are subwa-
tersheds of Mahantango Creek Experimental Watershed, a tribu-
tary of the Susquehanna River in central Pennsylvania. Located
about 50 km northeast of Harrisburg, the Mahantango Watershed
is typical of upland agricultural watersheds within the nonglaci-
ated, folded, and faulted Appalachian Valley and Ridge Physi-
ographic Province �Veith et al. 2005�. Climate in the region is
temperate and humid, with a long-term average annual precipita-
tion of 1,100 mm. The watershed is characterized by shallow,
fragipan soils in near-stream areas, and deep, well-drained soils in
the uplands. Land use types consist of pasture �38%�, forest
�34%�, mixed croplands �26%�, and farmsteads �2%�.

Little River Experimental Watershed in Georgia
The 334 km2 Little River Experimental Watershed is located in
south central Georgia just north of Tifton. Climate in the region is
characterized as humid subtropical with long, warm summers and
short, mild winters, with an average annual precipitation of ap-
proximately 1,167 mm based on data collected by USDA ARS
from 1971 to 2000. The Little River Watershed landscape is
dominated by a dense dendritic network of stream channels bor-
dered by riparian forest wetlands and uplands areas devoted
mostly to agricultural uses. The region has low topographic relief
and is characterized by broad, flat alluvial floodplains, river ter-
races, and gently sloping uplands �Sheridan 1997�. Soils on the
watershed are predominantly sands and sandy loams with high
infiltration rates. As surface soils are underlain by shallow, rela-
tively impermeable subsurface horizons, deep seepage and re-
charge to regional groundwater systems are impeded �Sheridan
1997�. Land use types include forest �65%�, cropland �30%�,
rangeland and pasture �2%�, wetland �2%�, and miscellaneous

�1%�.
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Little Washita River Experimental Watershed in Oklahoma
The 610 km2 Little Washita River Experimental Watershed is lo-
cated about 80 km southwest of Oklahoma City. The climate in
the region is subhumid to semiarid, with an average annual pre-
cipitation of approximately 795 mm, based on data collected by
USDA ARS from 1961 to 2000.

Topography of the watershed is characterized by gently to
moderately rolling hills, and the soil types primarily consist of silt
loams, loams, fine sandy loams, and sandy loams. Land use types
include rangeland and pasture �66%�, cropland �18%�, forest
�9%�, and miscellaneous �7%—urban, abandoned oil fields, farm-
steads, ponds� �Allen and Naney 1991�. The watershed has nu-
merous farm ponds located primarily in the lower portions of the
watershed, and 45 NRCS flood-retarding structures �FRSs� con-
structed from 1969 to 1982. These FRSs control drainages on the
Little Washita that range in size from 137 to 2,860 ha and consist
of storage capacities ranging in size from 1.58�105 to 2.97
�106 m3. These structures delay and reduce peak surface flows
and modify subsurface flows. They also lead to small increases in
average annual evaporation due to a larger percentage of the wa-
tershed existing as a free water surface.

Reynolds Creek Experimental Watershed in Idaho
The 239 km2 Reynolds Creek Experimental Watershed is located
approximately 80 km southwest of Boise and exhibits a consider-
able degree of spatial heterogeneity. The topography of the wa-
tershed ranges from a broad, flat alluvial valley to steep, rugged
mountain slopes, with a range in elevation from 1,101 to 2,241 m
�Seyfried et al. 2000�. As a result of orographic effects, average

Fig. 1. Location of the five U
annual precipitation increases almost fourfold on Reynolds Creek,
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ranging from approximately 250 mm near the outlet to more than
1,100 mm along the mountain ridges at the upper end of the wa-
tershed. Perennial streamflow is generated at the highest eleva-
tions in the southern parts of Reynolds Creek where deep, late
lying snowpacks are the source for most water �Seyfried et al.
2000�. Although much of the watershed has steep, shallow, rocky
soils, there are areas of deep, loamy soils that are rock free. Land
cover on Reynolds Creek consists of rangeland and forest com-
munities of sagebrush, greasewood, aspen, conifers �94%�, and
irrigated cropland �6%�.

Walnut Gulch Experimental Watershed in Arizona
Located about 115 km southeast of Tucson, the Walnut Gulch
Experimental Watershed comprises 149 km2 and surrounds the
historical western town of Tombstone. With a mean annual
precipitation of about 325 mm, the climate of the region is con-
sidered semiarid. Walnut Gulch soils are generally well-drained,
calcareous, gravelly loams with large percentages of rock and
gravel at the surface �Gelderman 1970�. Watershed relief ranges
from 1,250 to 1,585 m, and the topography consists of low undu-
lating hills to mountains. Streamflow that results from high inten-
sity rainstorms primarily during the summer months is subject to
substantial transmission losses in the channel beds and banks.
Shrub canopy cover ranges from 30 to 40%, and grass canopy
cover ranges from 10 to 80%. Land cover on Walnut Gulch is
comprised of 83% rangeland, 12% forest, and 5% miscellaneous.
Cattle grazing is the primary land use, with mining, limited ur-
banization, and recreation making up the remaining uses �Renard

RS experimental watersheds
SDA A
et al. 1993�.
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Model Description

The SWAT model was originally developed by the USDA ARS to
predict the impact of land management practices on water, sedi-
ment, and agricultural chemical yields in large ungauged basins
�Arnold et al. 1998�. SWAT incorporates features of several ARS
models and is a direct outgrowth of the SWRRB model �Williams
et al. 1985�. Specific models that contributed to the development
of SWAT include Chemicals, Runoff, and Erosion from Agricul-
tural Management Systems �CREAMS� �Knisel 1980�, Ground-
water Loading Effects on Agricultural Management Systems
�GLEAMS� �Leonard et al. 1987�, and Erosion-Productivity Im-
pact Calculator �EPIC� �Williams et al. 1984�. The SCS runoff
curve number is used to estimate surface runoff from daily pre-
cipitation �USDA SCS 1986�. The curve number is adjusted ac-
cording to moisture conditions in the watershed �Arnold et al.
1993�. SWAT can also be run on a subdaily time step basis using
the Green and Ampt �1911� infiltration method. Other hydrologic
processes simulated by the model include evapotranspiration, in-
filtration, percolation losses, channel transmission losses, channel
routing, and surface, lateral, shallow aquifer, and deep aquifer
flow �Arnold and Allen 1996�. The runoff curve number option
�Neitsch et al. 2002� is adopted in this study. Evapotranspiration
�ET� in SWAT is computed using the Priestly and Taylor �1972�,
Penman-Monteith �Allen et al. 1989� or Hargreaves �1975�
method. For all watersheds the Hargreaves �1975� method was
used to estimate potential ET, as extraterrestrial radiation and air
temperature were the only two measured variables required for
computing daily potential ET values with this method. Channel
routing in SWAT is accomplished by either the variable storage or
Muskingum routing methods. For this study, the variable storage
method was used to route flows in SWAT.

SWAT is a distributed parameter model that partitions a water-
shed into a number of subbasins. Each subbasin delineated within
the model is simulated as a homogeneous area in terms of cli-
matic conditions, but with additional subdivisions within each
subbasin to represent various soils and land use types. Each of
these subdivisions is referred to as a hydrologic response unit
�HRU� and is assumed to be spatially uniform in terms of soils,
land use, topographic, and climatic data.

AVSWAT 2003 was the version of the model used in this
study, which incorporates an ArcView GIS interface for expedit-
ing model input and output �Di Luzio et al. 2002�. The ArcView
GIS raster based system consists of a modular structure that con-
tains a tool for optimizing the definition and segmentation of a
watershed and network based on topography. It also consists of a
tool for defining the HRUs over the watershed and an integrated
user-friendly interface. The GIS interface not only allows users to
segment a watershed, but to import and format the supporting
data necessary for the specific application and calibration of the
model.

AVSWAT 2003 also includes a multiobjective, automated cali-
bration procedure that was developed by Van Griensven and Bau-
wens �2003�. The calibration procedure is based on a SCE-UA
�Duan et al. 1992� and a single objective function. In a first step,
the SCE-UA selects an initial population of parameters by random
sampling throughout the feasible parameter space for “p” param-
eters to be optimized, based on given parameter ranges. The
population is partitioned into several communities, each consist-
ing of “2p+1” points. Each community is made to evolve based
on a statistical “reproduction process” that uses the simplex
method, an algorithm that evaluates the objective function in a

systematic way with regard to the progress of the search in pre-
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vious iterations �Nelder and Mead 1965�. At periodic stages in the
evolution, the entire population is shuffled and points are reas-
signed to communities to ensure information sharing. As the
search progresses, the entire population tends to converge toward
the neighborhood of global optimization, provided the initial
population size is sufficiently large �Duan et al. 1992�. The
SCE-UA has been widely used in watershed model calibration
and other areas of hydrology such as soil erosion, subsurface
hydrology, remote sensing, and land surface modeling, and has
generally been found to be robust, effective, and efficient �Duan
2003�.

In the optimization scheme developed for SWAT 2003, param-
eters in the model that affect hydrology or water quality can be
changed in either a lumped �over the entire watershed� or
distributed �for selected subbasins or HRUs� way. In addition, the
parameters can be modified by replacement, by addition of an
absolute change or by a multiplication of a relative change. In
addition to weight assignments for output variables that can be
made in multiobjective calibrations �e.g., 50% streamflow, 30%
sediment, and 20% nutrients�, the user can specify a particular
objective function that is minimized. The objective function is an
indicator of the deviation between a measured and a simulated
series �Van Griensven and Bauwens 2003�. An approach often
selected as an objective function is the sum of squares of residuals
method

SSQ = �1/n� �
i=1,n

n

�Qi,obs − Qi,sim�2 �1�

where SSQ�sum of squares of the residuals; n�number of pairs
of measured and simulated variables; Qi,obs�observed variable at
a daily time scale; and Qi,sim�simulated variable at a daily time
scale.

Eq. �1� represents the classical mean square error method that
aims at matching a simulated time series to a measured series.

Calibration Parameters

For this investigation, eleven calibration parameters that govern
rainfall runoff processes in SWAT were selected for the three
southern watersheds �Little River, Little Washita River, and Wal-
nut Gulch�, and an additional five parameters that govern the
accumulation of snow and snowmelt runoff processes were se-
lected for the two northern watersheds �Mahantango Creek and
Reynolds Creek�. Model parameters were grouped into three
categories �Table 1�, which were considered to predominantly
govern surface, subsurface, and basin response. Table 1 lists pa-
rameters, descriptions, and units that were calibrated with the
autocalibration tool for the five watersheds. The following is a
brief description of each parameter.

Parameters Governing Surface Response
Calibration parameters governing the surface-water response in
SWAT include the runoff curve number, the soil evaporation com-
pensation factor, and the available soil water capacity. The runoff
curve number �CN2� is used to compute runoff depth from total
rainfall depth. It is a function of watershed properties that include
soil type, land use and treatment, ground surface condition, and
antecedent moisture condition. The soil evaporation compensa-
tion factor adjusts the depth distribution for evaporation from the
soil to account for the effect of capillary action, crusting, and
cracks. The available soil water capacity �SOL_AWC� is the vol-

ume of water that is available to plants if the soil was at field
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capacity. It is estimated by determining the amount of water re-
leased between in situ field capacity and the permanent wilting
point.

Parameters Governing Subsurface Response
Six calibration parameters govern the subsurface water
response in SWAT. One of these parameters is referred to as the
groundwater “revap” coefficient �GW_REVAP�, which controls
the amount of water that will move from the shallow aquifer to
the root zone as a result of soil moisture depletion and the amount
of direct groundwater uptake from deep-rooted trees and shrubs.
Another parameter that governs the subsurface response is the
threshold depth of water in the shallow aquifer for revap to occur
�REVAPMN�. Movement of water from the shallow aquifer to the
root zone or to plants is allowed only if the depth of water in the
shallow aquifer is equal to or greater than the minimum revap. A
third parameter is the threshold depth of water in the shallow
aquifer required for return flow to occur to the stream
�GWQMN�. Two other parameters that govern watershed re-
sponse include the baseflow alpha factor and groundwater delay.

Table 1. Parameters That Were Calibrated in SWAT

Parameter Description Units

Parameters governinq
surface water response

CN2 SCS runoff curve number none

ESCO Soil evaporation
compensation factor

none

SOL_AWC Available soil water
capacity

mm/mm

Parameters governinq
subsurface water response

GW_REVAP Groundwater “revap”
coefficient

none

REVAPMN Minimum threshold
depth of water in the
shallow aquifer for
“revap” to occur

mm

GWQMN Minium threshold depth
of water in the shallow
aquifer required for
return flow to occur

mm

GW_DELAY Groundwater delay days

ALPHA_BF Baseflow alpha factor or
recession constant

days

RCHRG_DP Deep aquifer percolation
fraction

fraction

Parameters governinq
basin response

SURLAG Surface runoff lag time days

CH_K2 Channel hydraulic
conductivity

mm/h

TIMP Snow pack temperature
lag factor

none

SFTMP Snowfall temperature °C

SMTMP Snowmelt base
temperature

°C

SMFMX Melt factor for snow on
June 21

mm/ °C day

SMFMN Melt factor for snow on
December 21

mm/ °C day
The baseflow alpha factor �ALPHA_BF�, or recession constant,
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characterizes the groundwater recession curve. This factor ap-
proaches one for flat recessions and approaches zero for steep
recessions. The groundwater delay �GW_DELAY� is the time re-
quired for water leaving the bottom of the root zone to reach the
shallow aquifer. A sixth factor is the deep aquifer percolation
fraction which governs the fraction of percolation from the root
zone to the deep aquifer �RCHRG_DP�.

Parameters Governing Basin Response
Two parameters that govern basin response in SWAT were cali-
brated in this study on each of the five watersheds. These included
channel hydraulic conductivity �CH_K2� that governs the move-
ment of water from the streambed to the subsurface for ephemeral
or transient streams, and the surface runoff lag time �SURLAG�
that provides a storage factor in the model to allow runoff to take
longer than one day to reach a subbasin outlet. Five other basin
parameters that govern snowfall and snowmelt in SWAT were
calibrated on the two northern watersheds, Mahantango and
Reynolds Creek. One parameter is the snowfall temperature
�SFTMP� which is the mean air temperature at which precipita-
tion is equally likely to be rain as snow or freezing rain. A second
parameter is the snowmelt base temperature �SMTMP� that de-
fines the snow pack temperature above which snowmelt will
occur. SMFMX and SMFMN are melt factors for snow on June
21 and December 21, respectively, in the Northern Hemisphere
that allow the rate of snowmelt to vary through the year as a
function of snow pack density. A fifth parameter is the snow pack
temperature lag factor �TIMP� that controls the impact of the
current day’s air temperature on the snow pack temperature.

Watershed Delineation and Model Calibration

Elevation, land use, and soil characteristics were obtained from
GIS data layers for each of the five watersheds. The elevation
layer was developed from USGS 30 m DEM quads for Little
River, Little Washita River, and Reynolds Creek, and 10 m DEM
quads for Walnut Gulch and Mahantango Creek. The land use
layer for Mahantango Creek was obtained from a digitized aerial
photograph, and from Landsat images for the other four water-
sheds. The soils layer was obtained from SURGO soils informa-
tion for Mahantango Creek and Walnut Gulch, and the STATSGO
database for the other three watersheds.

For this investigation, subbasins were delineated in each wa-
tershed to account for variations in rainfall based on the spatial
distribution of precipitation gauges in each watershed and to ac-
count for the impact of the FRSs on hydrologic response in the
Little Washita. A reservoir file was also created for each of the
FRSs in the Little Washita to consider the effects of storage and
release of water from rainstorms on that watershed. Data input for
the FRSs was based on a previous study by Van Liew et al.
�2003�. The number of HRUs in the delineation of the respective
watersheds was constrained by a threshold based on a land use
and soil type covering an area of at least 5 and 20%, respectively,
within any given subbasin. Although smaller percentage thresh-
olds for land use and soil type could have been selected, the
additional computational time that would have been required was
not warranted. This constraint in the number of HRUs was the
same one employed in a previous study involving autocalibration
of SWAT on the Little River and Little Washita River Watersheds
�Van Liew et al. 2005�. Cursory testing on one of the nested
subwatersheds within the Little Washita assuming a threshold
based on a land use and soil type covering an area of at least 20

and 33%, respectively, within any given subbasin revealed no
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appreciable differences in the simulation of streamflow response
with SWAT in comparison to the 5% and 20% constraints used in
this study. Because specific USDA CEAP investigations involve
various sized watersheds, differences in the sizes and characteris-
tics of land owner tracts, and particular water quality issues, it is
anticipated that watershed projects will be delineated with various
resolutions for land use and soil type thresholds to address the
pertinent needs of each project. The flexibility that exists to de-
lineate HRUs in the model will therefore enable practitioners to
hone in on potential areas that are targeted for the implementation
of best management practices.

Table 2 lists the respective number of subbasins and HRUs
delineated for each of the simulated subwatersheds, along with
the respective drainage areas. Although there have been minor
changes in land use types over time on Little River and Little
Washita River Watersheds, records are not available on either of
these watersheds to accurately denote year to year changes that
have occurred. Moreover, preliminary testing conducted with
SWAT on the Little Washita River showed that changes in land
use as indicated by available records resulted in only very minor
changes in streamflow. Few changes in land use types have oc-
curred on the other three ARS watersheds during the past few
decades. For this study it was therefore assumed that the respec-
tive land use types on each of the watersheds remained constant
for the period of record simulated. To assess SWAT’s capability of
simulating surface and subsurface hydrologic processes, a base-
flow method developed by Arnold and Allen �1999� was used to
divide total measured streamflow into surface flow and baseflow.
These values were assumed to represent measured surface flow
and baseflow for this study and were compared to surface flow
and baseflow contributions computed, by the baseflow method,
from total streamflow simulated by SWAT for each calibration
period on the respective watersheds.

To account for spatial variability in topographic, soil, and land
use factors between or among subwatersheds within a given wa-
tershed, parameters in SWAT were calibrated in a distributed fash-
ion using the automated calibration procedure, where observed
and simulated outputs were compared at the same outlet points of
the watersheds. Therefore, with the completion of a given optimi-
zation, two sets of calibrated parameters were computed for the
Mahantango Subwatersheds FD-36 and WE-38, two sets for Little

Table 2. Number of Subbasins, Number of Hydrologic Response Units,
and Drainage Areas for the Five USDA ARS Experimental Watersheds

Watershed Subwatershed
Number of
subbasins

Number of
HRUsa

Area
�km2�

Mahantango Cr. FD-36 1 5 0.4

Mahantango Cr. WE-38 7 44 7

Little R. F 12 51 114

Little R. B 40 161 330

Little Washita R. 526 22 138 160

Little Washita R. 550 73 486 600

Little Washita R. 522 66 413 538

Reynolds Cr. Tolgate 16 47 55

Reynolds Cr. Salmon 10 19 36

Reynolds Cr. Outlet 60 162 239

Walnut Gl. Flume 9 10 17 24

Walnut Gl. Flume 2 43 82 114

Walnut Gl. Flume 1 55 102 149
aHydrologic response units.
River that corresponded to Subwatersheds F and B, two sets for
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the Little Washita subwatersheds 526 and 550, three sets for the
Walnut Gulch Subwatersheds Flumes 9, 2, and 1, and three sets
for the Reynolds Creek Subwatersheds referred to as Tolgate,
Salmon, and Outlet. With the exception of the runoff curve num-
ber and the surface runoff lag time, default values suggested by
Van Griensven �2002� were selected as the initial lower and upper
ranges for the respective model parameters. To maintain a range
in the calibrated values of the curve number similar to those re-
ported in the literature �USDA SCS 1986�, the initial lower and
upper values for this parameter were restricted from −10 to
+10%, respectively. To properly account for the release of surface
runoff from a subbasin to the main channel, the range in values of
the surface runoff lag time was restricted from 0.5 to 10.0 days.

In addition to range restrictions placed on CN2 and SURLAG,
preliminary testing showed that better agreement between mea-
sured and simulated streamflow responses was obtained for
Mahantango Creek and Little River when the initial lower and
upper range in the groundwater delay parameter �GW_DELAY�
was restricted from 0 to 5 days. Preliminary testing also revealed
that improved model performance was obtained on Walnut
Gulch when initial values of the groundwater delay parameter
�GW_DELAY� were restricted from 0 to 5 days and values of the
baseflow alpha factor �ALPHA_BF� were restricted from 0.9 to
1.0. For this study, initial values of these parameters as mentioned
herein were selected for autocalibration on the Mahantango, Little
River, and Walnut Gulch Watersheds.

Evaluation Criteria

Six evaluation criteria were used to assess monthly and daily
streamflow simulated by SWAT. The first three criteria were quan-
titative statistics that measured the agreement between simulated
and observed values, and the second three criteria were a visual
comparison of plots of simulated and observed values. The first
evaluation criterion used was the percent bias �PBIAS�, which is
a measure of the average tendency of the simulated flows to be
larger or smaller than their observed values. The optimal PBIAS
value is 0.0; a positive value indicates a model bias toward un-
derestimation, whereas a negative value indicates a bias toward
overestimation �Gupta et al. 1999�. PBIAS may be expressed as

PBIAS = �
k=1,n

n

�Qkobs − Qksim��100�� �
k=1,n

n

�Qkobs� �2�

where PBIAS�deviation of streamflow discharge �expressed as a
percent�; Qkobs�observed streamflow �m3 s−1 �cm s��; and
Qksim�simulated streamflow �cm s�.

Donigian et al. �1983� considered HSPF model performance
“very good” if the absolute percent error is �10%, “good” if the
error is between 10 and �15%, and “fair” if the error is between
15 and �25% for calibration and validation. Measurement errors
associated with streamflow as recommended by Harmel et al.
�2006� follow the same standard. This standard was therefore
adopted for the PBIAS evaluation criterion used in this study,
with PBIAS values �25% considered as unsatisfactory.

The second evaluation criterion was the model coefficient of
efficiency �Nash Sutcliffe coefficient of efficiency �NSE� �Nash
and Sutcliffe 1970��, which Sevat and Dezetter �1991� found to be
the best objective function for reflecting the overall fit of a hy-
drograph. NSE expresses the fraction of the measured streamflow

variance that is reproduced by the model.
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NSE = 1 − � �
k=1,n

n

�Qkobs − Qksim�2� �
k=1,n

n

�Qkobs − Qmean�2�
�3�

where NSE�Nash Sutcliffe coefficient of efficiency; and
Qmean�mean observed streamflow during the evaluation period
�cm s�.

NSE values were computed for both monthly and daily
streamflow. Simulation results were considered to be good for
values of NSE �0.75, whereas for values of NSE between 0.75
and 0.36, the simulation results are considered to be satisfactory
�Motovilov et al. 1999�. For this study NSE values �0.36 were
considered to be unsatisfactory.

The third evaluation criterion compared the measured and
simulated fraction of baseflow to total flow that was computed for
each of the calibration periods for the respective subwatersheds.
This fraction was estimated using the baseflow separation tech-
nique developed by Arnold and Allen �1999�. The fourth criterion
compared average monthly measured and simulated streamflow
for the calibration period on each of the 12 subwatersheds. The
fifth criterion compared simulated monthly and daily hydrographs
to observed values. At the daily time scale, particular attention
was given to the timing and magnitude of peak flows and the
shape of recession curves. The sixth criterion compared measured
versus simulated flow duration curves to determine how well the
model predicted the range in magnitude of daily flows throughout
the calibration or validation periods.

Results

Following autocalibration on each watershed, results of the
parameter search and calibrated streamflow output were
retrieved from files generated by the autocalibration tool. The
parasolout.out file listed detailed output for each optimization
loop and uncertainty outputs, sceparobj.out included parameter
values for all simulation runs and global optimization criterion,
bestpar.out listed the optimal parameter values that were cali-
brated, and the autocal.out files provided simulated values of
streamflow for the respective calibration points for each subwa-
tershed. As noted in simulation results, output variables obtained
from the respective autocal.out files correspond to those listed in
the output.rch file. Examination of parameter values listed in the
sceparobj.out file demonstrated that for each parameter, the entire
range in parameter values specified as initial default values was
sampled. This check ensured that a global optimum parameter
search had been conducted for each autocalibration performed.

Table 3 shows initial values that were input to the autocalibra-
tion tool in SWAT and the resultant values that were obtained
through calibration for each of the subwatersheds. As noted in
Table 3, values of the SCS runoff curve number CN2 and avail-
able soil water capacity SOL_AWC are expressed as a percent
change from the default values. As these two parameters were
calibrated for each HRU, the calibrated data set consists of a
multitude of values for these parameters for each watershed. For
brevity, a complete listing of these individual values of CN2 and
SOL_AWC is not reported in the study. For illustrative purposes,
however, default and calibrated values of SOL_AWC for each
soil type on the Little River Watershed are presented in Table 4.
Default and calibrated values of CN2 for the various land cover
types on the Tifton soil are also shown in Table 4.
The wide range in parameter values reported in Tables 3 and 4
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reflects both differences that exist within watersheds as well as
among watersheds. In some cases autocalibration of a given pa-
rameter resulted in the selection of the lower bound for one wa-
tershed and the upper bound for another. No attempt was made to
relate optimized values reported in the table to watershed charac-
teristics, although such an analysis could prove to be helpful in
identifying subtle hydrologic responses of the model to surface or
subsurface watershed features.

Average annual values of precipitation as well as measured
and simulated streamflow for the five watersheds are presented in
Table 5. Table 5 also lists PBIAS �Criterion 1�, NSE on a monthly
and daily basis �Criterion 2�, and the fraction of baseflow to total
flow for the respective calibration periods �Criterion 3�. Fig. 2
compares average monthly measured and simulated streamflow
for the calibration periods �Criterion 4�. Values reported in Fig. 2
represent 4–7 year averages of monthly streamflow, depending on
the length of the respective calibration period selected for a given
watershed. Figs. 3 and 4 illustrate the comparison of monthly and
daily hydrographs �Criterion 5�, and Fig. 5 illustrates the duration
of daily flow curves for four of the watersheds �Criterion 6�.

Mahantango Creek Experimental Watershed

SWAT’s performance on Mahantango FD-36 was among the best
of any of the subwatersheds simulated in the study, with NSE
values of 0.84 and 0.69 on a monthly and daily basis for the
calibration period, respectively. For most of the available period
of record, very good agreement was obtained between measured
and simulated daily flows. A PBIAS of 23.5% is primarily attrib-
uted to SWAT’s underestimation of the lower range in flows on
the subwatershed, as reflected by the comparison of measured
�0.50� versus simulated �0.28� fraction of baseflow to total
streamflow for the calibration period �Table 5�.

On a monthly basis, model performance on Mahantango
WE-38 was similar to that obtained on FD-36, as evidenced by
the comparison of average monthly measured and simulated
streamflow for the calibration period on the two watersheds �Fig.
2�. Fig. 3 also shows very good agreement between measured and
simulated monthly hydrographs at the monthly time scale. Even
though the model calibration on WE-38 yielded good agreement
between measured and simulated daily hydrograph peaks and
time to peaks, there was moderate underestimation of the reces-
sion side of the hydrograph for many events, as illustrated in Fig.
4 for the period from January 1, 1998 to June 30, 1998.

To assess SWAT’s performance under varying climatic
conditions, the available climatological and streamflow record
was divided into three periods: from 1975 to 1979 �“wet climatic
condition”�, from 1980 to 1988 �“dry climatic condition”�, and
from 1989 to 1993 �“average climatic condition”�. Simulation of
the daily hydrographs for the three validation periods on WE-38
generally followed the same trend as that of the calibration pe-
riod. A PBIAS of 15.8% was considered fair for the calibration
period, whereas values of 33.8, 43.6, and 33.1% were considered
unsatisfactory for the 1975–1979 �wet climatic condition�, 1980–
1988 �dry climatic condition�, and 1989–1993 �average climatic
condition� validation periods, respectively.

SWAT simulated a baseflow to total streamflow fraction of
0.31 for the calibration period for WE-38 compared to a measured
fraction of 0.56. These results are similar to those reported for
FD-36. Moderate underestimation of approximately 80% of the
simulated duration of daily flow curve for the calibration period
on WE-38 �Fig. 5� reflects the dominating effect of the sum of

squares of residuals optimization function �Eq. �1�� in minimizing

HYDROLOGIC ENGINEERING © ASCE / MARCH/APRIL 2007 / 179



k Walnut Gulch

Outlet Flume 9 Flume 2 Flume 1

10 8.29 −8.73 −10

0.391 0 0.404 0.165

45 49.9 50 −45.8

0.033 0.198 0.033 0.096

406.7 471 35.8 200

4,367 2,167 1,150 5,000

24 3 0 2

0.551 0.9 0.945 0.997

0.516 0.079 0.953 0.037

0.5 9.13 9.13 9.130

17.9 2.3 141.5 103.5

0.99 1 1 1

0.39 1 1 1

0.03 0.5 0.5 0.5

9.83 4.5 4.5 4.5

9.23 4.5 4.5 4.5

icted to 0.0 and 5.0, respectively, for Walnut Gulch,
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Table 3. Parameter Values Calibrated in SWAT Using the Autocalibration Tool

Initial default values Mahantango Little River Little Washita Reynolds Cree

Parameter
Lower
bound

Upper
bound FD-36 WE-38 F B 526 550 Tollgate Salmon

CN2 �%� −10 10 −10 −10 −9.92 −9.83 −9 10 7.28 9.85

ESCO 0 1 0 0 0.495 0.714 0.17 1 0.3 0.793

SOL_AWC �%� −50 50 50 50 45.3 44.1 3.8 −38.8 −10.3 35.9

GW_REVAP 0.02 0.2 0.02 0.02 0.157 0.044 0.026 0.06 0.176 0.081

REVAPMN 0 500 500 11.7 390.1 128.4 124.2 500 500 199.5

GWQMN 0 5000 0 0 15.8 0 29.4 3,364 491 2,887

GW_DELAY 0 500 3 5 2 2 106 102 16 5

ALPHA_BF 0 1 0.864 0.911 0.475 0.458 0.64 0.72 0.288 0.906

RCHRG_DP 0 1 0.582 0 0.043 0.959 0.065 0.916 0.859 0.108

SURLAG 0.50 10 0.50 0.5 0.5 0.5 0.57 0.57 0.5 0.5

CH_K2 0 150 90.9 0 149.8 75.3 10.5 103 6.7 14.1

TIMP 0.01 1 0.01 0.01 1 1 1 1 0.99 0.99

SFTMP 0 5 0 0 1 1 1 1 0.39 0.39

SMTMP 0 5 0.51 0.51 0.5 0.5 0.5 0.5 0.03 0.03

SMFMX 0 10 0 0 4.5 4.5 4.5 4.5 9.83 9.83

SMFMN 0 10 7.39 7.39 4.5 4.5 4.5 4.5 9.23 9.23

Note: CN and SOL_AWC parameter values expressed as percent change from default values; GW_DELAY initial lower and upper bounds restr
Mahantango Creek, and Little River; and ALPHA_BF initial lower and upper bounds restricted to 0.9 and 1.0, respectively, for Walnut Gulch.



cal�calibration period; and val�validation period.

JOURNAL OF
differences between measured and simulated peak flows at the
expense of the majority of the flows in the remainder of the data
set. Optimization in this manner therefore contributed to the
model’s bias in underestimating streamflows for each of the
Mahantango data sets.

Little River Experimental Watershed

Of the five ARS experimental watersheds, SWAT performed best
on Little River, based strictly on the PBIAS and NSE error sta-
tistics. For all of the calibration and validation data sets on the
two subwatersheds, NSE values were considered good at the
monthly time scale and adequate at the daily time scale �Table 5�.
PBIAS was considered very good for the calibration and valida-
tion data sets on Subwatershed F �4 and −6.3%�, good for the
calibration data set �−12.2% �, and fair for the valibration data set
�−19% � on Subwatershed B. Visual inspection of the average
monthly streamflow, monthly and daily hydrographs, and duration
of daily flow curves, however, provides a better understanding of
model performance than that provided solely by the two error

Streamflow Percent Bias �PBIAS� and Monthly and Daily Coefficient of

NSE
Fraction of baseflow

to total flow

ured
flow
�

Simulated
streamflow

�mm�
PBIAS

�%� Monthly Daily Meas Sim

300 23.5 0.84 0.69 0.50 0.28

304 15.8 0.88 0.46 0.56 0.31

453 33.8 0.61 0.54

267 43.6 0.46 0.35

373 33.1 0.75 0.43

298 4.0 0.83 0.64 0.55 0.67

398 −6.3 0.88 0.66

304 −12.2 0.90 0.71 0.52 0.66

414 −19.0 0.89 0.68

148 2.9 0.68 0.54 0.70 0.84

118 −14.9 0.60 0.56

98 16.9 0.76 0.63 0.66 0.59

47 −61.2 −0.36 0.13

95 −46.5 0.29 0.20

143 −47.6 −0.11 0.29

208 26.5 0.64 0.53 0.76 0.73

190 30 0.71 0.47

199 20.2 0.73 0.62

76 9.4 0.52 0.51 0.67 0.62

71 8.2 0.40 0.08

98 −35.3 0.21 −0.17

94 −4.8 0.79 0.73 0.70 0.72

84 2.7 0.74 0.50

91 −23.5 0.63 0.48

.3 11 −18.7 0.86 0.76 0.05 0.22

.7 13 −94.6 −2.29 −1.81

.9 4.4 −14.0 0.48 0.30 0.07 0.39

.2 7.1 −121.1 −0.62 −1.02

.1 6.0 −91.7 0.59 0.54 0.06 0.40

.5 6.3 −155.6 −2.50 −1.77
Table 4. Calibrated Values of SOL_AWC for Each Soil Type and CN2
for Various Land Cover Types on the Tifton Soil for the Little River
Watershed

Soil
type

Default
value of

SOL_AWC

Calibrated
value of

SOL_AWC

Land cover
type on

Tifton soil

Default
value of

CN2

Calibrated
value of

CN2

Tifton 217 313 Pasture 69 62.2

Osier 111 159 Forested
wetlands

66 59.5

Pelham 186 271 Deciduous
forest

66 59.5

Troup 143 211 Evergreen
forest

55 49.6

Mixed
forest

60 54.1

Agricultural
crops

77 69.4
Table 5. Average Annual Measured Precipitation and Streamflow and Simulated
Efficiency �NSE�

Run
typea

Watershed
name Subwatershed

Time
series

Measured
precipitation

�mm�

Meas
stream

�mm

cal Mahantango Cr. FD-36 1997–2000 1,021 392

cal Mahantango Cr. WE-38 1997–2000 1,021 361

val Mahantango Cr. WE-38 1975–1979 1,203 685

val Mahantango Cr. WE-38 1980–1988 971 473

val Mahantango Cr. WE-38 1989–1993 1,097 557

cal Little R. F 1997–2002 1,124 310

val Little R. F 1972–1996 1,260 374

cal Little R. B 1997–2002 997 271

val Little R. B 1972–1996 1,178 348

cat Little Washita R. 526 1993–1999 852 153

val Little Washita R. 526 1980–1985 833 103

cal Little Washita R. 550 1993–1999 832 118

val Little Washita R. 522 1964–1968 697 29

val Little Washita R. 522 1975–1979 765 65

val Little Washita R. 522 1981–1985 888 97

cal Reynolds Cr. Tolgate 1968–1972 676 283

val Reynolds Cr. Tolgate 1973–1975 689 272

val Reynolds Cr. Tolgate 1976–1990 773 250

cal Reynolds Cr. Salmon 1968–1972 464 84

val Reynolds Cr. Salmon 1973–1975 411 77

val Reynolds Cr. Salmon 1976–1990 471 72

cal Reynolds Cr. Outlet 1968–1972 485 90

val Reynolds Cr. Outlet 1973–1975 434 86

val Reynolds Cr. Outlet 1976–1990 423 74

cal Walnut Gl. Flume 9 1968–1972 329 9

val Walnut Gl. Flume 9 1973–1982 312 6

cal Walnut Gl. Flume 2 1968–1972 309 3

val Walnut Gl. Flume 2 1973–1982 345 3

cal Walnut Gl. Flume 1 1968–1972 309 3

val Walnut Gl. Flume 1 1973–1982 299 2
a
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Fig. 2. Average monthly measured and simulated streamflow for the calibration periods on each of the subwatersheds
Fig. 3. Monthly measured and simulated hydrographs for selected subwatersheds
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statistics. Examination of Fig. 2 reveals that for both subwater-
sheds, SWAT underestimated high flows during the winter months
and overestimated low flows during the summer months. This is
the same kind of response that a precursor version of SWAT �the
SWRRB model� exhibited in a study conducted by Arnold and
Williams �1987� on Subwatershed B.

A plot of the calibration period on Subwatershed B at the
monthly time scale shows significant overestimation of the base-
flow portion of streamflow during periods of the record when
negligible flow was reported �from September to November 1999;
from June to August 2000; from August to November 2001; from
June to September 2002� �Fig. 3�. As shown in Fig. 4 for the
period from October 15, 1997 to April 15, 1998 on Subwatershed

Fig. 4. Daily measured and simulate
B, this overestimation is further substantiated at the daily time
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scale, with overestimation of baseflow that occurs between rain-
storms on the watershed. Similar results shown in the figure were
obtained throughout the calibration and validation periods on the
two subwatersheds. Large discrepancies in the lower flow portion
of the duration of daily flow curves are also evident in Fig. 5 for
the calibration period on Subwatershed B. Results of the auto-
mated approach to calibration on Little River suggest one of two
possibilities: either that �1� autocalibration may not be able to
determine a suitable set of parameters to account for subsurface
flow contributions to streamflow; or �2� a model refinement is
needed in SWAT to adequately account for the wide variations in
seasonal streamflow response that occurred on the watershed dur-
ing the study period. Additional research is therefore needed to

rographs for selected subwatersheds
d hyd
address this discrepancy between measured and simulated results.
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Little Washita River Experimental Watershed

Because of a change in stream gauge location on the Little
Washita, SWAT was calibrated on Subwatersheds 526 and 550,
and then validated on Subwatersheds 526 and 522. The model
performed well based on the NSE error statistic determined for
the calibration period on Little Washita Subwatersheds 526 and
550. Results were considered good to adequate, with monthly
values of NSE ranging from 0.68 to 0.76, and daily values rang-
ing from 0.54 to 0.63 for Subwatersheds 526 and 550, respec-
tively. Inconsistencies in model performance were noted in the
comparison of average monthly streamflow for the calibration
periods on the two subwatersheds, in that the model tended to
underestimate flows during the winter and spring months and
overestimate flows during the summer and fall �Fig. 2�. However,
SWAT accurately estimated the range in magnitude of flows as
illustrated in Fig. 5 for the calibration period on Subwatershed
550, with very close agreement for the upper range of flows and
some underestimation of the baseflow portion of the flows. The
comparison of duration of daily flow curves obtained on Subwa-
tershed 526 was similar to that reported for Subwatershed 550. A
comparison of measured and simulated baseflow to total flow
shows adequate agreement for both Subwatersheds 526 and 550.
For Subwatershed 526, measured and simulated fractions were
0.70 and 0.84, respectively �Table 5�. For Subwatershed 550, the
respective measured and simulated fractions were 0.66 and 0.59.

Although simulation results obtained for the validation period
on Subwatershed 526 were nearly as good as those obtained for

Fig. 5. Measured and simulated duration of daily flo
the calibration period �Table 5�, test results were considered un-

184 / JOURNAL OF HYDROLOGIC ENGINEERING © ASCE / MARCH/APRI
acceptable based on values of PBIAS and NSE for each of the
three validation periods on Subwatershed 522. A comparison of
measured and simulated monthly streamflow for the validation
period from 1975 to 1979 �average climatic condition� shows that
the model tended to overestimate streamflow during periods of
seasonally high rainfall �Fig. 3�. At the daily time scale, a com-
parison of measured and simulated streamflow shows that SWAT
tended to overestimate both the storm peaks as well as recessions
following precipitation �Fig. 4�. Results obtained from the other
two validation periods displayed similar behavior. For the largest
storm on record that occurred from October 19 to 20, 1983,
SWAT’s simulation of the storm peak was only 14% too high, but
the overestimation of streamflow amount was nearly 110%. For
each of the validation periods on Subwatershed 522, a
comparison of duration of daily flow curves showed that SWAT
underestimated lower flows and overestimated higher flows. This
response follows the same pattern reported by Van Liew and
Garbrecht �2003� for Subwatershed 522. It is not likely that dif-
ferences in hydrologic response that were noted between the cali-
brated period on Subwatershed 550 and the validated period on
Subwatershed 522 were due to the presence of the flood retarding
structures on the watershed, as these spatial and temporal impacts
were included in the project delineation of the Little Washita.
Differences in hydrologic response were more likely attributed to
subtle differences in land cover, channel, soil, and subsurface
aquifer characteristics between the two subwatersheds.

es for calibration periods on selected subwatersheds
w curv
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Reynolds Creek Experimental Watershed

The combination of statistical and graphical criteria used in this
study suggest that SWAT’s overall performance on the mountain-
ous rangeland Reynolds Creek Watershed was considered best
among the five watersheds. Based on the PBIAS error statistic,
results were considered very good for the 1968 to 1972 calibra-
tion and 1973 to 1975 validation periods on the Salmon and Out-
let Subwatersheds, fair for the 1976 to 1990 validation periods on
the Tolgate and Outlet Subwatersheds, and unsatisfactory for all
other time series that were tested. Based on daily NSE values,
model performance was considered adequate for all of the time
series with the exception of the two validation periods on Salmon
Creek. Comparison of average monthly measured and simulated
streamflow for the calibration period on the three subwatersheds
shows reasonably consistent results �Fig. 2�. In general, model
performance was not markedly different between the 1973 to
1975 and the 1976 to 1990 validation data sets, where the latter
consisted of a lower precipitation gauge density than the former.

For the most part, Fig. 3 shows good agreement between
monthly measured and simulated hydrographs for the calibration
period from 1968 to 1972 on the Outlet Subwatershed. At the
daily time scale, Fig. 4 indicates that SWAT performed well in
estimating streamflow resulting from rainfall on frozen soils
and/or snow covered conditions for the storm of January 17,
1971, but tended to overestimate flows resulting from storms that
occurred on March 12 and 23, 1971 for the Tolgate and Outlet
Subwatersheds. Fig. 4 also suggests that snowmelt processes oc-
curring during April, May, and June of 1971 on the watershed
were reasonably well represented by the model. As illustrated in
Fig. 5, agreement between measured and simulated duration of
daily flow curves for the calibration period on the Reynolds Creek
Subwatershed Outlet was the best that was obtained among the
five ARS watersheds. A comparison of the measured and simu-
lated fraction of baseflow to total flow for each of the three Rey-
nolds Creek Subwatersheds also showed the best agreement
among the five watersheds �Table 5�. For the calibration periods
on the Tolgate, Salmon, and Outlet Subwatersheds, the measured
fractions of baseflow to total flow were 0.76, 0.67, and 0.70,
respectively. These compare very well to simulated fractions of
0.73, 0.62, and 0.72. Based on the statistical and graphical com-
parisons for Reynolds Creek, model simulations conducted in this
study suggest that SWAT shows promising results for estimating
streamflow on mountainous watersheds that are governed by
snowmelt processes.

Walnut Gulch Experimental Watershed

SWAT’s performance on the desert rangeland Walnut Gulch Ex-
perimental Watershed was considered only marginal compared to
results obtained on the other four ARS watersheds. To improve
estimations of the subsurface portion of the streamflow response,
significant restrictions were placed on the initial lower and upper
bounds for calibrating groundwater delay and the alpha baseflow
factor in the model �Table 3�. Based on average monthly compari-
sons for each of the three subwatersheds �Fig. 2�, test results
showed that SWAT simulated streamflow responses to summer
rainstorms reasonably well during this time of year. For the
nonsummer months of the year, however, SWAT consistently
overestimated baseflow contributions to streamflow. This type of
hydrologic response is also substantiated by the comparison of the
measured and simulated fraction of baseflow to total flow for each

of the three subwatersheds. For Flumes 9, 2, and 1, the measured
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fractions of baseflow to total flow were only 0.05, 0.07, and 0.06,
respectively. The simulated fractions for these three subwater-
sheds were 0.22, 0.39, and 0.40, respectively �Table 5�.

Based on monthly and daily NSE values, simulation results
were considered good for only the calibration period on Subwa-
tershed Flume 9. Although not readily apparent in Fig. 4, SWAT
tended to both over- and underestimate short duration, ephemeral
flows resulting from high intensity rainstorms on Flume 9. Com-
parisons of daily hydrographs for other subwatersheds and time
series on Walnut Gulch generally revealed that the model had
trouble reproducing these very short-term events. These discrep-
ancies were likely due to a combination of factors, such as the
need for a shorter computational time step than one day and the
fact that the model was unable to accurately account for anteced-
ent soil moisture conditions immediately prior to events on the
watershed, which in turn affected the partitioning of precipitation
and runoff with the SCS curve number method.

Discussion

Assessing Model Strengths and Weaknesses

A significant advantage of the newly developed autocalibration
tool in AVSWAT 2003 that became apparent in this study was that
very little manual labor was required to prepare the model’s input
files that were necessary for calibrating the respective subwater-
sheds. Generally, only a few hours were required to manually
prepare the input files to set up an autocalibration run; completion
of the automated parameter search in most cases required at least
one week of computational time. The primary disadvantage that
was realized in using the autocalibration tool was in some cases,
this approach did not lead to acceptable agreement between the
measured and simulated water balance for a given calibration
period, nor was it possible to represent the range in magnitude of
daily flows. Use of the sum of squares of residuals optimization
scheme �Eq. �1�� generally resulted in good matches between
daily peak flows at the expense of lower flows in a given time
series used for calibration. This was not surprising, as the sum of
squares �SSQ� approach is biased toward the use of the NSE
statistic. For hydrologic studies that involve low flow simulations,
other optimization schemes may need to be employed to provide
a better match over the range in magnitude of flows. The total
mass balance controller �TMC� and the sum of squares of the
difference of the measured and simulated variables after ranking
�SSQR� represent alternative objective functions that can be mini-
mized in the optimization scheme developed for AVSWAT 2003
�Van Griensven and Bauwens 2003�. The former objective func-
tion minimizes the error on the model bias by calculating the
deviation of the simulated mass from the measured bias. The
latter function represents the fitting of the frequency distributions
of the observed and simulated series. Previous work by Van Liew
et al. �2005� showed that the SSQR objective function gave some-
what better results in matching measured and simulated duration
of daily flow curves for the Little Washita River, but no appre-
ciable improvement for the Little River. Nevertheless, further
tests are warranted to investigate the impact of using the TMC,
SSQR, or another objective function in SWAT to evaluate model
performance under a range of climatic, soils, topographic, and
land use conditions, especially where low flow simulations are
critical for water quantity or water quality assessments.

The SSQ optimization scheme employed in this study was

strictly a quantitative approach that involved minimizing the dif-
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ference between measured and simulated values in the time series
selected for calibration on a given subwatershed. Had a manual
approach been utilized for model calibration, it could have in-
volved using both quantitative and qualitative comparisons that
consist of mass balance computations and graphical comparisons
of hydrographs or flow frequency curves. A manual approach to
calibration could have therefore been superior to the automated
approach in providing a better match for the duration of daily
flow curves at the expense of matching peak flows. Such a
tradeoff may be advantageous in achieving improved model per-
formance for watersheds like Mahantango Creek or Little River.
Hence, the governing approach taken for watershed calibration
depends on the particular needs that must be addressed for the
modeling application �Van Liew et al. 2005�.

Results obtained from this investigation reflect SWAT’s
strengths and weaknesses when applying the model to a range in
climatic, physiographic, soil, and topographic conditions. Based
on the error statistics, it would appear that the model performed
reasonably well in simulating streamflow for both the calibration
and validation periods on both subwatersheds of Little River. Ex-
amination of the duration of daily flow curves, however, revealed
that the range in magnitude was not well represented. Moreover,
inconsistencies in model performance as indicated by plots of the
average monthly measured and simulated streamflow indicated
that surface and subsurface contributions to total flow were not
being properly accounted for on Little River. Simplifications that
exist in the model that describe subsurface flow and channel
transmission losses are likely reasons for discrepancies that exist
between measured and simulated output �Van Liew and Garbrecht
2003�. For the most part, SWAT performed well in simulating
streamflow on the three subwatersheds of Reynolds Creek, based
on not only the quantitative error statistics but the matches be-
tween measured and simulated hydrographs and duration of daily
flow curves as well. This suggests that algorithms governing snow
accumulation and snowmelt in the model provide reasonable
computations for describing these processes.

SWAT’s marginal performance on Walnut Gulch may in part
be due to at least two reasons. First of all, a daily time step is
likely too long for accurate simulations, due to rapid infiltration
and runoff response that occurs on the watershed. Subdaily time
step is an option available in SWAT, but it was not utilized for
model simulations in this study. Second, a more sophisticated
approach for computing ET could yield improved streamflow re-
sponse, since ET is the dominant hydrologic process on this wa-
tershed. However, cursory testing of ET estimation on Walnut
Gulch with the Hargreaves, Priestly Taylor, and Penman Monteith
methods revealed that Penman Monteith provided only slight im-
provements in streamflow simulation. Although uncertainties in
the measurement of streamflow on the Walnut Gulch Subwater-
sheds may be a possible cause for discrepancies between mea-
sured and simulated streamflow, this possibility is not likely in
view of the quality of monitoring that has been in place there for
more than four decades. Rating relationships for the Walnut
Gulch supercritical flume that has been in use on the larger chan-
nels in the watershed are in excellent agreement with model tests
conducted at Colorado State University in Ft. Collins, Colo., and
the ARS Stillwater Hydraulic Laboratory in Stillwater, Okla.
�Smith et al. 1982�.

Selection of Initial Default Parameter Values

As noted in Table 3, there were several cases in which the optimal

value of a parameter calibrated for a particular subwatershed cor-
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responded to either the lower or upper bound initial default value
for that parameter. Although the entire parameter space was
sampled during a given autocalibration based on output obtained
from the sceparobj.out file, these results suggested that model
performance could be improved if one of the default boundaries
was widened. To test this hypothesis, the range in initial default
values for the curve number CN2 and the surface runoff lag time
SURLAG was widened to ±50% and 0.0–10, respectively. These
changes led to improved model performance on each of the five
watersheds.

For Mahantango Creek, Little Washita, and Reynolds Creek,
recalibrating the model with unrestricted ranges in CN2 and
SURLAG resulted in marked improvement for nearly all of the
validation periods on these three watersheds, with good or satis-
factory results based on the PBIAS and NSE error statistics. How-
ever, percent departures in CN2 of −36% on Little Washita 526 to
+34% on Reynolds Salmon, and a value of SURLAG as low as
0.14 on Mahantango FD-36 and WE-38 are unrealistic, and likely
reflect model deficiencies related to HRU runoff partitioning and
subbasin surface water storage. Although selection of a lower
limit for SURLAG is somewhat arbitrary, we believe parameter
values less than 0.5 do not properly account for the release of
surface runoff from a subbasin to the main channel. In the case of
parameters in SWAT such as groundwater delay and the alpha
baseflow factor that govern groundwater response in the model,
restricting the range in initial default values for these parameters
may in some cases actually improve model performance. An un-
derstanding of subsurface aquifer properties and groundwater
movement on a particular watershed is therefore tantamount to
the selection of appropriate values that reflect watershed
conditions.

Options for Improving Model Performance

Besides the possibility of adjusting the lower and upper initial
bounds for parameters that are calibrated in SWAT, other options
are available that can be implemented to enhance model perfor-
mance. Fontaine et al. �2001� report additional options that they
exercised to improve SWAT’s performance using an automated
approach to calibration for simulations on a mountainous water-
shed in South Dakota. These options included consultation with
the model developer, the collection of additional field data, and a
sensitivity analysis. Results of this study suggest that site specific
climatological data including wind speed, solar radiation, and
relative humidity data could provide improved estimates of ET
for each of the watersheds, especially Walnut Gulch. The collec-
tion and analysis of soil moisture and/or groundwater flow data
could help to provide better initial estimates of the parameters
that govern the movement of water in these respective zones.
Although not performed in this study, a sensitivity analysis could
also provide another avenue for achieving improvements in
model performance. Such an analysis would entail a ranking of
the 16 parameters used in this study in addition to other param-
eters that govern streamflow response in the model, such as the
Manning’s roughness coefficient for the main channel �CH_N�,
the temperature lapse rate �TLAPS�, and the plant uptake com-
pensation factor �EPCO�.

Overall Evaluation of Model Performance

To evaluate SWAT’s performance for a range in climatic condi-
tions, monthly and daily NSE values were plotted against average

annual precipitation for each subwatershed time series. These
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plots are shown in Figs. 6 and 7 for monthly and daily NSE
values, respectively. To facilitate presentation of the data, NSE
values less than zero are plotted as zero values. Subdivisions are
also delineated in the figure, according to ranges in NSE values
��0.75—good; 0.36–0.75—satisfactory; �0.36—unsatisfactory�
and precipitation amounts ��400 mm, 401–700 mm,
701–1000 mm, and �1,000 mm�. As expected, Figs. 6 and 7
shows that the calibration data sets gave consistently higher NSE
values than those that were obtained for the validation data sets.
More importantly, results show that as average annual precipita-
tion increases, scatter in the values of both monthly and daily
NSE decreases and NSE values tend to increase. Based on
monthly NSE values, 86, 25, 11, and 17% of the data sets are
considered good that correspond to average annual precipitation
amounts of �1000, 701–1000, 401–700, and �400 mm, respec-
tively. Based on daily NSE values, 100, 63, 56, and 17% of the
data sets are considered adequate that correspond to average an-
nual precipitation amounts of �1,000, 701–1000, 401–700, and
�400 mm, respectively. Results of this analysis suggest that
SWAT will generally perform better on watersheds in more humid
climates than in desert or semidesert climates where evapotrans-
piration is the dominant hydrologic process.

Fig. 6. Monthly NSE model performance as a function of average
annual precipitation

Fig. 7. Daily NSE model performance as a function of average
annual precipitation
JOURNAL OF
To evaluate SWAT’s overall performance in simulating
average annual streamflow based on the criteria established for
autocalibration in this study, a linear regression analysis was em-
ployed to compare measured versus simulated values as reported
in mm �Table 5�. Results of the statistical analysis showed that for
the calibration data sets, the coefficient of determination �r2� was
0.95, with values of the slope of the regression line and y inter-
cept equal to 0.84 and 9.2, respectively �Fig. 8�. For the validation
data sets, the coefficient of determination �r2� was 0.87, with
slope and y intercept values equal to 0.66 and 39.0, respectively.
The Student’s T-test was used to evaluate the hypotheses that the
slope of the regression line equals unity and the intercept equals
zero at the 95% confidence level. Test results showed that the
slope was not significantly different from unity, nor was the in-
tercept significantly different from zero for either of the two data
sets. These results demonstrate that for the most part, SWAT ex-
hibits an element of robustness in simulating average annual
streamflow amounts under a range in climatic and physiographic
conditions.

Conclusions and Recommendations

In this study an investigation was conducted to evaluate the per-
formance of the 2003 version of AVSWAT to better understand
the model’s strengths and weaknesses in simulating streamflow
for anticipated applications related to the Conservation Effects
Assessment Project. Model performance was tested on five
USDA ARS experimental watersheds representing a wide range
in climatic, physiographic, and land use conditions that exist in
the United States. A long record of multigauge climatic and
streamflow data on each of the watersheds was used for model
calibration and validation. Eleven parameters that govern surface
and subsurface response in the model were calibrated on the three
southern watersheds, and an additional five parameters that gov-
ern the accumulation of snow, snowmelt runoff, and the impact of
frozen soils on runoff were calibrated on the two northern water-
sheds. The sum of squares of residuals method that matches a
simulated time series to a measured series was used as the opti-
mization scheme for model calibrations.

The newly developed autocalibration tool in AVSWAT �Van
Griensven and Bauwens 2003� was used to calibrate streamflow

Fig. 8. Comparison of average annual measured versus simulated
streamflow for the calibration and validation data sets on the five
watersheds
response in the model. Test results demonstrate the uniqueness of
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each calibrated parameter set and corresponding hydrologic re-
sponse. Simulation results reflect the fact that even though model
performance based on statistics such as percent bias and the co-
efficient of efficiency may be considered satisfactory, plots of
average monthly hydrographs or duration of daily flow curves
may not necessarily compare well for a particular watershed.
Findings of this investigation therefore substantiate the impor-
tance of using both quantitative and qualitative criteria in evalu-
ating model performance.

This study accentuates the need for exercising caution in the
use of an automated approach to model calibration. Practitioners
who employ the autocalibration tool in SWAT must exercise good
engineering judgment in selecting appropriate initial lower and
upper bounds for certain model parameters such as the curve
number, surface runoff lag time, and groundwater delay factor so
that distortions in model processes are minimized. Available field
observations should therefore be employed whenever possible to
define the range of initial default values for parameters calibrated
in the model.

Results of this investigation also suggest that the sum of
squares of residuals optimization scheme selected for autocalibra-
tion tends to work better on some watersheds �Little Washita and
Reynolds Creek� than on others �Little River and Mahantango
Creek�. It is therefore recommended for investigations such as the
Conservation Effects Assessment Project, an initial phase of
model calibration using an automated approach should consist of
comparing results from other optimization schemes such as the
sum of squares of residuals after ranking or the total mass balance
controller. Such a selection process should provide valuable in-
sight in identifying important aspects of watershed response as it
relates to solving specific problems in water quality, water avail-
ability, low flow investigations, or climate change.

As suggested in previous investigations by Gupta et al. �1999�
and Van Liew et al. �2005�, employing both automated and
manual approaches to calibration holds promise for achieving op-
timal model performance. Although it was not the purpose of this
study to compare or combine these two calibration approaches,
such a strategy appears to have strong merit for overcoming some
of the shortcomings in model simulation discussed in this paper.
Combining manual and automated approaches also appears to be
particularly useful in tailoring a model’s simulation capabilities to
specific project needs. To implement such a strategy, initial
calibration runs could be conducted manually to verify that ap-
propriate surface, lateral, and subsurface contributions to total
streamflow and values of plant biomass are being simulated for a
particular watershed. Next, the autocalibration tool could be em-
ployed to determine values of the designated parameter set and
associated uncertainties, given a selected initial range in model
parameters and desired optimization functions. Finally, manual
adjustments to the optimized parameter values could be con-
ducted to achieve improvements in mass balance or the represen-
tation of the range in magnitude of the output variables.

Results of this investigation suggest that for the most part,
SWAT exhibits an element of robustness in simulating streamflow
responses for a range in topographic, soils, and land use condi-
tions. Differences in model performance, however, are noticeable
on a climatic basis in that, except when explicitly calibrated,
SWAT will generally perform better on watersheds in more humid
climates than in desert or semidesert climates. Findings from this
study therefore suggest that it may be better suited for CEAP
investigations in wetter regions of the eastern part of the United
States that are predominantly cultivated than the dryer regions of

the West that are more characteristically rangeland. As future
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CEAP assessments will entail procedures to estimate uncertainty
in model predictions, studies are currently underway that employ
SWAT’s autocalibration tool to generate output for describing pa-
rameter and model uncertainties. Results of these analyses will be
especially valuable in CEAP investigations that involve
quantifying probability distribution functions related to down-
stream hydrologic response as a result of conservation practice
implementation.
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