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Abstract

Accurate assessment of phytoplankton chlorophyll a (chl a) concentration by remote sensing is challenging in turbid hyper-
eutrophic waters. This paper assessed methods to resolve this problem. A hand-held spectroradiometer was used to measure
subsurface spectral reflectance (R) in the visible and near infrared range of the spectrum. Water samples were collected concurrently
and contained variable chlorophyll a concentration (chl a from 107 to more than 3000 mg/m3) and turbidity (from 11 to 423 NTU)
levels. The conceptual three-band model [R−1(λ1)−R−1(λ2)]×R(λ3) and its special case, the two-band model R(λ3)/R(λ1), were
spectrally tuned in accord with optical properties of the media to optimize spectral bands (λ1, λ2 and λ3) for accurate chlorophyll a
estimation. Strong linear relationships were established between analytically measured chl a and both the three-band [R−1(650)−
R−1(710)]×R(740) and the reflectance ratio model R(714)/R(650). The three-band model accounted for 7% more variation of chl a
concentration than the ratio model (78 vs. 71%). Assessment of the model accuracy in dense algal blooms is hampered by the spatial
and temporal inhomogeneity of algal distributions—in these waters, non-random algal distributions accounted for more than 20%
spatial and up to 8% temporal variation in chlorophyll a concentration. The findings underlined the rationale behind the conceptual
model and demonstrated the robustness of the algorithm for chl a retrieval in very turbid, hyper-eutrophic waters.
Published by Elsevier B.V.
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1. Introduction

Rapid assessment of water quality will become more
critical as competing needs for water intensify. With
more than 50% of the world's population located along
coastal watersheds and large lakes (Vitousek et al.,
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1997) competing water uses, including potable water
requirements, irrigation needs for agriculture and
attempts to minimize estuarine water flow reductions,
can be difficult to resolve. Uncontrolled water use
coupled with drought can have dramatic negative
impacts on ecosystem function such as occurred, for
example, in the Murray-Darling Rivers, Australia (e.g.,
Australian Government Department of the Environment
and Heritage website http://www.deh.gov.au/water/
rivers/nrhp/), and illustrate the need for rapid, accurate
assessment of aquatic ecosystem health.
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One effective method for synoptic monitoring of
ecosystem health is remote sensing. Even a few images
are useful as aids in the design or improvement of point
sampling programs, often through highlighting the best
locations and timing for sampling. Remote sensing
studies typically involve the mapping of concentrations
of a given variable in water bodies using radiance or
reflectance collected by a sensor placed above the water
surface. Estimation of concentration usually requires the
development of empirical or semi-empirical models
correlating upwelling radiance (or reflectance) measured
remotely, and so-called “ground-truth” data (i.e.,
concentration of constituents of interest). Historically
remote sensing of chlorophyll a (chl a) concentration
was confined to open ocean case 1 waters (Morel and
Prieur, 1977) using the blue and the green spectral
regions (e.g., Gordon and Morel, 1983). Attempts to
apply case 1-derived algorithms to case 2 productive
waters (Morel and Prieur, 1977), containing widely
variable and poorly correlated chl a, suspended solids
and dissolved matter concentrations resulted in poor
predictive ability (e.g., GKSS, 1986; Dall'Olmo et al.,
2005). Absorption in the blue spectral region by
dissolved organic matter, tripton and phytoplankton
pigments is high, requiring the use of other spectral
regions for chl a estimation.

In several cases, fluorescence line height has been
used successfully for the remote detection of chl a in
case 2 waters (Neville and Gower, 1977; Gower, 1980;
Doerffer, 1981; GKSS, 1986; Fischer and Kronfeld,
1990; Gower et al., 1999). However, quantitative
accuracy is limited by the varying fluorescence
efficiency of different phytoplankton populations and
by changes in water absorption that reduce the available
light for fluorescence. While this technique seems to be
useful for chl a assessment, generalizations and
comparisons based on previous studies are very difficult
to make, especially for productive turbid waters with
highly variable optical properties.

The spectral features of productive waters have been
studied for a wide range of chl a concentrations from 3 to
more than 180 mg/m3 (Gitelson et al., 1986, 1993a,b,
1994a, 2000; Millie et al., 1995; Gitelson and Kondratyev,
1991; Gitelson, 1992; Dekker, 1993; Quibell, 1992;
Matthews and Boxall, 1994; Gons, 1999, 2000; Zimba
and Thomson, 2002). The main spectral features of
reflectance found in such waters were a trough at 670 nm
and a peak around 700 nm. This peak is in the spectral
range of minimal combined absorption of algae, inorganic
suspended matter, dissolved organic matter and water, and
is shifted toward longerwavelengths as chl a concentration
increases (Gitelson et al., 1986; Vos et al., 1986; Gitelson,
1992, 1993; Matthews and Boxall, 1994). The magnitude
of this peak was found to be related to chl a concentration,
but was also affected by other factors including backscat-
tering and absorption by other constituents.

To quantify chl a, a variety of different algorithms
have been developed; all are based on the properties of
the peak near 700 nm. These include the ratio of
reflectance of the peak (Rmax) to the reflectance at
670 nm (R670), Rmax/R670 or the ratio R705/R670 (Gitelson
et al., 1986, 1993a,b; Gitelson and Kondratyev, 1991;
Dekker, 1993) and the position of this peak (Gitelson,
1992). Gons (1999) used the reflectance ratio at 704 and
672 nm and absorption and backscattering coefficients
at these wavelengths to assess chl a concentrations
ranging from 3 to 185 mg/m3. Alternatively, good
correlations have been found between chl a and band
ratios consisting of a band at 675 nm in the denominator
and one beyond 725 nm in the numerator (Hoge et al.,
1987; Yacobi et al., 1995; Pierson and Sträombäack,
2000; Ruddick et al., 2001; Pulliainen et al., 2001; Oki
and Yasuoka, 2002; Dall'Olmo and Gitelson, 2005).

These methods are based on the assumption that optical
parameters such as the chl a specific absorption coefficient,
achl a
* (λ), and the chl a fluorescence quantum yield, η,
remain constant. In reality, these parameters depend on the
physiological state and structure of the phytoplankton
community and can vary widely. Bricaud et al. (1995)
showed that achl a* (675) can vary up to fourfold for chl a
ranging between 0.02 and 25 mg m−3. Fluorescence
quantum yield is affected by phytoplankton taxonomic
composition, illumination conditions, light adaptation,
nutritional status and temperature, and can vary by eight-
fold (e.g., GKSS, 1986). Therefore, the assumptions of
constant achl a

* and η can be a significant source of
uncertainty in models for remote chl a estimation.

Recently, a conceptual model was developed and
used for estimating pigment concentration of terrestrial
vegetation (Gitelson et al., 2003a; Gitelson et al., 2005):

Pigment concentration∝½R�1ðk1Þ � R�1ðk2Þ�
� Rðk3Þ ð1Þ

Where R(λ1), R(λ2) and R(λ3) are reflectances at
wavelengths λ1, λ2 and λ3, respectively. λ1 is a spectral
region such that R(λ1) is maximally sensitive to the
absorption by the pigment of interest, although it is still
affected by the absorption of other pigments and
scattering by all particular matters. λ2 is a spectral region
such that R(λ2) is minimally sensitive to the absorption
by the pigment of interest, andmaximally sensitive to the
absorption by other constituents. It was assumed that the
absorption by other constituents at λ2 was close to that at
λ1. Thus, the difference [R

− 1(λ1)−R− 1(λ2)] is related to
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Fig. 1. Chlorophyll a concentration vs. turbidity in sampled ponds. Determination coefficient for linear relationship (r2)b0.005. Chlorophyll a and
turbidity are practically independent, indicating these ponds belong to case 2 waters.
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the concentration of a pigment of interest. However, it
was still affected by the variability in scattering by the
medium (Gitelson et al., 2003a; Dall'Olmo and Gitelson,
2005). λ3 is a spectral region where reflectance is
minimally affected by the absorption of pigments and is
therefore used to account for the variability in scattering
between samples.

This conceptual model has been applied for chl a
assessment in turbid productivewaters; withmodel tuning
in accordance with optical properties of the medium, the
optimal locations of spectral bands were found
(Dall'Olmo et al., 2003). Dall'Olmo and Gitelson
(2005, in press) demonstrated how the spectral locations
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Fig. 2. Reflectance spectra of a
of the bands (λ1, λ2 and λ3) used affected the accuracy of
chl a estimation. Specific spectral regions where the
accuracy of the algorithm is maximally affected by
interferences due to the variability in bio-optical para-
meters of the medium and uncertainties in reflectance
measurements have been found. As these bio-optical
parameters, such as achl a

* (λ), η, are typically not
determined, it would be impossible to parameterize the
model. To improve the accuracy of chl a estimation,
Dall'Olmo and Gitelson (2005) proposed to tune the band
positions of the model minimizing these effects. The
results of the spectral tuning of the model and the
calibration coefficients obtained depend on optical
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quaculture ponds studied.
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Fig. 3. Typical reciprocal reflectance spectrum of ponds studied. Legend: Chl: maximal absorption by all chlorophyll (isoforms) present, Car:
maximal absorption by carotenoids and PC: maximal absorption by phycocyanin. A: The position of minimum absorption by chlorophyll a, inorganic
suspended matter and water; B: minimal absorption by phytoplankton pigments; Chl a: maximal absorption by chlorophyll a.
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characteristics of the water bodies studied.While the large
range of the optically active constituents sampled
supported the robustness of the model, Dall'Olmo and
Gitelson (2005) suggested that the results should be
considered valid only for the ranges of optically active
constituents studied (chl a range 4.4–217.3 mg/m3, chl a
median=36 mg/m3; turbidity range 1.7–78 NTU, turbid-
ity median=17 NTU).

Many water bodies are considered eutrophic to hyper-
eutrophic, particularly systems receiving excessive nutri-
ent loadings. One extreme case is represented by
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Fig. 4. Relationship between blue to green ratio and measured chlorophyll a c
The result shows that blue to green ratio could not be used to estimate chlor
aquaculture systems–such as channel catfish production
systems–where nutrient daily additions in the form of
unassimilated feed can exceed 1.5 mg/l nitrogen addition.
In these systems, average chl a exceeds 100 mg/m3

annually and exceeds 700 mg/m3 during blooms (Tucker,
1996). Windrowing of buoyant algae can increase chl a
concentrations to more than 10,000 mg/m3 and turbidity
commonly exceeds 140 NTU in these systems (Zimba,
unpublished). Clearly hyper-eutrophic systems are not
limited to aquaculture ponds, as exemplified by levels of
chlorophyll a in excess of 9000 μg/l reported from
y = 0.0018x + 4.3392
R2 = 0.23
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oncentration. Determination coefficient for linear relationship r2=0.23.
ophyll a concentration in waters studied.
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Microcystis blooms in the Patos Lagoon, Brazil (Yunes et
al., 1996). These systems are very different from
mesotrophic–eutrophic waters routinely studied by
remote sensing, where chl a and inorganic suspended
matter concentrations are much lower.

The main objective of this study was to assess the
utility of the conceptual model (Gitelson et al., 2003b;
Dall'Olmo and Gitelson, 2005) for estimating chl a under
high turbidity and algal biomass conditions. Specific
objectives include (1) identification of the spectral
features of reflectance; (2) spectral tuning of the three
band model and the near infrared to red ratio (special case
of the three band model) in accord with optical
characteristics of the waters studied; and (3) estimating
the accuracy of chl a retrieval using different algorithms.
0

20

40

60

80

100

120

140

160

R
ec

ip
ro

ca
l R

ef
le

ct
an

ce
 @

 6
70

 n
m

, %

0

2

4

6

8

10

12

14

16

18

0 500 1000 1500

Chl a,

R
ef

le
ct

an
ce

 @
 7

80
 n

m
, %

Fig. 5. (A) Reciprocal reflectance at 670 nm vs. chlorophyll a concentrations
absorption band depends only weakly on chlorophyll a concentrations, sugge
was strongly affected by absorption and scattering of other optically active con
infrared (NIR) range at 780 nm plotted vs. chlorophyll a concentration. Conc
poorly related, resulting in scattering of R780 vs. chlorophyll a relationship.
2. Methods

Field studies were conducted at the National Warm-
water Aquaculture Center, Stoneville, MS using 14–
0.4 ha earthen production ponds having an average
depth of 0.9 m. Ponds were stocked with channel catfish
fry in late May and the average feeding rate was 50 kg/
ha of pelleted feed (32% protein). Ponds were managed
as commercial operations regarding stocking densities
and daily aeration monitoring. Reflectance measure-
ments and water samples were collected weekly from 27
July through 19 September 2004. To assess spatial and
temporal variation of chl a and reflectance, two
additional collections were made in April and May
2005.
2000 2500 3000 3500

 mg/m3

B

A

measured analytically. Reciprocal reflectance in the red chlorophyll a
sting that in addition to chlorophyll a reflectance in this spectral range
stituents (e.g., inorganic suspended matter). (B) Reflectance in the near
entrations of inorganic suspended matter and phytoplankton density are
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2.1. Field sampling

Water samples and reflectance measurements were
collected between 1000 and 1200 h local time. Water
samples (1 l volume) were collected immediately after
reflectance measurements using tubing attached to a
shoreline boom and required b 30 s for sample
collection. Sampling depth was 2.5 cm. Water samples
were stored in a darkened cooler until processed.
Storage time never exceeded 30 min.

A dual-fiber system, with two inter-calibrated Ocean
Optics USB2000 radiometers, was used to collect
reflectance data in the range 300–850 nm with a
sampling interval of 0.3 nm and a spectral resolution of
around 1.5 nm. Radiometer 1, equipped with a 25° field-
of-view optical fiber, was pointed downward to measure
the upwelling radiance of water (Lup). Radiometer 2,
equipped with an optical fiber and cosine diffuser
(yielding a hemispherical field of view), was pointed
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Fig. 6. Position (A) and the magnitude (B) of the peak near 700 nm vs.
chlorophyll a concentration, peak magnitude relates weakly to chlorophyll a
inorganic and non-living organic suspended matter plays significant role con
upward to simultaneously measure incident irradiance
(Einc). Downwelling radiance was measured by mount-
ing the optical fiber to a shoreline boom (3 m length).
Readings of upwelling radiance were taken with the
probe submerged at a fixed depth (2.5 cm) in each pond.
To match the transfer functions of the radiometers,
intercalibration of the radiometers was accomplished by
measuring the upwelling radiance (Lcal) of a white
Spectralon reflectance standard (Labsphere, Inc., North
Sutton, NH) simultaneously with incident irradiance
(Ecal) measured by upward sensor. Percentage reflec-
tance was computed as:

RðkÞ ¼ ½LðkÞup=EðkÞinc� � ½EðkÞcal=LðkÞcal�
� 100� RðkÞcal ð2Þ

where R(λ)cal is the reflectance of the Spectralon panel
linearly interpolated to match the band centers of each
radiometer. Data collection and management were
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chlorophyll a concentrations. While peak position relates closely to
. It shows that, in addition to chlorophyll a absorption, scattering by
trolling reflectance in this spectral region.
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performed using CDAP (a data management program
written by CALMIT, University of Nebraska-Lincoln).

The critical issuewith regard to the dual-fiber approach
is that the transfer functions of both radiometers must be
identical. Previous work, using the same instrument
configuration, has confirmed that the coefficient of
variation of the ratio of the transfer functions of two
radiometers does not exceed 0.4% (Dall'Olmo and
Gitelson, 2005).

To assess spatial variation of reflectance and chl a
within a single pond, we measured reflectance and
collected five water samples at 1-m intervals along one
pond edge. To account for temporal variation of these
characteristics, pond location was fixed and five reflec-
tance measurements and water samples were collected at
5-min intervals. Wind speed on both days was less than
0.5 km h−1.

2.2. Laboratory analyses

Water samples were processed under subdued lighting.
Turbidity was measured on whole water samples using
APHA methodology (APHA, 1989). Chlorophyll and
carotenoid concentrations were determined using HPLC
methodology as described in Zimba et al. (1999).

3. Results and discussion

The data set encompasses widely variable optical
conditions of shallow-water holomictic ponds that
exhibit a typical subtropical succession pattern of
phytoplankton (Cichra et al., 1995; Tucker, 1996). The
waters under study contained chl a concentrations of
107 to 3078 mg/m3 and turbidity from 11 to 423 NTU.
Centric diatoms were dominant in spring (April–May);
in late spring–early summer (June–July), cryptophytes
as well as Oocystaceae (primarily Chlorella, Tetraedon
and Selenastrum) and Scenedesmaceae (Scendesmus,
Crucigiena and Tetradesmus) green algae were domi-
nant bloom constituents. Summer algae consisted of
cyanobacteria (particularly Dactylococcopsis, Oscilla-
toria, Planktothrix and Microcystis spp.—including M.
weisenbergii and M. aeruginosa). Cyanobacteria are
dominant constituents of these aquaculture ponds during
half of the year (Tucker, 1996; Zimba et al., 2002).

Chl a concentration and turbidity (the latter is a proxy
of scattering by phytoplankton and inorganic suspended
matter) were not related (Fig. 1, determination coeffi-
cient of linear relationship b0.05). Clearly chl a was not
the only characteristic controlling water optical proper-
ties, indicating these ponds belong to case 2 waters
(Morel and Prieur, 1977).
3.1. Reflectance spectral properties

Reflectance spectra were highly variable over the
visible and NIR spectral regions (Fig. 2). These spectra
were very different in magnitude from typical reflectance
spectra collected in turbid productive waters (Lee et al.,
1994; Gitelson et al., 2000; Dall'Olmo and Gitelson,
2005). While reflectance in the blue range was small and
did not exceed 5%, green reflectance was very high,
reaching 25%, and the peak around 700 nm was even
higher, exceeding 30%. Near infrared (NIR) reflectance
was also very high and variable (2–18%).

Although reflectance spectra were different in
magnitude from those studied previously, the shape of
spectra and spectral features were quite similar to that of
other productive turbid waters (e.g., Gitelson et al.,
2000). In the blue spectral range between 400 and
500 nm, chl a and carotenoids strongly absorb light
(Fig. 3). The minimum near 440 nm was almost
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indistinct in the reflectance spectra and the reflectance in
the range 400 to 500 nm was low with no pronounced
spectral features over the broad range of turbidity and
phytoplankton densities (Fig. 2). Absorption by dis-
solved organic matter, tripton and scattering by partic-
ulate matter contribute to reflectance in the range 400 to
500 nm, and a common characteristic of reflectance
spectra in this range was low sensitivity of reflectance to
chl a. As a result, the blue to green ratio R440/R550

(Gordon and Morel, 1983) was not related with chl a
(Fig. 4) and could not be used to estimate chl a in waters
studied.

Reciprocal reflectance

R�1∝ðaþ bbÞ=bb ð3Þ

where a and bb are absorption and backscattering co-
efficients, respectively, showed several distinct features:
(1) a trough in the green range near 550–570 nm (B in
Fig. 3) due to theminimal absorption of all algal pigments;
scattering by inorganic suspended matter and phytoplank-
ton cells control themagnitude of reflectance in this range;
(2) a peak near 625 nmdue to phycocyanin absorption (PC
in Fig. 3) that typically covaries with cyanobacterial
abundance and seasonality (Schalles et al., 1998); (3) a
peak at 670–680 nm corresponding to the in situ red chl a
absorption maximum (chl a in Fig. 3); and (4) a minimum
in the red/NIR edge near 700 nm (A in Fig. 3).

The magnitude of the reciprocal reflectance peak at
670 nmwas poorly correlated with chl a concentration as
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chlorophyll a estimation were found in the range of red chlorophyll a absorpt
uncertainties in chlorophyll a estimation were around 650 nm (grey box).
evidenced by the widely scattered data (Fig. 5A).
Previous studies have shown that in addition to chl a
concentration, reflectance in this range was strongly
affected by non-organic suspended matter concentration
(Gitelson et al., 1993a,b, 1994b, 2000; Dekker, 1993;
Yacobi et al., 1995). The effect of chl a absorption on
reflectance is reduced by light-scattering from phyto-
plankton cell walls and inorganic suspended matter;
the concentrations of these constituents are poorly
co-related.

Reciprocal reflectance had a prominent trough around
700 nm (A in Fig. 3) corresponding to a peak in the
reflectance spectrum (Fig. 2). In this spectral range, chl a
absorption decreases with wavelength while absorption by
pure water increases. Thus, the trough manifests minimal
combined absorption by all constituents (Gitelson et al.,
1986, 1993a,b; Vos et al., 1986; Gitelson, 1992). As in
other productive turbid waters, the reflectance peak
position shifts toward longer wavelengths with increasing
chl a concentration. Chl a has significant absorption
between 690 and 715 nm; as chl a increases, the absorption
curve becomes wider and the intersection point of
absorption by chl a and pure water takes place at
progressively longer wavelengths. Due to the sharp
increase in pure water absorption around 710 nm, the
relationship between peak position and chl a tends to
saturate around 715 nm (Fig. 6A). The magnitude of the
peak is related to chl a concentration, as phytoplankton
biomass goes up scattering increases (actually cell surface
area to which chl a serves as a proxy measure—see
Gitelson, 1992, 1993; Gitelson et al., 1994a; Yacobi et al.,
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1995; Schalles et al., 1998). However, in thesewaters, chl a
was responsible for only 11% variation in peak magnitude
(Fig. 6B). Scattering by inorganic and non-living organic
suspended matter played a critical (if not dominant) role
controlling reflectance in this spectral region.

As absorption by all constituents decreases beyond
715–720 nm, the reflectance in the NIR range (RNIR) is
controlled by scattering of all particulate matter.
Concentrations of inorganic suspended matter and
phytoplankton density are poorly related, as indicated
by the weak RNIR vs. chl a relationship (Fig. 5B).

While the reflectance in the range of chl a red
absorption around 670 nm is sensitive to chl a
concentration, it is also affected by absorption and
scattering of other constituents. Thus, to accurately
retrieve chl a from reflectance data, it is critical to
subtract the effects of other factors on reflectance around
670 nm. To remove these factors, we used an approach
previously used in mesotrophic and eutrophic waters
(Dall'Olmo et al., 2003; Dall'Olmo and Gitelson, 2005).
In order to find optimal positions of λ1, λ2 and λ3, in the
conceptual model (Eq. (1)), we attempted to tune the
model and its special case, the band ratio R(λ3)/R(λ1), in
accord with optical properties of the medium.

3.2. Two-band ratio model tuning

The two-band model R(λ3)/R(λ1) is the special case of
the conceptual model (Eq. (1)) when achl≫bb and
achl≫atripton+aCDOM, where achl, atripton and aCDOM are
absorption coefficients of chl a, tripton and colored
dissolved organic matter (CDOM), respectively
(Dall'Olmo and Gitelson, 2005). To find the optimized
spectral bands λ1 and λ3, we used a stepwise technique
based on linear regressions of the R(λ3)/R(λ1) vs. chl a
measured analytically. For the first step of the model
tuning, we used initial position of λ1

0 =670 nm (chl a
absorption maximum) and linearly regressed the ratio
R(λ3)/R(670) vs. chl a for each value of λ3 in the
range 400–800 nm. We computed the root mean
squared error (RMSE) of chl a estimation and found a
wide spectral range (between 715 and 730 nm) where
RMSE was minimal (Fig. 7A). We selected
λ3
1 =7261nm for the second step of tuning.
In the second step, we regressed the ratio R(726)/R(λ1)

vs. chl a for each λ1 in the range 600 to 700 nm. The
RMSE had a minimum around 650 nm (Fig. 7B, step 2).
We selected λ1

1=650 nm. In the third step, we found the
next approximation of λ3 regressing the ratio R(λ3)/R
(650) vs. chl a. The minimal RMSE was found at
λ3
2=714 nm (Fig. 7C). In the last step, we assessed

whether λ1
1=650 nm that we selected in step 2 was
optimal. We regressed the ratio R(714)/R(λ1) vs. chl a
and have found that the optimal λ1 was very close to
λ1
1=650 nm (Fig. 7B, step 4: dashed line). By using the

ratio R(714)/R(650), the error of chl a estimation
(RMSE=331 mg/m3) was minimized.

The plot of RMSE vs. λ1 for variable λ3 shows two
spectral ranges of λ1 where RMSE is minimal: (1)
around 650 nm for λ3 in the range from 700 to 730 nm
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and (2) 690–695 nm for λ3 in the range from 700 to
720 nm (Fig. 8). Maximal uncertainties in chl a
estimation occur in the range between 670 and 690 nm
as previously recognized by Dall'Olmo and Gitelson
(2005). They concluded that variability in specific
absorption coefficient of chl a and quantum yield of
fluorescence resulted in maximal uncertainties in chl a
retrieval in the range of chl a red absorption (around
670 nm) and chl a fluorescence (685 nm).

3.3. Three-band model tuning

To find the first approximation for position of λ2 (λ2
1),

we used initial positions for λ1
0 =675 and λ3

0 =750 nm.
The former was chosen within the range of maximum chl
a absorption, the latter was in the NIR range where
scattering controls reflectance. We regressed the model
[R−1(675)−R−1(λ2)]×R(750) vs. chl a in the range 400
to 800 nm and found the range between 700 and 720 nm
where the RMSE was minimal (Fig. 9A). In the second
step, we fixed λ2

1 =710 nm and regressed the model
[R−1(675)−R−1(710)]×R(λ3) vs. chl a. The RMSE was
minimal at λ3

1 =740 nm (Fig. 9B). In the third step, we
found the first approximation of λ1(λ1

1), regressing the
model [R−1(λ1)−R−1(710)]×R(740) vs. chl a. As in the
case of the two-band model (Fig. 7B), the RMSE was
minimal in a narrow range around 650 nm (Fig. 9C, solid
line). The second approximation of λ2 (λ2

2) was found at
a slightly shorter wavelength than λ2

1, in a range between
700 and 715 nm (Fig. 9D). In the final (fifth) step, we
(R-1
650)R740  = 0.0004Chl a  + 0.479

R2 = 0.71, RMSE = 369 mg/m3
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Fig. 10. Two-band model (dash line) and three-band model (solid line) plotted
the R(λ3)/R(λ2) from R(λ3)/R(λ1) improved chlorophyll a estimation and ma
(note that intercept of best fit function of the relationship [R650

−1 −R710
−1 ]×R7
verified whether λ1
1 was optimal, fixing λ2

2 =710 nm and
λ3
1 =740 nm, and we found that λ1

1 =650 nm was really
optimal wavelength for our data set (Fig. 9C, dash line).
Thus, minimal RMSE could be achieved using the model
[R−1(650)−R−1(710)]×R(740).

In the conceptual model,R−1(λ2) is used to account for
variations in the atripton and aCDOM and in bb (in numerator
of Eq. (3)), whereas R−1(λ3) is used to account for
variations in bb (in the denominator of Eq. (3)). Dall'Olmo
and Gitelson (2005) reported that the optimal spectral
regions for λ2 and λ3 overlapped between 730 and
750 nm. The effect of the variability in the backscattering
coefficient on reflectance was greater than the variability
of tripton and dissolved organic matter absorption. By
contrast, our data showed that optimal λ2 was within a
narrow range around 710 nm, while λ3 was around
740 nm. We hypothesize that in these waters the
variability in tripton and dissolved organic matter
concentrations was a significant factor and, thus, λ2 in a
narrow range should be used to account for the effect of
these constituents. To verify this hypothesis, further study
of dissolved organic matter and tripton absorption in these
waters is needed.

We evaluated the performance of both the two-band
model and the three-band model by comparing their
respective root mean square error (RMSE) of chl a
estimation. Fig. 10 shows relationships between the
models, R(740)/R(710) and [R−1(650)−R−1(710)]×R
(740), and chl a measured analytically. It can be seen
that subtraction R(740)/R(710) from R(740)/R(650)
7

0-R
-1

710)R740 = 0.0003Chl a  - 0.0052

R2 = 0.78, RMSE = 319 mg/m3

2000 2500 3000 3500

g/m3

vs. analytically measured chlorophyll a concentrations. Subtraction of
de the model [R−1(λ1)−R−1(λ2)]×R(λ3) proportional to chlorophyll a

40 vs. chlorophyll a is very close to zero).
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substantially decreases uncertainties in chl a retrieval
(from 369 to 319 mg/m3) and makes the intercept of the
relationship [R−1(650)−R−1(710)]×R(740) vs. chl a
very close to zero. Subtraction is effective in decreasing
uncertainties, as evidenced by a statistically significant
(pb0.0001) positive relationship between the ratio R
(740)/R(710) and residuals of the relationship R(740)/R
(650) vs. chl a (Fig. 11). The ratioR(740)/R(710) accounts
for more than 34% of variation in the residuals. Thus, the
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Fig. 12. Root mean square error (RMSE) of chlorophyll a estimate by two
positions of λ1 for both models remain almost the same (around 650 nm), the
m3 vs. 330 mg/m3).
subtraction of R(740)/R(710) from R(740)/R(650)
decreases uncertainties in chl a retrieval caused by the
variability in scattering by particulate matter between
samples and in absorption by constituents other than chl a.
The comparison of band ratio and three band model
performance clearly demonstrated that the latter is more
accurate in chl a estimation (319 mg/m3 vs. 330 mg/m3)
and the optimal positions of λ1 for both models remain
around 650 nm (Fig. 12).
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-band model and three-band model plotted vs. λ1. While the optimal
three-band model is more accurate in chlorophyll a estimation (319 mg/
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The band ratio model explains 71% and three-band
model 78% of chl a variability (Fig. 10). It is likely that
phytoplankton patchiness was partially responsible for
unexplained chl a variation. Both spatial and temporal
wind driven circulation strongly influences phytoplank-
ton patchiness in lakes (Small, 1963; Reynolds, 1971;
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Fig. 14. Temporal and spatial variation of reflectance spectra of the ponds. Co
variation was above 15%.
Verhagen, 1994), particularly in shallow systems (Cichra
et al., 1995). To assess the importance of this factor, we
plotted spatial (Fig. 13A) and temporal (Fig. 13B)
variation of chl a (in percent) from mean values in five
samples for each case. Spatial variability exceeded ± 15%,
while temporal variation exceeded ± 6%. Temporal and
spatial variability of reflectance was even higher: the
coefficient of spatial variation reached 30% and temporal
variation was higher than 60% (Fig. 14). Similar findings
were reported in Yacobi et al. (1995) assessing Lake
Kinneret's seasonal Protoperidium blooms. In the Lake
Kinneret study, up to 300% difference in reflectance and
chl a was reported at 10-m intervals (spatial) and in
samples collected at 2.5-min intervals (temporal) from
one sampling site.

The findings point out the need for optimal simulta-
neous collection of ground-truth samples and reflectance
to accurately calibrate the models for chl a assessment in
these dynamic systems. It also shows that data used as
“ground-truth” can vary significantly in time and space
and might not represent constituent concentrations when
and where reflectance was measured. Even when ground-
truth samples are collected simultaneously with reflec-
tance data, the sampling procedure (physical manipula-
tion of water column) can significantly change constituent
concentrations resulting in poor correlations with to
concurrent reflectance spectra measured remotely.

Previous studies that used generalized models and did
not take into account the impact of temporal variation or
spatial patchiness poorly predicted chl a concentration
from reflectance data (Zimba and Thomson, 2002; Millie
et al., 1995). It is therefore not surprising that empirical
models derived from simultaneously measured “ground-
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truth data” and aerial overflights were unable to fit data
collected 1 month later (Millie et al., 1995) and that
predicted chl a and measured values were poorly
correlated (R2=0.4, Zimba and Thomson, 2002). Choice
of appropriate scales for (multi-dimensional) field
assessments must consider sample size (reviewed in
Cassie, 1959), location (McAlice, 1970) and time (this
study; Yacobi et al., 1995). Sampling surface blooms of
buoyant microalgae (such as Microcystis) further com-
plicate sample collection, as any surface disturbance
influence cell distributions. Optimal management of
water resources will depend on both generation of optimal
physically based models to quantify algal biomass and
improved sampling methods to calibrate it.

It is noteworthy that the three-bandmodel (λ1=670nm,
λ2=710 nm, λ3=740 nm) optimized for chl a ranging
from 4.4 to 217.3 mg/m3 (Dall'Olmo and Gitelson, 2005)
allowed accurate estimation of chl a when applied to
these aquaculture ponds having very different optical
characteristics, and it allowed accurate chl a estimation
with RMSE below 358 mg/m3. Thus, the model with
fixed spectral bands works accurately in the range of chl a
from 4.4 to 3078 mg/m3 allowing monitoring of chl a in
waters with low-to-moderate chl a concentrations as well
as extremely turbid and hyper-eutrophic waters.

The models used in this study do not require data on
bio-optical characteristics of the waters—these can be
variable and difficult to obtain. Instead, tuning spectral
band positions of the model minimized the effect of
variability in bio-optical parameters and increased the
model accuracy. Additionally, the cost associated with
hand-held units and ease of use offer widespread
application in specialized environments such as aqua-
culture systems.

The conceptual model (Eq. (1)) has been used for
non-destructive pigment retrieval from reflectance
spectra of plant leaves (anthocyanins: Gitelson et al.,
2001; carotenoids: Gitelson et al., 2002; chlorophyll:
Gitelson et al., 2003a), fruit peels (Merzlyak et al., 2003),
crop canopies (Gitelson et al., 2003b, 2005) and chl a
retrieval in turbid productive waters (Dall'Olmo et al.,
2003; Dall'Olmo and Gitelson, 2005, in press). This
study brings additional evidence that the conceptual
model may be considered as a unified approach for
remote quantification of absorbing constituents in
variety of systems.
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