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We developed a fuel loading prediction model (EcoFL), which quantified fuel loads at

ecosystem level using a classical ecosystem productivity concept and aboveground biomass

measurements. EcoFL predicted fuel loading with high precision (r2 = 0.94), but the lin-

ear relationship between measured and predicted was slightly off from the 1:1 line

(slope = 0.86–1.17). The study showed a possibility of developing landscape level fuel load-

ing model. EcoFL indicated that carbon allocation had to be parameterized accurately to

predict fuel loading precisely. Prescribed burning has been widely used to reduce fuel and

promote ecosystem functions throughout the United States, but the long-term ecological

impacts of prescribed burning are widely unknown. We evaluated the effect of alterna-

tive prescribed burning rotations (ROT), magnitude in productivity reduction by prescribed

burning (MAG), and duration of productivity reduction (DUR) on fuel loading (Mg ha−1) and

timber production (Mg ha−1) in managed northern hardwood, red pine (Pinus resinosa), and

jack pine (P. banksiana) forests in northern Wisconsin. The results showed that DUR would

be the most critical information when deciding ROT in order to preserve timber production

and to maintain low fuel loading. The results implied that forest productivity could reduce

timber production drastically, if ROT was shorter than DUR and ecosystem productivity was

affected cumulatively by prescribed burning. Under a 5-year ROT, the harvested biomass

was reduced up to 17.9, 30.4, and 25.5%, respectively, of controls in hardwood, red pine, and

jack pine forests. For accurate long-term prediction of prescribed burning, substantial field

data are still needed to identify productivity recovery pattern, carbon allocation after burn-

ing, and long-term effect of burning on productivity. EcoFL has the potential to be used for

evaluating the effect of various disturbances (e.g., thinning, harvesting) on fuel loading, and

the output of EcoFL can be used as an input data for fire spread models. The results of this

study will be fundamental for forest managers to balance the timber production and fuel

reduction using prescribed burning.

© 2006 Elsevier B.V. All rights reserved.

∗ Corresponding author. Tel.: +1 419 530 2246; fax: +1 419 530 4421.
E-mail address: nickny@hotmail.com (S.-R. Ryu).

0304-3800/$ – see front matter © 2006 Elsevier B.V. All rights reserved.
doi:10.1016/j.ecolmodel.2006.02.013

mailto:nickny@hotmail.com
dx.doi.org/10.1016/j.ecolmodel.2006.02.013


396 e c o l o g i c a l m o d e l l i n g 1 9 6 ( 2 0 0 6 ) 395–406

1. Introduction

High fuel accumulation and altered landscape structure,
caused by decades of fire suppression and exclusion, have
altered fire regimes and increased fire risk (Ryan, 2002; Taylor
and Skinner, 2003; Weisberg, 2004). These changes have ulti-
mately increased the importance of fuel reduction, which is an
important forest management objective to reduce fire risk and
fire damage. Prescribed burning has been accepted widely as
a way to reduce fuel loading and to promote ecosystem func-
tions within forest ecosystems throughout the United States
(Allen et al., 2002). Moreover, numerous governmental pro-
grams (e.g., 2001 Federal Wildland Fire Management Policy,
Healthy Forest Restoration Act of 2003) have been developed to
direct federal agencies in balancing fire suppression through
the use of prescribed burning (Iverson et al., 2004).

Although prescribed burning is an effective tool in con-
trolling fuel loading, there are many uncertainties about the
long-term ecological impacts of this management option
(Tiedemann et al., 2000; Carter and Foster, 2004; Shang et
al., 2004). Raison et al. (1985) reported that even under low-
intensity prescribed burning 54–75% of the nitrogen (N),
37–50% of the phosphorus (P), and 43–66% of the potassium (K)
were removed from the understory and litter nutrient pools.
It is well known that prescribed burning will alter soil chemi-
cal and physical properties, including reduction in infiltration

using fixed distances between regularly spaced grid cells to
solve for the fires arrival time from one cell to the next (Berjak
and Hearne, 2002; Ito, 2005). Some fire growth models have
been developed on an assumption of homogeneous fuel load-
ing for both types of modelling approaches (Hargrove et al.,
2000; Berjak and Hearne, 2002). However, a fire growth model
needs to be spatially explicit and capable of simulating the
long-term dynamics of disturbance-prone landscapes to pre-
dict the ecological effects of landscape scale fires (Green, 1989;
Turner et al., 1889; Hargrove et al., 2000). To achieve this goal,
models require adequate characterization of local variability
in fuels, which is difficult to estimate because quantity and
quality of forest fuels are affected by both biotic and abiotic
factors (Hargrove et al., 2000; He et al., 2002). Therefore, the
actual quantity and quality of fuels are commonly not avail-
able or are unrealistic to obtain for each individual site, so
even the fuel treatment decisions of USDA forest service are
often based upon data indirectly derived from other biotic and
abiotic factors (He et al., 2002). Clearly, developing an easy-to-
use, scientifically based, and empirically proven fuel loading
prediction model is urgently required.

Computer modelling can be an ideal tool to study the inter-
actions between fuel loading, productivity, and prescribed
burning, because it allows testing the interactions under var-
ious conditions without disturbing the ecosystem. Addition-
ally, the model results can provide forest managers alternative
options of fuel loading and timber production as a result of
rate (DeBano, 2000) and water holding capacity (Boyer and
Miller, 1994) and increase in N and P availability (Covington
et al., 1991; Wan and Luo, 2001). Wells et al. (1979) found that
fuel reduction could influence soil surface susceptibility to the
kinetic effects of raindrops, which can potentially break soil
aggregates and block soil pores. Other studies also suggested
that prescribed fire could negatively affect the productivity in
pine forests (Landsberg et al., 1984; Boyer, 1993; Landsberg,
1994; Busse et al., 2000) and oak-savannas (Reich et al., 2001).
The decrease in productivity would be a direct result of the
fire induced environmental changes; including losses of sur-
face organic matter, soil porosity, and nutrient pools in forest
floor (Tiedemann et al., 2000). However, none of these studies
included evaluations of the long-term impacts of prescribed
burning on forest productivity (Carter and Foster, 2004). Inter-
estingly, there have been few studies focusing on the dura-
tion (DUR) and the magnitude (MAG) of decreased produc-
tivity related to prescribed burning. Consequently, a limited
number of studies have restricted the assessment of interac-
tions between fuel loading, productivity, and prescribed burn-
ing. Specifically, there are no known studies evaluating the
effects of prescribed burning on forest productivity in north-
ern Wisconsin forests, although prescribed burning started to
be applied actively places such as the Chequamegon National
Forest (CNF) during the late 1980s to reduce fuel loading and
promote rare pine barren/jack pine ecosystems.

Various fire growth models have been generated using vec-
tor and cellular automata approaches (Hargrove et al., 2000;
Berjak and Hearne, 2002). Vector models estimate the rate
of fire spread using analytical solutions (e.g., Huygen’s prin-
ciple) for the propagation of elliptic shape fire perimeters
(Karafyllidis and Thanailakis, 1997; Berjak and Hearne, 2002),
while cellular automata models predict the rate of fire spread
prescribed burning at the landscape level with statistically
acceptable replications, which is often a challenge at broader
spatial and temporal scales (Eberhardt and Thomas, 1991;
Michner, 1997; Waltz et al., 2003). Simplified and parameter-
limited models are especially desirable to landscape level
modellings, because landscape level processes incorporate the
complex interactions between ecosystems and limit accurate
parameterization and simulation (Euskirchen et al., 2002).

The objectives of this study are to evaluate the possibility
of predicting fuel loads by fine-tuning and modifying the pre-
viously developed simple ecosystem model (Euskirchen et al.,
2002; Ryu et al., 2004) and examined the effects of prescribed
burning on fuel loading and timber production. We tested
the interactions between prescribed burning, fuel loading,
and timber production under alternative prescribed burning
rotation interval (ROT), magnitude of productivity reduction
by burning (MAG), and duration of productivity reduction by
burning in northern hardwood, red pine (Pinus resinosa Aiton),
and jack pine (P. banksiana Lambert) forests. We hypothesized
that: (1) fuel loading could be accurately predicted with appro-
priate productivity pattern, carbon allocation, and decay rates
and (2) burning interval would be the most important factor
determining fuel loading and timber production.

2. Model development and scenario tests

2.1. Model structure and linkages

We developed a phenomenological ecosystem fuel loading
model (EcoFL) to evaluate the dynamics of fuel loads inter-
acting with various disturbance types using Stella 7.0 (High
Performance System Inc., NH, USA). EcoFL was an improved
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Fig. 1 – The conceptual diagram of carbon flow in a forest ecosystem. Solid line represents carbon flow and dashed line
indicates information flow. ANPP represent aboveground net primary production (Mg ha−1 year−1). About 1, 10, and 100 h
fuels were fuel classification by size; 1 h fuels (Mg ha−1; <0.6 cm in diameter), 10 h fuels (Mg ha−1; >0.6 and <2.5 cm in
diameter), and 100 h fuels (Mg ha−1; >2.5 and <7.5 cm in diameter).

version of a previous fuel loading estimation model devel-
oped by Ryu et al. (2004). The EcoFL model has three com-
ponents: PRODUCTION, STORAGE, and LOSS (Fig. 1). PRODUC-
TION calculates aboveground net primary production (ANPP);
STORAGE includes live and dead biomass pools and alloca-
tions among these pools (e.g., aboveground biomass, litterfall,
and CWD); LOSS estimates decomposition loss and biomass
directly removed by disturbances (e.g., decomposition, fire,
and harvesting).

ANPP was estimated based on the ecosystem age and
the ANPP pattern was described using a simplified model
known as LandNEP (Euskirchen et al., 2002). Basically, ANPP
pattern changing with age was accomplished using a two-
parameter Weibull function (Euskirchen et al., 2002; Ryu et
al., 2004). Leaf area index (LAI) was used to estimate the age
of maximum ANPP on the assumption that each ecosystem
had maximum production, when the canopy closed (Aber,
1979). The magnitude of maximum ANPP of each ecosys-
tem was estimated using the PnET-II model (Aber et al.,
1995).

STORAGE was composed of three live biomass pools [e.g.,
live foliage (LF), live branch (LB), live stem (LS) and four dead
fuel loading pools (e.g., 1 h fuels (1 h F), 10 h fuels (10 h F), 100 h
fuels (100 h F), and coarse woody debris (CWD; diameter larger
than 7.5 cm)]. Fuel loading was determined using a fuel clas-
sification system of USDA Forest Service (Brown, 1974; Brown
and See, 1981): 1 h fuels (1h F Mg ha−1;<0.6 cm in diameter),
1
1
C
o
s
s
F

branch growth (GB) followed integrated sigmoid function (Eq.
(2)):

GF = a × (age − d)c × ((age − d)c + bc)
−1

(1)

GB = e × f g × g × ageg−1 × (ageg + f g)−2 (2)

where a, b, c, and d are constants, representing the maxi-
mum growth, half point, growth change rate, and delay factor,
respectively. Stem growth (GS) was calculated as the difference
between ANPP and sum of GF and GB.

Biomass allocation from live biomass (LF, LB, and LS) to
dead biomass (1, 10, and 100 h F, and CWD) was estimated
using generic equations. Foliage death (DF; senescence) was
estimated from the same equation of foliage growth (Eq. (1))
while considering foliage retention year (RYR) and mortality
(Eq. (3)). Foliage loss by mortality (DFM) was calculated by mul-
tiplying the LF with mortality rate (M), where M was calculated
by a uniform stochastic function as between zero and a max-
imum mortality rate, which was estimated from published
literatures (Eq. (4)):

DF(age) = GF(age − RYR) × (LF/(LF + DFM)) (3)

M = uniform random (0, maximum M) (4)

DF was then transferred to the 1 h F.

0 h fuels (10 h F Mg ha−1; >0.6 and <2.5 cm in diameter), and
00 h fuels (100 h F Mg ha−1; >2.5 and <7.5 cm in diameter).
onversely, each live biomass pool was calculated as a sum
f annual growth minus annual death. Annual death repre-
ented the transfer of live biomass to dead biomass due to
elf-thinning, natural tree mortality, and natural senescence.
oliage growth (GF) followed sigmoid function (Eq. (1)), while
We developed two generic equations (Eqs. (5) and (6))
to estimate the branch death during seedling stage to self-
thinning stage (Eq. (5)), and during and after self-thinning
stage (Eq. (6)). Foliage and branch death caused by distur-
bances (e.g., disease, fire, wind throws) can be added in the
calculated of dead biomass, if necessary, but disturbance term
was not used in this study because it was beyond the scope of
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this study:

DB = h × (age − k)j × ((age − k)j + ij)
−1

(5)

DB = l × mn × n × (age − o)n−1 × ((age − o)n + mn)
−2

(6)

where h(l), i(m), j(n), and k(o) are constants representing the
maximum death, half point, mortality change, and delay rate,
respectively. Dead stem biomass was allocated to 100 h F and
CWD according to its diameter at breast height (DBH; cm),
which was calculated by multiplying age with mean DBH
increase. Dead branch biomass was allocated to the 1, 10, and
100 h F, and CWD in a different proportion upon the assump-
tion that maximum branch diameter is the half of stem DBH.

LOSS was designed for tracking three components: decom-
position, fire (combustion), and harvesting. Decomposition is
calculated as a single exponential function (Eq. (7)):

Mt = Mi × exp(−k × t) (7)

where Mt, Mi, k, and t are mass at time t, initial mass, decay
rate, and time (year), respectively. Fire has three aspects: fire
ignition, fuel consumption by fire, and aboveground biomass
consumption by fire. These three aspects were independently
estimated to represent the uncertainty of fire ignition and fire
removal of forest biomass. Fire ignition was a deterministic
function in the study to represent prescribed burning rota-

photographs were also taken in 44 plots for estimating leaf
area index (LAI) using WinScanopyTM2003d software (Regent
Instruments Inc., Quebec, Canada). These field data were used
to define and parameterize ANPP patterns and carbon alloca-
tion, and model predicted aboveground biomass well (r2 > 0.90;
Fig. 2).

Foliage samples were taken from the dominant trees to
analyze their foliar nitrogen (N) concentration (%) and spe-
cific leaf weight (SLW, g m−2) for eight major species of study
area: red maple (Acer rubrum L.), sugar maple (A. saccharum
Marsh.), paper birch (Betula papyrifera Marsh.), bigtooth aspen
(Populus grandidentata Michx.), trembling aspen (P. tremuloides
Michx.), red oak (Quercus rubrum L.), jack pine, and red pine
(Table 1). Each of eight species, mature and young trees (except
young sugar maple) were selected for foliar N and SLW. Sam-
pled mature trees dominated the closed canopy, 50–60-year-
old and 20–25 m tall, while sampled young trees dominated
the canopy, 7–15-year-old and 1.5–3.5 m tall. For leaf collec-
tion, the crowns of mature trees were divided evenly into three
heights and two aspects (south and north), while the crowns of
a young tree were divided evenly two heights and two aspects.
Consequently, six samples and four samples were taken from
each mature tree and young tree, respectively, for SLW and
foliar N parameterization (Pan et al., 2004). Mean DBH increase
was estimated by DBH measurement and ring counts. Mean
DBH increases were 0.5, 0.7, and 0.6 cm for hardwood, red pine,
and jack pine, respectively.
tion. Fuel consumption by fire was estimated using a uniform
stochastic function as a random number between low and
maximum fuel consumption rate. Aboveground biomass con-
sumption was calculated using a uniform stochastic function
between zero and maximum biomass consumption rate. In the
event of a timber harvest, the stem biomass was removed from
the ecosystem as harvested timber, while the other above-
ground biomass (i.e., branches and foliage) was allocated to
dead biomass.

2.2. Study sites

The study landscape is located in the Washburn Ranger Dis-
trict of the CNF in northern Wisconsin, US (46◦30′–46◦45′N,
91◦02′–91◦22′W). Within the CNF, the dominant forest types
include northern mixed hardwood, red pine, and jack pine
(Brosofske et al., 1999; Bresee et al., 2004). The topography is
flat to rolling and the elevation range between 232 and 459 m
above see level with terraces and outwash landforms. The
region is characterized by short, hot summers with between
120–140 growing-degree days and long cold winters.

2.3. Model parameterization

We used the aboveground biomass data of Radermacher
(2004), who developed 55 plots, 490 m2 within mature stands
and 125 m2 within young stands, to tally DBH in the sum-
mers of 2002 and 2003 to estimate the aboveground biomass.
In his study, 17, 23, and 15 plots were located in northern
mixed hardwood, red pine, and jack pine ecosystems, respec-
tively. Aboveground tree biomass including branch biomass
and foliage biomass, was estimated using published biometric
equations (TerMikaelian and Korzukhin, 1997). Hemispherical
The maximum ANPP values for the hardwood, red
pine and jack pine ecosystems, 9.5, 8.6, and 7.5 Mg ha−1,
respectively, were calculated using PnET-II simulations.
Variables for the growth functions (GF, GB, and GS) were
estimated using the field survey data (Table 2). A maxi-
mum annual mortality rate of 0.5% was given to the three
ecosystem types (Lorimer, 1989) with an exception of 2.2%
annual maximum mortality to the jack pine ecosystem after
age 40 because jack pine reaches maturity at age 40 and
infrequently reaches 150 years old (Martin and Lorimer, 1997;
http://www.rook.org/earl/bwca/nature/trees/pinusbank.html).
While analyzing field data, we observed that jack pine stand

Table 1 – Mean and standard deviation (S.D.; in
parentheses) of specific leaf weight (SLW, g m−2) and
foliage nitrogen content (N, %) eight dominate species in
Chequamegon National Forest, Wisconsin in two age
class trees: young and mature

Species Young stand Mature stand

SLW N SLW N

Acer rubrum 71 (16) 1.7 (0.10) 63 (7) 1.7 (0.18)
A. saccharum N/A N/A 60 (14) 1.5 (0.10)
Betula papyrifera 72 (10) 2.2 (0.20) 79 (8) 1.8 (0.11)
Populus grandidentata 70 (13) 2.4 (0.18) 68 (7) 2.2 (0.05)
Populus tremuloides 82 (7) 1.9 (0.02) 73 (10) 2.0 (0.07)
Quercus rubrum 77 (7) 2.5 (0.07) 69 (18) 2.1 (0.09)
Pinus banksiana 236 (18) 1.4 (0.05) 192 (20) 1.3 (0.05)
Pinus resinosa 278 (15) 1.1 (0.10) 252 (10) 1.1 (0.05)

Mature trees were 50–60 year-old and 20–25 m tall, while young ones
were 7–15 year-old and 1.5–3.5 m tall. N/A indicates data is not avail-
able.

http://www.rook.org/earl/bwca/nature/trees/pinusbank.html
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Fig. 2 – Measured and predicted foliage, branch, and stem biomass by age in studied hardwood, red pine, and jack pine
forests. Biomass of jack pine ecosystem decreased after age 40 due to high natural mortality.

density decreased abruptly from 796 stems ha−1 approxi-
mately at age 27–244 stems ha−1 at age 44 and was partly
replaced by red pine. We estimated the mortality rate as
the 244 stems ha−1 at age 44 to 24 stems ha−1 at age 150 and
thus estimated the 2.2% maximum annual mortality rate.
Decay rates (k) of 1, 10, and 100 h F, and CWD were estimated
using published equations and field data (Meentemeyer, 1978;
McLellan et al., 1991; Bolster et al., 1996; Martin and Aber,
1997; Yin, 1999). The estimated k values (year−1) for hardwood
1, 10, and 100 h F and CWD were 0.455, 0.090, 0.064, and 0.051,
respectively, and those for red and jack pine were 0.313, 0.038,
0.021, and 0.016, respectively.

2.4. Model scenarios

Effects of fire on fuel loads and productivity have three aspects:
(1) the frequency of fire (ROT), (2) the magnitude of productivity
reduction by fire (MAG), and (3) the duration of the productivity
reduction (DUR). We tested four fire rotation (ROT) scenarios:
5, 10, 15, and 20 years fire rotation. Actually, the USDA Forest
Service in the CNF applies prescribed burns every 8–10 years.
The MAG, DUR, and recovering patterns after fires are rarely
known in any forest ecosystem including the CNF. Numerous
studies have suggested a negative effect of prescribed burn-
ing on productivity if the magnitude of the burn was less than
30.0% (Boyer, 1993; Busse et al., 2000). We tested three levels
in the MAG: 10.0, 20.0, and 30.0% of the control condition. In
t
r

in DUR were also tested: 1, 2, 3, 4, and 5 years. We assumed
that the negative effects of burning on productivity would be
reduced linearly. For example, if prescribed burning reduced
ANPP 10.0% with 2-year duration at age 50, the ANPPs of age 50
and 51 were calculated by multiplying 0.9 and 0.95 to the refer-
ence ANPP of age 50 and 51, respectively. The ANPP reduction
was assumed to reduce biomass allocation to foliage, branch,
and stem in the same proportion. We included hardwood in
the study, although prescribed fire is not generally applied to
hardwood forest, because this study is a theoretical study and
forest managers occasionally apply fire to hardwood stands in
the CNF.

When a fire is applied to the system, fuel consumption by
fire was estimated according to fuel type and forest type. To
represent the uncertainty of fuel consumption by a fire, fuel
consumption rates by fuel and vegetation types were indepen-
dently estimated using a uniform stochastic function. The pre-
and post-burning fuel data was provided by USDA Forest Ser-
vice, and prescribed burning generally consumed 30–70, 20–90,
and 0–60% of 1, 10, and 100 h F, respectively. The fuel consump-
tion was estimated as a random number between minimum
and maximum fuel consumption rates by fuel and vegetation
types.

Complete factorial designs for the above scenar-
ios were applied in this study to achieve objectives:
4(ROT) × 3(MAG) × 5(DUR) × 3(ecosystem types) = 180 runs.
Each scenario (total 180 scenarios) was run 10 times for 400
his study, 10.0% MAG was estimated by multiplying 0.9 to the
eference ANPP (i.e., ANPP without disturbance). Five levels
years, and the mean value for each run was calculated. Mean
values were reported for this study, because we wanted to
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Table 2 – Model parameters and equations for production, carbon allocation and decomposition and input variables used
in this study

Equations Variables Vegetation types

HW RP JP

Production � 10 9 7.5
ANPP = � × (P − min(P))

× (max(P) − min(P))−1
Min(P) 0.04 0.034 0.0476
Max(P) −0.038 −0.033 −0.0476

P = � × ˇ−1 × ((age − �)/ˇ)�-1

× exp(−((age − ˛) × ˇ−1)� )
˛ 11 10 8
ˇ 22 25 17
� 2 2 2

Storage (growth) Age restriction Age < 33 33 ≤ Age

GF = a × (age − d)c

× ((age − d)c + bc)−1 [Eq. (1)]
a 3.9 4.5 1.4 1.4
b 17 23 14 14
c 4 3 5 −2
d 0 0 0 32

GB = e × fg × g × ageg−1

× (ageg + fg)−2 [Eq. (2)]
e 40 31 12
f 20 23 20
g 2 3 4

Storage (branch death) Age restriction Age ≤ 3 3 < Age ≤ 21 Age ≤ 3 3 <Age ≤ 21 50 < Age

DB = h × (age − k)j

× ((age − k)j + ij)−1 [Eq. (5)]
h 0.3 0 0.45 0 0.15 1
i 17 23 14 0
j 4 3 5
k 0 3 3

Age restriction 21 < Age 21 < Age ≤ 50

DB = l × mn × n × (age − o)n−1

× ((age − o)n + mn)−2 [Eq. (6)]
l 52 120

m 25 40
n 2.4 6
o 21 0

Decomposition
= exp(−k × time) [Eq. (7)]

k for 1 h F 0.455 0.313 0.313
k for 10 h F 0.090 0.038 0.038

k for 100 h F 0.064 0.021 0.021

GF and GB were the generic functions for foliage and branch growth (Mg ha−1), respectively, shown as the allocation from the aboveground net
primary production (ANPP; Mg ha−1 year−1). DF and DB represented the generic functions for foliage and branch death (Mg ha−1), respectively,
which were biomass reallocation from live foliage to dead foliage and live branch to dead branch, respectively. There was more than one equation
in DB to represent the self-thinning process and early growth stage. HW, RP, and JP were abbreviations for hardwood, red pine, and jack pine
ecosystems, respectively. One hour fuels (1 h F; Mg ha−1), 10 h fuels (10 h F; Mg ha−1), and 100 h fuels (100 h F; Mg ha−1) were fuel classification by
fuel size; 1 h F (<0.6 cm in diameter), 10 h F (>0.6 and <2.5 cm in diameter), and 100 h F (>2.5 and <7.5 cm in diameter). The unit of k is year−1.

compare the total fuel loading during simulation. Fuel loading
and harvested biomass of each scenario was compared to
the control (no prescribed burning): the relative fuel loading
(or harvest biomass) (%) = fuel loading (or harvest biomass)
from each scenario/fuel loading (or harvest biomass) from
control × 100. Analysis of variance (ANOVA) was conducted
on mean values of each run (total 1800) to evaluate the effects
of various ROT, MAG, and DUR on fuel loading and timber
production for each ecosystem type (S-plus, Insightful Corp.,
Seattle, WA, USA). Harvesting rotations were assumed as 50,
80, and 80 years for jack pine, red pine, and hardwood, respec-
tively (USDA Forest Service, 1986). Harvested stem biomass
was estimated and recorded. Post harvesting treatment (i.e.,
slash removal) is applied commonly in the CNF; 80% of 100 h
fuels were removed from the dead fuel pool to represent the
post harvesting treatment.

2.5. Model validation

The main purpose of the model was to evaluate the interaction
between disturbance and productivity on fuel loading in the
hardwood, red pine, and jack pine forests in the CNF. Fuel load-
ing on the forest floor was collected and compared with sim-
ulated fuel loading estimates under control conditions (i.e.,
average mortality, no disease, and no fire) for validation. We
chose stand ages of 4, 6, 15, 30, 50, and 63-year-old for the hard-
wood; 12, 17, 30, 32, 50, and 63-year-old for red pine, and 13, 17,
26, and 44-year-old for jack pine. In addition to age class, we
did not observe any fire occurrence (e.g., charcoal in the forest
floor or scorch on the stem) in those stands. Four 1 m × 1 m
plots were installed at each stand for collecting 10 h fuel and
three 10 cm × 10 cm subplots were set up for each plot for col-
lecting 1 h fuel. Additionally, fuel loading data was provided by
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local forest service office, which included age class and cover
type information. Forest Service provided five data sets: two
hardwood, two red pine, and one jack pine forests. Collected
samples were dried (48 h, 65 ◦C), and the dry weight was com-
pared with the simulated result for a validation.

2.6. Sensitivity analysis

A sensitivity analysis was performed to quantify the relative
importance of sensitivity in parameter estimates on predict-
ing fuel loads. The parameters used included maximum ANPP,
decay rates (1, 10, and 100 h F), and carbon allocation (Eqs. (1)
and (2)). The main purpose of sensitivity analysis in this study
was to evaluate the importance of carbon allocation on the
fuel loads and timber production. Sensitivity analysis of orig-
inal model (Ryu et al., 2004) showed that maximum ANPP and
decay rate were the parameters impacting the fuel loads the
most. For the analysis, 51 values of each parameter were ran-
domly selected with 20% standard deviation using sensitivity
analysis routines in Stella. To test the sensitivity of carbon
allocation equations, we generated random numbers, which
has a mean of 1 with standard deviation of 0.2, to multiply
with results of allocation equation. We found no correlation
between parameters sets. Each run was conducted for 400
years with 80 years harvesting rotation in hardwood forest.
Mean fuel loads were calculated for each run, then ANOVA
was conducted to determine the relative contribution of each
p
s
s
a
m
e
1

3

T
(
t

(Fig. 3). EcoFL slightly underestimated 1 h fuel (1 h F;
slope = 0.86), but the model slightly over-predicted 10 h fuel
(10 h F; slope = 1.17) and 100 h fuel (100 h F; slope = 1.04) (Fig. 3).

Sensitivity analysis revealed that maximum ANPP, carbon
allocation, and decay rates explained 89.1, 87.7, and 93.1%
of variance in 1, 10, and 100 h F, respectively. The impact of
parameter estimates on the fuel loads varied by fuel types.
One hour fuel was the most sensitive to changes in carbon
allocation to foliage (GF; Eq. (1)), which explained the 44.5%
of model variation in 1 h F, and 1 h F decay rate explained the
model variation in 1 h F the second most (43.3%). Ten hours
fuel was the most sensitive to changes in 10 h F decay rate,
which explained 56.6% of model variation in 10 h F. Changes
in carbon allocation to tree branches (GB; Eq. (2)) explained
29.8% of model variation in 10 h F. Hundred hours fuel was the
most sensitive to maximum ANPP, which explained 49.2% of
model variance in 100 h F, and 100 h F decay rate explained the
model variation in 100 h F the second most (36.4%).

3.1. Prescribed burning and fuel loading

The 1, 10, and 100 h F were affected the most by ROT among
all factors and interactions in hardwood, red pine, and jack
pine forests (Table 3). In multiple regression analysis, ROT
had the largest parameter estimates among ROT, MAG, and
DUR, which indicated that ROT affected fuel loading the most
among three variables (Table 4). Developed multiple regres-
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arameter to model prediction; the type II partial sums of
quares for each parameter were interpreted as an indicator
howing the relative contribution of a parameter to total vari-
tion in fuel loads (Moorehead and Reynolds, 1991). Only the
ost relevant decay rate was considered for each fuel type in

ach ANOVA model; 1, 10, and 100 h F decay rates for 1, 10, and
00 h F, respectively.

. Results

he predicted fuel loading showed good linear relationship
r2 = 0.94) with the measured fuel loading, but the linear rela-
ionship was slightly off from the 1:1 line (slope = 0.86–1.17)

ig. 3 – The relationship between measured and predicted fu
ack pine forests in Northern Wisconsin. About 1, 10, and 10
0.6 cm in diameter), 10 h fuels (Mg ha−1; >0.6 and <2.5 cm in
iameter).
sion equations explained more than 86.0% of variation in fuel
loading (Table 4). Increases in MAG and DUR reduced the rel-
ative fuel loading of 1, 10, and 100 h F up to 9.1, 4.9, and 7.4%,
respectively, while the decreases in ROT lowered the relative
fuel loading of 1, 10, and 100 h F by 19.5–35.2, 37.1–46.7, and
33.6–40.5%, respectively. Because the effect of ROT on the fuel
loading was greater than that of MAG and DUR, relative fuel
loading seemed aggregated by ROT (Fig. 4). Fuel loading was
reduced more with shorter ROT, higher MAG, and longer DUR
(Fig. 4).

Prescribed burning reduced relative fuel loading of 1 h F by
7.7–37.9, 10.9–49.6, and 7.2–39.6% in hardwood, red pine, and
jack pine forests, respectively (Fig. 4). Relative fuel loading of
10 h F was decreased by 16.9–66.3, 28.6–72.9, and 36.3–79.0% in

ading on forest floor in studied hardwood, red pine, and
uels were fuel classification by size; 1 h fuels (Mg ha−1;
meter), and 100 h fuels (Mg ha−1; >2.5 and <7.5 cm in
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hardwood, red pine, and jack pine forests, respectively (Fig. 4).
Relative fuel loading of 100 h F was reduced by 18.9–60.4,
36.5–78.9, and 37.6–78.5% in hardwood, red pine, and jack pine
forests, respectively (Fig. 4). Relative fuel loading of 1 h F was
reduced the least by the changes in ROT, MAG, and DUR among
three fuel loading types (Fig. 4). The relative fuel loading gener-
ally reduced with increases in MAG and DUR, but sometimes it
did not decrease consistently with increases in MAG and DUR
in 100 h F (Fig. 4).

3.2. Prescribed burning and harvested biomass

Harvested biomass was mostly affected by ROT in hardwood,
red pine, and jack pine forests (Table 3). In multiple regres-
sion analysis, DUR had the largest parameter estimates among
ROT, MAG, and DUR, which indicated that ROT affected har-
vested biomass the most among three variables (Table 4).
Developed multiple regression equations explained more than
76.0% of variation in harvested biomass (Table 4).

Relative harvested biomass was reduced by <10.0% under
15 and 20 years ROT under any combination of MAG and
DUR. Harvested biomass decreased most with 5 years ROT and
30.0% MAG scenario; the decreased amount was more than
twice of that under scenarios with 15 and 20 years ROT (Fig. 4).
Harvested biomass was 82.1, 69.6, and 74.5% of the control in
hardwood, red pine, and jack pine forests under the shortest
ROT (5 years), highest MAG (30.0%), and longest DUR (5 years).
We found that harvested biomass decreased abruptly under
the shortest ROT and highest MAG (Fig. 4).

4. Discussion

We developed a fuel loading prediction model (EcoFL), which
quantified the fuel loads at the ecosystem level using a classi-
cal ecosystem productivity concept (Odum, 1969) and above-
ground biomass measurements. EcoFL predicted fuel loading
with high precision (r2 = 0.94) (Fig. 3). We used ecosystem level

Table 3 – Results of analysis of variance for three ecosystem types in evaluating the effect of prescribed burning rotation
(ROT), magnitude of productivity reduction by prescribed fire (MAG), and the duration of productivity reduction (DUR) on
fuel loading and harvested biomass

Variables d.f. Hardwood sum of square Red pine sum of square Jack pine sum of square
1 h fuel
ROT 1 241.8**

MAG 1 32.4**

DUR 1 19.2**

ROT × MAG 1 24.1**

ROT × DUR 1 9.4**

MAG × DUR 1 0.8**

Residuals 603 58.9

10 h fuel
ROT 1 23.0**

MAG 1 1.3**

DUR 1 0.8**

ROT × MAG 1 2.2**

ROT × DUR 1 0.9**

MAG × DUR 1 0.6**

Residuals 603 4.8

100 h fuel
ROT 1 57.9**

MAG 1 4.7**

DUR 1 3.1**
ROT × MAG 1 6.7**

ROT × DUR 1 3.1**

MAG × DUR 1 1.4**

Residuals 603 18.0

Harvested biomass
ROT 1 165610.2**

MAG 1 180458.0**

DUR 1 108284.5**

ROT × MAG 1 35749.6**

ROT × DUR 1 12378.5**

MAG × DUR 1 31424.0**

Residuals 603 60711.9

One, 10, and 100 h fuels were fuel classification by size; 1 h fuels (Mg ha−1; <0
and 100 h fuels (Mg ha−1; >2.5 and <7.5 cm in diameter).
∗∗ Significant difference at p = 0.01.
843.0** 48.1**

80.9** 6.6**

47.5** 3.7**

82.4** 5.0**

32.5** 2.3**

9.1** 0.2**

199.4 13.0

91.6** 276.3**

8.9** 32.4**

5.9** 18.4**

14.2** 53.0**

6.1** 25.9**

3.8** 18.2**

27.7 116.8

195.7** 619.2**

26.2** 70.9**

15.8** 43.1**
39.7** 131.9**

17.8** 61.5**

10.6** 41.0**

97.4 251.2

115412.3** 198527.3**

115354.9** 208403.9**

76191.8** 107900.8**

25912.4** 43518.2**

8526.6** 20543.1**

22270.9** 26498.6**

42287.9 76296.2

.6 cm in diameter), 10 h fuels (Mg ha−1; >0.6 and <2.5 cm in diameter),
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Table 4 – Results of multiple regression analysis for three ecosystem types in evaluating the relationship of fuel loads
and timber production with prescribed burning rotation (ROT), magnitude of productivity reduction by prescribed fire
(MAG), and the duration of productivity reduction (DUR) fuel loading and harvested biomass; Fuel loading or timber
production = f(ROT, MAG, DUR)

Forest types Variables Parameter estimates Intercept r2 p

ROT (year) MAG (%) DUR (year)

Hardwood 1 ha 1.455 −0.178 −0.839 71.181 0.885 >0.001
10 ha 2.924 −0.110 −0.483 30.271 0.954 >0.001
100 ha 2.370 −0.127 −0.336 40.182 0.933 >0.001
Timber 0.382 −0.206 −1.021 98.206 0.779 >0.001

Red pine 1 ha 2.028 −0.168 −0.777 55.724 0.910 >0.001
10 ha 2.528 −0.117 −0.606 25.410 0.967 >0.001
100 ha 2.382 −0.124 −0.540 19.421 0.972 >0.001
Timber 0.658 −0.338 −1.770 97.148 0.765 >0.001

Jack pine 1 ha 1.490 −0.180 −0.906 70.357 0.867 >0.001
10 ha 16.89 2.477 −0.105 −0.373 0.972 >0.001
100 ha 2.428 −0.090 −0.443 17.385 0.977 >0.001
Timber −0.297 0.561 −1.451 97.389 0.779 >0.001

One, 10, and 100 h fuels were fuel classification by size; 1 h fuels (Mg ha−1; <0.6 cm in diameter), 10 h fuels (Mg ha−1; >0.6 and <2.5 cm in diameter),
and 100 h fuels (Mg ha−1; >2.5 and <7.5 cm in diameter). Timber indicates the harvested stem biomass during simulation.
a Fuel loading.

aboveground productivity dynamics for developing model.
This simple approach allowed reducing parameter needs for
estimating ANPP. Reducing the number of parameter was
important for this study, because EcoFL was created to show
the possibility of developing a parameter-scarce simple model
and less parameter was more advantageous to develop a land-
scape level model (Levin, 1992).

Sensitivity analysis of EcoFL indicated that carbon allo-
cation was as important as productivity and decomposition
in fuel loading (Ryu et al., 2004). Additionally, it indicated
that carbon allocation had to be parameterized accurately to
reduce model error. Carbon allocation routines in EcoFL were
parameterized using aboveground biomass, which is relatively
easy to measure. These empirical carbon allocation routines
will help apply EcoFL to other ecosystems with little effort in
parameterization of carbon allocation.

EcoFL fuel loading prediction and field measurements was
slightly off from 1:1 line (Fig. 3), and it could be related to an
improper model parameter (e.g., decay rate), disturbances his-
tory in the sampling plots, and spatial variation of fuel loading.
EcoFL has potential to be used for evaluating the effect of var-
ious disturbances (e.g., thinning, alternative mortality, post
harvest treatment, harvesting age) on fuel loading. Moreover,
EcoFL provides the dynamics of fuel loading, which allows esti-
mation of fuel loading by age, forest type, and disturbance his-
tory, which will helpful to management. The output of EcoFL
can be used as an input data for fire spread prediction mod-
e
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duction is not well understood (Landsberg et al., 1984; Boyer,
1993; Landsberg, 1994; Busse et al., 2000). The developed EcoFL
model helped evaluate the possible effect of prescribed burn-
ing on the fuel loading and timber production. Moreover, we
was able to generate a multiple regression equation (Table 4)
evaluating the effect of prescribed burning on the fuel loading
and timber production, and it would be useful information for
forest managers for quick reference.

Our results showed that the duration (DUR) of productiv-
ity reduction by prescribed burning would be the most critical
information when deciding the prescribed burning rotation
(ROT) in order to preserve timber production and to maintain
low fuel loading. After understanding DUR, benefit and cost
of prescribed burning can be precisely estimated. We found
that harvestable biomass decreased more rapidly when ROT
became shorter. For example, harvested biomass reduced up
to 17.9, 30.4, and 25.5% for hardwood, red pine, and jack pine
forests, respectively, with 5 years ROT (Fig. 4). Our results
implied that forest productivity could reduce drastically to
decrease large amount of timber production, if ROT was
shorter than DUR and ecosystem productivity was affected
cumulatively by prescribed burning on the assumption that
forest productivity recovered linearly after prescribed burning.
Previous studies (Sutherland et al., 1991; Boyer, 1993; Boyer and
Miller, 1994; Busse et al., 2000) have reported varying degrees
of basal area or biomass reduction due to the implementa-
tion of prescribed fire in various regions. We derived a similar
ls (e.g., FARSITE), and will allow us to evaluate the effect of
arious landscape structure and/or disturbance history on fire
preading in landscape level.

Although prescribed burning is used extensively in forestry
ractices, the effects of prescribed burning on the fuel loading
r other ecological properties have rarely been quantitatively
odelled. Additionally, the economical perspective of pre-

cribed burning has not been thoroughly understood (Hesseln,
000), and the effect of prescribed burning on timber pro-
conclusion of high variation in the harvested biomass reduc-
tion (0.5–30.4%) from our simulation results, which showed
the reliability of model results.

The simulation runs also revealed that prescribed burn-
ing was an effective tool for reducing fuel loading in hard-
wood, red pine, and jack pine forests. Our results clearly
showed that ROT influenced the amount of fuel reduction
most, when the fuel consumption rate was not changed. How-
ever, forest managers need to decide ROT by considering the
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Fig. 4 – Relative fuel loading and harvested biomass (scenario/control × 100). The effects of prescribed burning on fuel
loading and harvested biomass were tested under various prescribed burning rotation (ROT), magnitude of productivity
reduction (MAG), and duration of productivity reduction (DUR) scenarios. ROT5, ROT10, ROT15, and ROT20 indicate 5, 10, 15,
and 20 years of burning rotation. MAG10, MAG20, and MAG30 indicate 10, 20, and 30% productivity reduction after burning.
Five DUR scenarios were also tested. Productivity reduction was assumed to be recovered to the control condition in a linear
pattern; productivity recovery rate = MAG/DUR.

target fuel loading, as well as the ecological and economical
perspectives (e.g., nitrogen cycling, and timber production).
Specifically, long-term ecological impacts (e.g., biogeochem-
ical cycling, fragmentation, and biodiversity) of prescribed
burning need to be understood thoroughly before applying
prescribed burning to large spatial scale (Amiro et al., 2001).
Overall, the amount of fuel reduction was greater in pine
than hardwood forests, suggesting that prescribed burning
was more effective for fuel management in pine than hard-
wood forests (Fig. 4). Prescribed burning decreased 1 h F the
least among three fuel types (Fig. 4), because 1 h F had a

fast turnover rate due to high decomposition and high fuel
input.

Carbon allocation patterns potentially vary after pre-
scribed burning, and these changes in carbon allocation
can potentially affect timber production. For example, if
productivity reduced after prescribed burning and assimi-
lated carbon were allocated to the crown first, stem growth
would be even slower. Clearly, substantial field data is
still needed to identify the productivity recovery pattern
and duration, carbon allocation after burning, and long-
term burning and productivity relationship for accurately



e c o l o g i c a l m o d e l l i n g 1 9 6 ( 2 0 0 6 ) 395–406 405

predicting the effect of prescribed burning on timber
production.

5. Conclusion and research needs

The goal of this study was to develop a simple, limited parame-
ter, and ecosystem model. The resulting EcoFL model success-
fully predicts the aboveground carbon pools and fuel loading
in three major forest types in northern Wisconsin. The sen-
sitivity analysis showed the importance of carbon allocation
in EcoFL model, and it will be important to parameterize car-
bon allocation routine properly to apply the model to other
ecosystems. The simulation runs indicated that information
on the magnitude and duration of productivity reduction by
prescribed burning would be critical in order to preserve tim-
ber production with maintaining low fuel loading under fre-
quent prescribed burns and to develop sustainable, economic,
and efficient prescribed burning plan. Our results revealed that
prescribed burning can be an effective tool for reducing fuel
loading in hardwood, red pine, and jack pine forests, and it
was more effective in pine forests than hardwood forests. Pre-
scribed burning frequency decided the amount of fuel reduc-
tion when the fuel consumption rate by fire was not changed.
The EcoFL will be a good academic tool for evaluating the
interactions between disturbances and carbon pools in forest
ecosystem. The results of this study will be a fundamental tool
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