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ABSTRACT: Multilevel or hierarchical models have been applied for a number of years in the social sciences
but only relatively recently in the environmental sciences. These models can be developed in either a frequentist
or Bayesian context and have similarities to other methods such as empirical Bayes analysis and random coeffi-
cients regression. In essence, multilevel models take advantage of the hierarchical structure that exists in many
multivariate datasets; for example, water quality measurements may be taken from individual lakes, lakes are
located in various climatic zones, lakes may be natural or man-made, and so on. The groups, or levels, may
effectively yield different responses or behaviors (e.g., nutrient load response in lakes) that often make retaining
group membership more effective when developing a predictive model than when working with either all of the
data together or working separately with the individuals. Here, we develop a multilevel model of the impact of
farm level best management practices (BMPs) on phosphorus runoff. The result of this research is a model with
parameters which vary with key practice categories and thus may be used to evaluate the effectiveness of these
practices on phosphorus runoff. For example, it was found that the effect of fertilizer application rate on farm-
scale phosphorus loss is a function of the application method, the hydrologic soil group, and the land use (crop
type). Further, results indicate that the most effective method for controlling fertilizer loss is through soil injec-
tion. In summary, the resultant multilevel model can be used to estimate phosphorus loss from farms and hence
serve as a useful tool for BMP selection.

(KEY TERMS: nonpoint source pollution; best management practices; nutrients; multilevel models; nutrients;
hierarchical models.)
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INTRODUCTION

In the late 1970s, social scientists expanded the
utility of multivariate regression models by develop-
ing a ‘‘slopes as outcomes’’ modeling strategy.
This approach, which ultimately led to multilevel

(hierarchical) models, effectively recognized that in
many multivariate regression modeling problems, the
regression parameters can be themselves regressed
as a function of other predictor variables. This initial
perspective has evolved during the past 30 years into
a variety of frequentist and Bayesian modeling
approaches that retain group identification yet
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‘‘borrow strength’’ from other, related groups. For
example, in the environmental sciences, Reckhow
(1996) used empirical Bayes (EB) analysis to develop
a model that could be used to predict the index of bio-
tic integrity at specific sites in the Scioto River (Ohio)
better than a single global regression model. A key
attribute of EB estimators is that they are ‘‘shrink-
age’’ estimators; that is, site-specific EB regression
parameters shrink toward the grand (global) mean of
the parameters from all sites. This process of ‘‘bor-
rowing strength’’ from other sites is an important fea-
ture of multilevel models.

To fully appreciate the conceptual basis of the
model proposed in this paper, we need to reflect on
the underlying logic of multilevel (hierarchical) mod-
els. Consider the science of limnology and the task
of lake eutrophication modeling. It is universally
accepted that limnological science provides a wealth
of knowledge concerning the behavior of lakes in
response to their environment. Lakes are similar;
they have commonalities and respond in known ways;
thus we justifiably expect from the science of limnol-
ogy that we can predict with some confidence how
lakes will react to perturbations.

Yet, at the same time, we know that every lake is
unique in some ways. Lakes are not identical porce-
lain bathtubs. They each exist within a unique
watershed, climatic zone, geomorphologic setting, and
have unique in-lake features. Thus, it is unreason-
able to expect that all lakes will respond in exactly
the same way to external perturbations or pollutant
loadings.

If all lakes were identical, then from a statistical
perspective, a single global regression model would
serve equally well in predicting the response in any
lake to nutrient loading. Correspondingly, if all lakes
were strictly unique, then a separate eutrophication
response model would be needed for each lake. How-
ever, as we know that limnology can scientifically
describe the common behavior among lakes and that
every lake has unique features, we are wise to seek a
middle ground in statistical lake modeling. This is
the role played by multilevel, or hierarchical, models.

Implicit multilevel model structure is surprisingly
common in environmental and water quality studies
(see Qian and Shen, 2007), yet it is rarely exploited
in statistical modeling in these fields. A few excep-
tions to note are Reckhow (1996) and Wagner et al.
(2006, 2007). A multilevel model is likely to be pre-
ferred over a standard multiple regression model in
cross-sectional analyses when there are logical hier-
archical groupings (e.g., samples within lakes, lakes
within ecoregions, …) or categorical variables (natu-
ral vs. man-made lakes, run-of-river lakes, …). This
advantage arises from retaining the group or categor-
ical membership in construction of the model.

In fact, hierarchical groupings in datasets should
be addressed using multilevel modeling for two
important reasons – one practical and the other theo-
retical. From a practical standpoint, Reckhow (1996)
and others have shown that by ‘‘borrowing strength’’
across groups, a multilevel model should outperform
a standard regression model, particularly when sam-
ple sizes vary substantially among groups. From a
theoretical standpoint, group data typically have cor-
related errors for the group variables, and this
results in a violation of the least squares assumptions
(resulting in a misleading reduction in parameter
standard errors). Thus, least squares regression is
not actually appropriate for application to a multilev-
el dataset that includes both individual and group
level data.

OBJECTIVE

Given the potential of multilevel modeling to
improve models involving data with hierarchical
structure, the objective of this research is to develop
a multilevel model of field scale phosphorus loading
that statistically characterizes the impact of best
management practices (BMPs). This model, if suc-
cessful, could be used to predict how management
practices affect phosphorus loads. To make this possi-
ble, Harmel et al. (2006) compiled a database from
multiple studies of measured annual phosphorus (P)
and nitrogen (N) loads, soil characteristics, fertilizer
application rates and practices, plus other BMPs; see
Table 1 for a complete listing of variables from the
Measured Annual Nutrient loads from Agricultural
Environments database. This database was intended
in part to update previous work on nutrient export
coefficients by Reckhow and others (Reckhow et al.,
1980; Beaulac and Reckhow, 1982).

Phosphorus (P), or more appropriately ortho-phos-
phorus as it commonly exists in the environment, has
recently become a highly scrutinized nonpoint source
pollutant. This focus has occurred because P is the
limiting nutrient in many freshwater aquatic ecosys-
tems and thus directly affects eutrophication (Car-
penter et al., 1998; Sharpley, 2000). Although
numerous urban and natural P sources exist, the
focus of the present research is runoff from agricul-
tural land uses (LUs), which receive P from the appli-
cation of commercial (inorganic) fertilizers and
animal manures. The present research was designed
to enhance contemporary efforts to quantify and
model agricultural management practice impacts on
water quality and P runoff (e.g., Sharpley et al.,
2001; Harmel et al., 2004; Gitau et al., 2005)
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including the USDA Conservation Effects Assessment
Project (Mausbach and Dedrick, 2004).

MODEL DEVELOPMENT STRATEGIES

As noted in the introduction, the multilevel, or
hierarchical, model strikes a balance between treat-
ing data from different studies as completely indepen-
dent (thereby analyzing them separately, or
unpooled) and treating data from different studies as
replicates (thereby analyzing the combined data with-
out considering the sources, or completely pooled).
This balance is often difficult because of the differ-
ences in studies, in terms of sample size, variability,
and other factors affecting the outcome.

The result of multilevel analysis is partial pooling,
which means two things. First, for the model param-
eters, the overall (global) average is a weighted
mean of study-specific averages. Second, the esti-
mated study-specific parameters are shrunk toward
the global mean, and the degree of shrinkage
depends on the study-specific uncertainty. From a
mathematical standpoint, partial pooling can be seen
as an extension of the commonly used analysis of
covariance (ANCOVA). To illustrate the concept, we
use a simple ANCOVA example of phosphorus load-
ing from an agriculture field as a function of fertil-
izer application with a dummy variable representing
different BMP practices. To clarify the main concept
of partial pooling, we assume a common slope. That
is, we use a model of the form yi ¼ aj½i� þ bxi þ �;
where y is the log P loading from field i, x is the fer-
tilizer application rate, b is the common slope, a is
the intercept, and the subscript j[i] represents
that the ith field receives the jth BMP. With no pool-
ing, the model is fitted by using a dummy variable
for BMP and the regression model coefficients are
estimated separately for each BMP group. If b is
known, the no pooling estimate of aj is �yj � b�xj. If the
complete pooling intercept is la, the partial pooling
estimate of aj is (Equation 1):

âj �
nj=r2

y

nj=r2
y þ 1=r2

a
ð�yj � b�xjÞ þ

1=r2
a

nj=r2
y þ 1=r2

a
la ð1Þ

which is a weighted average of the complete pooling
and no pooling estimate of the intercept. The partial
pooling equation is based on the assumption that the
group-specific intercepts are from a common distribu-
tion (Equation 2):

TABLE 1. Variables in the MANAGE Database.

Watershed ID – Name of the watershed.
Location (City, State) – City and state ⁄ province of the study
(occasionally only a county or region was specified).

State – US state (or Canadian province) included to aid
state-specific queries.

Location (Lat, Long) – Latitude and longitude of the study.
Date – Beginning and end of period with annual nutrient load data
(not necessarily the entire study duration).

Watershed Years (ws yr) – Product of the number of monitored
watersheds and the number of years with annual nutrient
load data.

Land Use – Identification of crop or vegetation type(s) and crop
rotation.

Tillage – Description of the tillage management divided into four
options: no-till, conservation, conventional, or pasture.

Conservation Practice: Five options: waterway, terrace, filter
strip, riparian buffer, or contour farming.

Dominant Soil Type – Soil textural class and soil series.
Hydrologic Soil Group – NRCS hydrologic soil group (HSG)
classification (A, B, C, or D).

Soil Test P (ppm) – Maximum and minimum soil test P values for
records with multiple watersheds or multiple years.

Soil Test P Extractant – Extractant used to determine soil
test P.

Land Slope (%) – Maximum and minimum land surface slopes for
records with multiple watersheds.

Watershed Size (ha) – Maximum and minimum watershed sizes
for records with multiple watersheds.

Type of Fertilizer Applied – Macro-nutrient composition
(N-P-K).

Fertilizer Application Method – Fertilizer application method
divided into four options: surface, injected, incorporated, or other.

Annual maximum, minimum, and average values are
provided for the following categories when specified:

N Applied (kg ⁄ ha-yr) – The total annual amount of N applied
to watershed(s) from all fertilizer sources.

P Applied (kg ⁄ ha-yr) – The total annual amount of P applied
to watershed(s) from all fertilizer sources.

Precipitation (mm ⁄ yr), Runoff (mm ⁄ yr), and Soil Loss
(kg ⁄ ha-yr).

Dissolved N (kg ⁄ ha-yr) – The total amount of dissolved N lost
from the watershed(s).

Particulate N (kg ⁄ ha-yr) – The total amount of N lost from the
watershed(s) in a particulate form.

Total N (kg ⁄ ha-yr) – Total N load was specified in a number of
the publications. If the total N load was not specified, it was
determined as the sum of dissolved and particulate N loads, when
both were specified.

Dissolved P (kg ⁄ ha-yr) – The total amount of dissolved P lost
from the watershed(s).

Particulate P (kg ⁄ ha-yr) – The total amount of P lost from the
watershed(s) in a particulate form (associated with sediment).

Total P (kg ⁄ ha-yr) – Total P load was specified in a number of
the publications. If the total P load was not specified, it was
determined as the sum of dissolved and particulate P loads, when
both were specified.

Specific form or laboratory analysis technique used to
determine dissolved, particulate, and total N or P composition
in runoff.

Total, Surface, Base Flow Indication – Indication of the
flow transport mechanisms addressed.
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aj � Nðla; r
2
aÞ ð2Þ

The resulting partial pooling estimate of the group
intercept is a weighted average of the no pooling esti-
mate (�yj � b�xj) and the complete pooling estimate (la).
The weight is determined by group sample size nj,
between group variance ðr2

aÞ, and within group vari-
ance ðr2

yÞ. If a particular group sample size nj is large,
or the between group variance is very large, the par-
tial pooling estimate is close to the no pooling esti-
mate. In fact when r2

a !1 or nj !1, the partial
pooling estimate converges to the no pooling estimate.
Conversely, if the group sample size nj is small or the
within group variance r2

y is large, the partial pooling
estimate is closer to the complete pooling estimate.
For a group with no data (nj = 0), the partial pooling
estimate is the same as the complete pooling esti-
mate. When both the intercept and the slope are
allowed to vary by group, the same general conclu-
sion holds (Gelman and Hill, 2007).

Consider the problem addressed in this paper – the
prediction of phosphorus loading from a range of agri-
cultural sites. The database includes measurements
of phosphorus loading, plus a number of candidate
predictor variables, from 55 studies (Harmel et al.,
2008). If no pooling of the data from the 55 studies is
undertaken, we will have a set of 55 predictive equa-
tions of the site-specific phosphorus loading, each
with a standard error. However, if complete pooling
is used, we pool the data from all 55 studies, yielding
a single equation with standard error.

With no pooling, each site will have unique param-
eter estimates for the predictor variables as the
development of the model for each site is conducted
separately. With complete pooling, we assume that
all studies share the same global parameter estimates
and standard errors. With partial pooling, the vary-
ing level of shrinkage of each parameter is deter-
mined by the ratio of within and between group
variances. The estimated site-specific regression
parameters are a compromise between the two
extremes, completely pooled and unpooled. The hier-
archically estimated site parameters are approxi-
mately the weighted average of the global parameter
and the unpooled site-specific parameter. In effect,
the weighted average reflects the amount of informa-
tion in the parameter from an individual site regres-
sion and the information in the global regression
based on all sites. A regression parameter from a site
with a small sample size has less information, and
the hierarchical estimate is pulled closer to the over-
all average. A regression parameter from a site with
a large sample size has more information and
the hierarchical estimate is pulled toward the site
average.

The models presented in this paper were fitted
using the maximum likelihood estimator (MLE; Laird
and Ware, 1982) for multilevel models implemented
in the R function Linear Mixed-Effects Models (lmer)
(Pinheiro and Bates, 2000). The MLE approach is
convenient and competing models can be evaluated
quickly. However, the MLE has limited flexibility and
often can exhibit difficulties in estimating variance
parameters when the number of levels is small. In
addition, the MLE algorithm cannot handle missing
values properly. Thus, while a Bayesian model might
be considered to address these difficulties, the con-
ventional frequentist approached employed here facil-
itates the exploration of a large number of candidate
models.

MULTILEVEL MODEL FITTING AND SELECTION

For this study, three key continuous predictor
variables emerged based on our initial exploratory
analysis: water runoff, soil loss, and phosphorus (fer-
tilizer) application rate. Our initial analysis also
revealed that, for this multilevel regression model,
the regression parameters may vary depending on
the following categorical factors: LU (crop type),
hydrologic soil group (HSG), fertilizer application
method, tillage method, conservation practice, and
study site. In our exploratory stage, we used lmer to
fit various combinations of continuous and categorical
predictors and evaluated the model fit. The model
evaluation process is mostly subjective, as we cannot
use conventional methods such as the Akaike infor-
mation criterion or the Bayesian information crite-
rion because missing data for individual predictor
variables results in different sample sizes for differ-
ent combinations of variables. If we eliminated all
cases with missing values, we would be left with an
extremely small dataset.

In selecting a model, we wanted to simplify the
final model by using the minimum combination of
the three continuous predictor variables and the six
potential categorical variables. A full model allows
the intercept and three slopes (for water runoff, soil
loss, and fertilizer rate) to vary according to all six
categorical variables. In simplifying this full model,
we needed to determine whether the six potential
categorical variables could be dropped from one or
more slopes or from the intercept. Our first task in
the exploratory study using lmer was to determine
whether or not different study sites resulted in
different model coefficients. Our initial hypothesis
was that there would be a site effect on the inter-
cept term, which represents the mean phosphorus
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delivery rate; this term was expected to vary from
site to site reflecting the differences in soil, climate,
and other factors among study sites. Our explor-
atory analysis confirmed this hypothesis. However,
the site effect on the three slopes is statistically
insignificant (at the 5% level). When examining the
LU effects, we noticed that the LU effects and site
effects cannot be effectively estimated together.
Upon further examination, we discovered that at
most sites, experiments were on one LU and on
one HSG. As a result, the effects of study site and
these two categorical variables are confounded. To
address this and simplify the model, we removed
study site as a categorical predictor; thus, the study
site effects are represented in the LU and the HSG
effects.

After fitting over 20 models, we found the following
model provides the best fit and physical interpreta-
tion for predicting phosphorus loading from agricul-
tural fields:

logðPLiÞ ¼ b0;LU½i�;AppM½i�;Till½i�;HSG½i�

þ b1;LU½i�;AppM½i�;HSG½i� logðx1iÞ
þ b2;Till½i� logðx2iÞ þ b3 logðx3iÞ þ �;

ð3Þ

where PLi is annual total phosphorus runoff (kg ⁄ ha-
yr) from the study site (i), x1 is the annual amount
of fertilizer applied (kg ⁄ ha-yr), x2 is the annual
water runoff (mm ⁄ yr) from the field, x3 is the
annual soil loss (kg ⁄ ha-yr), the b’s are the regres-
sion intercept ⁄ slopes, and � is the regression error
term. This basic model structure involving these
three continuous variables seems plausible as fertil-
izer rate determines to a great extent the source
(the amount of P available for runoff), runoff pro-
vides the transport mechanism and thus gives an
indication of the dissolved P portion, and soil loss
gives an indication of the particulate P loss. The
categorical variables [LU, fertilizer application
method (AppM), tillage method (Till), and HSG]
determine various b-parameters in the multilevel
model. Thus for example:

b0;LU½i�;AppM½i�;Till½i�;HSG½i�

¼ lb0 þ cb0;LU þ cb0;AppM

þ cb0;Till þ cb0;HSG þ �;
ð4Þ

where lb0 is the overall mean effect intercept, cLU is
the LU effect, cAppM is the fertilizer application
method, cTill is the tillage method, and cHSG is the
hydrologic soil group.

To understand the application of Equation (4), let
us calculate the multilevel value of b0 (overall mean
effect value of +0.144) using the fitted parameters in
Tables 2 and 3 for a field planted with corn
()0.157255), using an injection method for the fertil-
izer application ()0.59687), using conventional tillage
(+0.071645), and with a HSG of B ()0.564179). Thus,
substituting these values from Tables 2 and 3, we
get, for these field conditions:

b0;LU½corn�;AppM½injection�;Till½conventional�;HSG½B�

¼ 0:144� 0:157255� 0:59687

þ 0:071645� 0:564179 ¼ �1:103

Based on the same notation, the slope for log(x1) (P
applied) is written as:

TABLE 2. Estimated Overall Mean Effects.

b0 b1 b2 b3

Estimate 0.144 0.232 0.373 0.549
Standard Error 0.422 0.191 0.095 0.052

TABLE 3. Estimated Categorical Variable Effects.

Land Use (Crop Type) cb0, LU cb1, LU

Alfalfa 0.645197 )0.125893
Corn )0.157255 )0.153294
Cotton )0.056698 )0.101043
Fallow 0.226142 )0.150826
Oats ⁄ Wheat 0.195751 0.205736
Pasture ⁄ Range )0.225113 0.039476
Peanuts 0.111403 )0.010232
Rotation )0.212704 0.318791
Sorghum )0.526721 )0.022715

Hydrologic Soil Group cb0, HSG cb1, HSG

B )0.564179 )0.092124
B and C 0.438210 0.157649
B and D )0.017252 0.049782
C 0.436505 0.193347
C ⁄ D )0.090889 )0.046704
D )0.202394 )0.261949

Tillage Methods cb0, Till cb2, Till

Conservation )0.344965 )0.1527216
Conventional 0.071645 0.0317183
No-Till 0.260853 0.1154838
Pasture 0.012467 0.0055195

Fertilizer Application Methods cb0, AppM cb1, AppM

Incorporated 0.46801 0.22160
Injected )0.59687 )0.28262
Surface Applied 0.39698 0.18797
Other )0.26811 )0.12695
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b1;LU½i�;AppM½i�;HSG½i�

¼ lb1þ cb1;LUþ cb1;AppMþ cb1;HSGþ �
ð5Þ

and the slope for log(x2) (water runoff) is:

b2;Till½i� ¼ lb2 þ cb1;Till þ � ð6Þ

For the third regression parameter, we found that
the slope of soil loss does not vary. Thus in summary,
the effect of b0 (the intercept of mean annual P loss)
varies based on LU, fertilizer application method, till-
age, and HSG at each site; the effect of b1 (the slope
of fertilizer applied) varies based on LU, fertilizer
application method, and HSG at each site; the effect
of b2 (the slope of water runoff) varies based on till-
age; and the effect of b3 (the slope of soil erosion) is
constant. The overall model is summarized graphi-
cally in Figure 1, and a comparison of observations
with fitted values is shown in Figure 2.

DISCUSSION

Figures 3-6 illustrate the multilevel categorical
effects on the overall regression model that is pre-
sented in equation form above; Tables 2 and 3 pres-

ent the actual parameter values. The LU effects are
reflected in both the intercept and slope of P applica-
tion (Figure 3). As the continuous predictors are all

FIGURE 1. A Graphical Representation of the Multilevel Phosphorus Runoff Model.

FIGURE 2. Model Estimated Natural Log P Loadings
Are Plotted Against the Observed Log P Loadings.

The reference line has an intercept of 0 and slope of 1.
For a perfect model, all data points should fall on the line.
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centered at their respective geometric mean (pre-
sented in Table 4), the overall average intercept in
the model is the estimated log P loading when all
continuous predictors are at their geometric mean.
The LU effect on the intercept shows the change in
log total P loading for different LU, or crop types,
when the three continuous variables are at their
respective geometric mean. The LU type also changes
the slope for fertilizer application. Fallow land and
land planted with corn, cotton, and alfalfa have the

smallest slopes, and all of these slopes are not signifi-
cantly different from zero; hence increased fertilizer
usage is not directly associated with increased P loss
for these LU types. In contrast, the land for various
crop rotations has the highest slope (indicating a
positive association between fertilizer use and P loss
for this LU). HSG affects the model intercept and the
fertilizer usage slope. Land with HSG of B has the
smallest intercept (low contribution of HSG B to
average P loading) followed by group D. HSG of C
and B ⁄ C are associated with a high intercept (high
contribution of these HSGs to P loading) (Figure 4).
HSG D has the smallest slope for P application (not
different from zero) indicating insignificant direct
association between P loading and fertilizer applica-
tion. Groups B ⁄ C and C have the highest slopes,

FIGURE 3. The Land Use Type Effects on the Intercept and on
the Slope of P Applied. The estimated mean effects are shown as
open circles. The thick lines are the estimated mean ± 1 SE, and
the long thin lines are the estimated mean ± 2 SE. The numbers
on top of the plot are the average intercept and slope. Thus, the
intercept for land used for growing alfalfa would have an intercept
about 0.6 units above the overall average of 0.144, and a slope for
P application about 0.2 units less than the overall average of 0.232.
Because the response variable is the log of P loading, the difference
reported here is a multiplicative factor. For example, 0.6 units
above the average is e0.6 (or 1.8) times the overall average (or 80%
above the average).

FIGURE 5. The Fertilizer Application Method Effects
on the Intercept and on the Slope of P Application.

FIGURE 4. The Hydrologic Soil Group Effects on the
Intercept and on the Slope of P Application.

FIGURE 6. The Tillage Method Effects on the
Intercept and on the Slope of Runoff.

TABLE 4. Geometric Mean for the Continuous Predictor Variables.

Variable Geometric Mean

Amount of Fertilizer Applied (x1) 13.812
Water Runoff (x2) 57.439
Soil Loss (x3) 679.776
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suggesting a positive association between P loading
and the amount of P applied in these hydrological soil
groups. Fertilizer application methods affect the
intercept and the slope of annual P applied (Figure 5).
When injection was used, both the intercept and the
slope are the smallest, suggesting that the most effec-
tive method for controlling fertilizer loss is injection.
Tillage methods affect the intercept and the slope of
runoff (Figure 6). The tillage effects are somewhat
counterintuitive, in that fields using the no-till
method are associated with the highest intercept
(average P loading) and a large runoff effect. This is
attributed to lack of fertilizer incorporation at no-till
sites. It should, however, be noted that few no-till
fields are included in the database.

Although the estimated model coefficients (Tables 2
and 3) have varying levels of uncertainty (as indicted
by the standard error), we retained all three continu-
ous predictors and four categorical variables for two
reasons. The first reason is that these predictors are
physically meaningful in predicting the P loading from
a field. The second reason has practical aspects –
about half of the observations were removed from the
analysis because of missing values in order to fit the
mixed effect regression model displayed in Figures 1-
6. If more predictors were included in the final model,
we would have a much smaller sample size. The small
sample size problem is also the reason why no valida-
tion was performed; it is expected that validation will
be possible in the future as more data are obtained.

CONCLUSIONS

The flexibility of the multilevel model allows us to
advance empirical modeling of agricultural practices
on nutrient loading beyond export coefficients (Reck-
how et al., 1980) and beyond bivariate relationships
such as those presented in Harmel et al. (2006). Such
models can provide an attractive alternative to daily
time step, long-term simulation models, such as ero-
sion ⁄ productivity impact calculator (Williams and
Sharpley, 1989) in situations where detailed input
data are not available.

Using a multilevel modeling approach, we devel-
oped a predictive model for P loading from agricul-
tural land using cross-sectional data. Our model
suggests that P loss from an agricultural field is a
function of the amount of fertilizer applied, annual
water runoff, and annual soil loss. Further, the model
coefficients vary due to different LUs, HSGs, fertilizer
application methods, and tillage methods. These fac-
tors all contribute to the slope and intercept factors
developed in this multilevel modeling approach.

We believe that this model can serve as either a
standalone model to assess the impact of proposed
practices or as an empirical augmentation to
watershed-scale models, such as SPAtially Referenced
Regressions On Watershed attributes (SPARROW)
(Smith et al., 1997) or Soil and Water Assessment
Tool (SWAT) (Santhi et al., 2005). When applied in
conjunction with a watershed model, the model pre-
sented in this paper could be applied for agricultural
fields incorporating (or proposed to incorporate) one
or more of the modeled practices to provide an empir-
ically based estimate of the impact of BMPs and
other modeled practices. For example for SPARROW
with an ‘‘agricultural land’’ category, the load com-
puted using our model could be substituted for the
SPARROW agricultural parameter to assess the
watershed impact of the practices being modeled.
This has obvious value for estimating the load alloca-
tion component of a Total Maximum Daily Load
(TMDL). Future multilevel modeling work should
involve a similar model for nitrogen, and perhaps
multilevel modeling within a Bayesian framework.
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