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Areas with disproportionately high pollutant losses (i.e., 
critical source areas [CSAs]) have been widely recognized as 
priority areas for the control of nonpoint-source pollution. Th e 
identifi cation and evaluation of CSAs at the watershed scale 
allows state and federal programs to implement soil and water 
conservation measures where they are needed most. Despite 
many potential advantages, many state and federal conservation 
programs do not actively target CSAs. Th ere is a lack of 
research identifying the total CSA pollutant contribution at 
the watershed scale, and there is no quantitative assessment 
of program eff ectiveness if CSAs are actively targeted. Th e 
purpose of this research was to identify and quantify sediment 
and total phosphorus loads originating from CSAs at the 
watershed scale using the Soil and Water Assessment Tool. Th is 
research is a synthesis of CSA targeting studies performed in 
six Oklahoma priority watersheds from 2001 to 2007 to aid 
the Oklahoma Conservation Commission in the prioritized 
placement of subsidized conservation measures. Within these 
six watersheds, 5% of the land area yielded 50% of sediment 
and 34% of the phosphorus load. In watersheds dominated by 
agriculture, the worst 5% of agricultural land contributed, on 
average, 22% of the total agricultural pollutant load. Pollutant 
loads from these agricultural CSAs were more than four times 
greater than the average load from agricultural areas within the 
watershed. Conservation practices implemented in these areas 
can be more eff ective because they have the opportunity to 
treat more pollutant. Th e evaluation of CSAs and prioritized 
implementation of conservation measures at the watershed 
scale has the potential to signifi cantly improve the eff ectiveness 
of state and federally sponsored water quality programs.
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Water quality impairment due to sediment and nutrients is a 

serious problem in the USA. In 2002, 45% of streams and 

rivers and 47% of lakes and reservoirs were listed as impaired and 

unable to support their designated uses (USEPA, 2007). Agricultural 

production is the leading source of impairment for streams and rivers 

in the USA (USEPA, 2007). Conservation practices can signifi cantly 

reduce nonpoint-source pollution, but to be eff ective, appropriate 

practices must be located to prevent the mobilization of pollutants or 

intercept them en route to streams. Th e placement of these practices 

within a watershed signifi cantly infl uences their overall eff ectiveness 

(Gitau et al., 2004). Nonpoint-source pollution is diff use in nature, 

but some areas contribute signifi cantly more pollutant per unit area 

than others. Areas that contribute disproportionate pollutant loads 

are often referred to as critical source areas (CSAs) and are often 

optimal locations for conservation practices. Th e disproportionate 

pollutant losses from CSAs generally result from a combination of 

characteristics, including soil type, land use, management, slope, 

placement within the landscape, and/or proximity to streams or 

sensitive water bodies. Th e concept of targeting CSAs has been 

widely recognized as an important consideration in the placement 

of conservation practices within a watershed (Sivertun et al., 1998; 

Pionke et al., 2000; Gburek et al., 2002).

Th e identifi cation of CSAs is essential to effi  ciently manage 

phosphorus (P) loss at the watershed scale (Gburek et al., 2002). 

Th e identifi cation of CSAs at the fi eld or farm scale is a routine prac-

tice. Tools such as the P index (Lemunyon and Gilbert, 1993) and 

the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 

1978) are simplistic models used to assess P or sediment losses and 

are easily applied to a single fi eld. Critical source areas can also be 

identifi ed via qualitative evaluation by conservation planners based 

on professional judgment. Th e identifi cation of CSAs at the farm 

scale is important, but the identifi cation of CSAs over much larger 

areas is also needed. Th e manual evaluation of each individual fi eld 
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within a large watershed is resource and cost prohibitive for state 

and federally funded conservation programs.

Due to their simplicity, empirically derived models, such 

as the USLE and the P index, are well suited for watershed 

scale evaluation using a Geographic Information System (GIS) 

(Sivertun et al., 1998; Birr and Mulla, 2001; Sivertun and 

Prange, 2003). Both are comprised of relatively simple factors, 

many of which can be derived from existing GIS data. Th e 

use of the USLE in a GIS to map erosion is relatively simple 

because most USLE parameters can be derived directly from 

widely available soils and landcover data. Other parameters, 

such as the slope length-gradient factor, can be estimated from 

elevation data (Moore and Burch, 1986). Sivertun and Prange 

(2003) used soils, slope, landcover, and distance to watercourse 

within a GIS to predict pollutant losses. Th eir research focused 

on simple methods applicable in commercial GIS products. 

Although this method is not quantitative (i.e., actual pollutant 

loads were not predicted), it is a useful tool to identify CSAs 

for planning purposes. Phosphorus indices are typically more 

complex and include data, such as soil P status and fertilizer 

application rates, that are not readily available at the watershed 

scale. Many P indices use erosion estimates from other models 

like the USLE to better predict particulate P loss (Sharpley et 

al., 2003). Birr and Mulla (2001) applied a modifi ed version of 

a P index at the regional scale in Minnesota. Th ese P index re-

sults compared favorably with measured water quality data, but 

the coarse discretization was ineff ective for targeting CSAs.

Although the adaptation of fi eld-scale P indices for use at 

the watershed scale is useful, it has limitations. Th e majority 

of P indices predict indexed risk, not quantity of P loss. Th ese 

tools can be used to rank potential sites and identify areas with 

the highest risk for P loss. Although P indices are potentially ef-

fective at locating CSAs, they cannot predict the quantity of P 

loss or the eff ect of establishing a conservation practice within 

a CSA. Because water quality objectives increasingly include 

specifi c pollutant load reduction goals or numeric water qual-

ity standards, the quantity of pollutant loss and the extent of 

CSAs are needed to develop more effi  cient water quality man-

agement strategies at the watershed scale.

Comprehensive hydrologic and water quality models like 

the Soil and Water Assessment Tool (SWAT) (Arnold et al., 

1998) can predict the locations and quantities of pollutant 

loss from CSAs within a large watershed. SWAT is eff ective 

for identifying CSAs because it incorporates landcover, topog-

raphy, soil characteristics, rainfall, and land use management, 

all of which infl uence the mobilization and transport of sedi-

ment and nutrients. SWAT is a watershed scale distributed hy-

drologic model, but it is eff ective at a variety of spatial scales 

(Gassman et al., 2007). Distributed parameter hydrologic 

models allow a watershed to be broken into many smaller sub-

basins to incorporate additional spatial detail. Water yield and 

pollutant loads are calculated for each sub-basin and routed 

through a stream network to the watershed outlet. Th e SWAT 

model takes this approach a step further by incorporating the 

concept of hydrologic response units (HRUs). A HRU is a 

unique combination of soil, landcover, and sometimes slope 

within a subbasin that is simulated as a single unit. Processes 

within each HRU are calculated independently, and the total 

nutrient load or water yield for a sub-basin is the sum of all the 

HRUs it contains. Th e current SWAT release does not consider 

the position of the HRU within the sub-basin; however, future 

versions will allow overland fl ow from one HRU to another. 

Despite this limitation, HRUs allow more spatial detail per-

taining to landcover and soil combinations to be represented 

in a computationally effi  cient manner. Th e additional spatial 

detail facilitated by HRUs allows SWAT to identify relatively 

small CSAs. Th e minimum size of CSAs that can be identi-

fi ed is directly related to the size of the sub-basins and HRUs 

defi ned during watershed descritization. Th e discretization of 

SWAT is a key factor in the identifi cation of CSAs.

Th e SWAT model has been used to target critical source ar-

eas within larger watersheds (Tripathi et al., 2003; Gitau et al., 

2004; Srinivasan et al., 2005). Tripathi et al. (2003) used the 

SWAT model to identify and prioritize critical sub-watersheds 

within a larger drainage area. However, with only 12 sub-basins, 

the level of descritization used was coarse. Srinivasan et al. (2005) 

used SWAT to identify CSAs for runoff  generation and com-

pared these with CSAs predicted by the more physically based 

Soil Moisture Distribution and Routing model (Soil and Wa-

ter Laboratory, 2003). Th e predicted areas of runoff  generation 

diff ered between the models, but SWAT replicated measured 

streamfl ow better than SWDR. Gitau et al. (2004) used SWAT 

to predict the spatial distribution of P losses on a 300-ha farm for 

the purpose of optimizing conservation practice selection and 

placement by using HRUs with an average size of 1.6 ha.

It is much easier to identify CSAs than to evaluate their contri-

bution to the total pollutant load. Th e collection of water quality 

data at a suffi  cient resolution and scale is problematic. Even in 

a small watershed, the level of instrumentation and monitoring 

duration necessary to quantify pollutant loads from CSAs is pro-

hibitively expensive. Models are currently the only feasible method 

to quantify these contributions at the watershed scale; even these 

assessments are limited. Pionke et al. (2000) used the Soil Mois-

ture-based Runoff  Model (Zollweg et al., 1996) to evaluate the 

contribution of critical source areas in a small 26.7-ha watershed. 

Th ey predicted that 98% of the total sediment loss occurred from 

only 6% of the watershed area and that the majority of dissolved P 

originated from only 11% of the area. Diebel et al. (2008) exam-

ined P loss distributions derived from a quantitative P index and 

watershed-level P load estimates to evaluate the impact of target-

ed and random implementation of conservation practices. Th ey 

found that the targeted implementation of conservation measures 

on 10% of fi elds could reduce P losses by 26%. Th is research 

demonstrates that a relatively small fraction of a watershed may 

generate the majority of pollutant loads. Similar research applied 

to more and larger watersheds is needed.

Th e need to identify CSAs at the watershed scale has been 

widely recognized, yet there is a lack of research addressing the 

total watershed CSA pollutant contribution. Despite the po-

tential advantages, many state and federal conservation pro-

grams do not target CSAs at the watershed level. Large-scale 

programs, such as the Conservation Reserve Program, Conser-
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vation Reserve Enhancement Program, Environmental Qual-

ity Incentives Program, and various state cost-share programs 

funded by 319(h) and state funds may address CSAs identifi ed 

on a cooperator’s farm, but many other CSAs in the watershed 

are missed. All of these programs are voluntary; the cost share 

rate generally determines which conservation practices will be 

implemented and which landowners will participate. Targeting 

enables local program staff  to actively recruit landowners with 

high-pollutant-loss fi elds into cost share programs.

Resistance to a targeted approach is due, in part, to a lack of 

research demonstrating the potential advantages. It is generally 

agreed that a relatively small fraction of a watershed can generate 

a disproportionate amount of the pollutant load and that the 

targeted establishment of conservation measures is a reasonable 

approach (Sharpley 1999; Pionke et al., 2000; Yang and Weer-

sink, 2004). Unfortunately, there is little research illustrating 

quantitative benefi ts. To address this need, the objective of this 

research was to identify and quantify sediment and total P loads 

originating from CSAs at the watershed scale using SWAT.

Materials and Methods

Study Watershed Data and Model Development
Th is research was a synthesis of six separate studies conducted 

from 2001 to 2007, in which CSAs were identifi ed in Oklaho-

ma Conservation Commission (OCC) priority watersheds us-

ing SWAT (Fig. 1). Th e OCC provides federal Clean Water Act, 

Section 319(h) and state funds to pay a portion of the costs to 

establish certain soil and water conservation measures in prior-

ity watersheds across Oklahoma. To maximize potential benefi ts 

with limited funding, the OCC actively targets sediment and P 

CSAs for enrollment into cost-share programs. Sediment and P 

are among the primary pollutants of concern in most Oklahoma 

waters. In an eff ort to assist OCC, we used SWAT coupled with 

satellite imagery to target CSAs and quantify their relative pol-

lutant contribution within each priority watershed. Each priority 

watershed was analyzed in a separate study, each with diff ering 

objectives with respect to spatial scale and pollutants of concern. 

Th ere were no existing guidelines or recommendations for the 

use of SWAT to identify CSAs, and thus the methods varied 

among the studies. Th e methods presented here are generalized. 

More specifi c methods are available in each cited project report 

(Storm et al., 2003a, 2003b, 2005a, 2005b, 2006, 2007).

Model Input Data

Model prediction accuracy depends largely on data used to 

construct the model. Diff erent data sets were used in each of 

the six studies. Th e use of SWAT to evaluate P and sediment 

CSAs required soil, topography, landcover, fi eld management, 

weather, and soil P status. Th e characteristics of each watershed 

and the pollutants of concern were considered during input 

data selection. Generally, the highest resolution data available 

at the time were used. Th ese six study areas represented a great 

deal of variation (Table 1). SWAT input data and model de-

scritization details are given in Table 2. Soil Survey Geographic 

(USDA, 1991a) soils were preferred over Mapping Informa-

tion and Display (Senay and Elliot, 1999), which was in turn 

preferred over State Soil Geographic (USDA 1991b). Higher-

resolution soils data allows small areas of highly erosive or low 

infi ltration to be identifi ed. Th e resolution of the digital eleva-

tion models (DEMs) aff ects important topographic character-

istics, such as slope and slope length; the most detailed DEM 

available was used in each model.

Accurate and up-to-date landcover data were essential to 

the proper identifi cation of CSAs. Although older landcover 

data were publically available from several sources, these data 

were classifi ed from recent satellite imagery separately for each 

study. Details of the landcover classifi cation were given in each 

project report. Th e satellite sensor was selected based on the 

study objectives and budget. Landsat (30-m), Satellite Proba-

toire d’Observation de la Terre (SPOT) 5 (10-m), and Ikonos 

(4-m) data were used in diff erent studies. Landcover classifi ed 

from satellite imagery was specifi cally tailored to identify land-

covers of concern in each priority watershed. For example, it 

was necessary to identify pastures with a high fraction of bare 

soil due to overgrazing in some watersheds and to diff erentiate 

between small grains and row crops in others.

Model Descritization

Th e SWAT model generates predictions at a variety of spa-

tial scales. We used HRU-level predictions to identify sediment 

and P CSAs, although sub-basin predictions could also be used. 

Signifi cantly smaller CSAs can be identifi ed using HRU predic-

tions. Figure 2 illustrates the Spavinaw Creek Watershed priority 

area SWAT sub-basin and HRU discritizations. Th is 24,000-ha 

area was discretized into 256 sub-basins and 6600 HRUs. Un-

like sub-basins, HRUs do not necessarily represent specifi c con-

tiguous areas, and thus topographical parameters like slope or 

slope length were more diffi  cult to properly assess. Th e ArcView 

SWAT interface (Di Luzio et al., 2004) assigned the same topo-

graphical characteristics to every HRU within a sub-basin. Th is 

approach prevents the generation of multiple HRUs to represent 

diff ering slopes of a particular landcover/soils combination with-

in each sub-basin and reduces the complexity of the resulting 

model. Th is simplifi cation was of little concern at the watershed 

scale but may be signifi cant at the HRU level. We evaluated the 

most important topographical characteristics at the HRU level 

and modifi ed each model accordingly.

Hydrologic response units can be directly mapped if no ag-

gregation of landcover or soils is permitted during the HRU 

defi nition process. Relatively minor landcover soil combina-

tions may be reassigned to more dominant combinations dur-

ing this process to simplify the model. Due to this reassign-

ment, model predictions in these smaller areas are made with 

inaccurate soils and/or landcover, making it diffi  cult to identify 

them in the original GIS data. Hydrologic response unit level 

predictions from each of the study watersheds were extrapo-

lated to the resolution of the original 30-, 10-, or 4-m GIS 

data. Extrapolation methods diff ered by study and are docu-

mented in detail in each project report. A brief description of 

each Priority Watershed CSA targeting study is given in the 

next section.
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Study Watershed and Model Descriptions

Stillwater Creek

An uncalibrated SWAT model was developed for the Still-

water Creek Priority Watershed. Landcover was primarily pas-

ture, range, and winter wheat. A database of unique soil and 

landcover combinations with slope and annual sediment yield 

was generated from HRU-level SWAT predictions. Sediment 

yield, at a resolution of 30 m, was interpolated by matching 

landcover and soils combinations between this database and 

individual 30-m grid cells in the original GIS data. Sediment 

yield was corrected for diff erences in slope based on USLE 

slope length-gradient (LS) factor relationships (Storm et al., 

2003a). Th is method allows the topographical data provided 

by the DEM to be represented in the targeting map with great-

er fi delity. Critical source areas were identifi ed from sediment 

yield extrapolated at a resolution of 30 m.

Fort Cobb Reservoir

Th e Fort Cobb Reservoir Priority Watershed was comprised 

primarily of rangeland and winter wheat (Storm et al., 2003b). 

Sediment yield was extrapolated at a resolution of 10 m using 

a methodology nearly identical to that used in the Stillwater 

Creek study. A sample of CSA sites identifi ed in the watershed 

were visited to corroborate the model results and were found 

to have visual indications of high sediment loss (i.e., excessive 

rilling, active gullies, and/or poor cover).

Turkey Creek

Sediment and P CSAs were identifi ed in the Turkey Creek 

Priority Watershed at a resolution of 10 m (Storm et al., 

Fig. 1. Location of six priority watersheds in the State of Oklahoma.

Table 1. Study watershed characteristics.

Study watershed Area Omernick level III ecoregion(s) Precipitation

Landcover

Grassland Forest Cultivated Other

ha mm yr−1 ––––––––––––––––––––%––––––––––––––––––––
Spavinaw Creek 23,000 Ozark Highlands 1130 45 51 0.8 3.5

Stillwater Creek 72,000 Cross Timbers Central Great Plains 910 54 29 7.9 9.0

Turkey Creek 108,000 Central Great Plains 790 31 4.5 61 3.4

Fort Cobb Reservoir 81,000 Central Great Plains 860 41 6.0 50 2.1

North Canadian River 197,000 Central Great Plains 870 38 15 40 5.0

Lake Wister 174,000 Arkansas Valley Ouachita Mts. 1380 18 79 0.0 2.7

Table 2. Study watershed Soil and Water Assessment Tool input data and descritization details.

Spavinaw Creek Stillwater Creek Turkey Creek Fort Cobb Reservoir North Canadian River Lake Wister

Average subbasin area, ha 86 841 N/A 947 2055 2626

Average HRU† area, ha 3.5 34 N/A 65 33 44

Targeting unit HRU HRU Gridcell HRU HRU HRU

Landcover res., m 4 30 10 30 30 30

Satellite sensor IKONOS Landsat SPOT Landsat Landsat Landsat

Landcover year 2005 2001 2003 2001 2006 2004

Dem resolution, m 30 30 10 10 10 10

Soil database SSURGO MIADS SSURGO MIADS MIADS SSURGO

Calibration Flow/P None None Flow/Sed/P Flow/Sed/P Flow/P

Weather data NEXRAD Station‡ Station Station Station NEXRAD

Simulation duration, yr 25 35 25 17 5 13

† HRU, hydrologic response unit; MIADS, mapping information and display system; NEXRAD, next generation weather radar; P, phosphorus; SSURGO, 

Soil Survey Geographic Database; SPOT, Système Pour Observation de la Terre. 

‡ National Weather Service Cooperative Observer Station Data.
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2005a). Th e watershed was dominated by cultivated land, pri-

marily winter wheat. Every unique combination of soils, slope, 

and landcover in the original GIS data was simulated as an 

individual HRU in SWAT using custom software.

Spavinaw Creek

Th e Spavinaw Creek Priority Area was dominated by poul-

try production and cow calf operations (Storm et al., 2005b). 

A SWAT model of the Spavinaw Creek Priority Watershed was 

generated with a very fi ne discretization; the average HRU size 

was 3.5 ha. Additional spatial data for poultry litter application 

and soil P levels were included in the SWAT model.

Lake Wister 

Sediment and P CSAs were identifi ed and evaluated in the 

Lake Wister Priority Watershed (Storm et al., 2006). Th e Lake 

Wister basin was similar to the Spavinaw Creek area but had 

less poultry production. A portion of the Lake Wister Priority 

Watershed lies within the Ouachita Mountains. Th is watershed 

had more topographical relief and rainfall than the other pri-

ority watersheds. To better account for topographical rainfall 

eff ects, weather data were derived from Next Generation Radar 

Weather Surveillance Radar 88D precipitation estimates at a 

resolution of 4 km.

Northern Canadian River 

Th e North Canadian River Priority Watershed was the larg-

est area studied (Storm et al., 2007). Wheat and range graz-

ing were the primary agricultural activities. Th e SWAT model 

was calibrated for streamfl ow, P, and nitrogen. Like Spavinaw 

Creek and Lake Wister, CSAs were derived by mapping actual 

HRUs using the original GIS data.

Results and Discussion

Critical Sources in Study Watersheds
To identify CSA, some defi nition of what is considered an ex-

cessive pollutant load was necessary. Th e defi nition and subsequent 

spatial assessment of CSAs required a threshold unit area load. Th e 

threshold unit area load at which a discrete unit (HRU or gridcell) 

was categorized as a CSA depended on the characteristics of the 

watershed. For example, an HRU with a 1 Mg ha−1 yr−1 sediment 

yield would likely be considered a CSA if located in a forested 

watershed but if located in a cultivated watershed. An appropri-

ate threshold was defi ned by ranking each discrete unit within a 

watershed by the predicted sediment or P yield and then defi n-

ing the highest ranking fraction (generally 2.5 or 5.0%) as CSAs. 

Th is fraction defi ned CSAs in terms of extent and load threshold. 

Th is analysis also provided the total load originating from all CSAs 

within a watershed. In addition, multiple threshold values (i.e., 

2.5 and 5.0%) for a given watershed were used to defi ne CSA 

severity levels. An example of CSAs identifi ed in the Turkey Creek 

Priority Watershed is given in Fig. 3.

Th e discretization of each watershed and ranking of individual 

units in terms of pollutant load was used to generate curves that 

illustrate the contribution of CSAs at the watershed scale. Cumu-

lative pollutant curves for each priority watershed were developed 

to defi ne CSAs (Fig. 4). Table 3 contains the contribution of CSAs 

for sediment and P at thresholds based on 2.5 and 5.0% of the wa-

tershed area. Critical source areas based on 2.5% of the watershed 

area contributed on average 36% of sediment and 21% of the P 

lost from the entire watershed. Critical source areas based on 5.0% 

of the watershed area contributed on average 50 and 34% of the 

entire sediment and P losses, respectively.

Th e shape of cumulative pollutant load curves in Fig. 4 dif-

fered by watershed. Th e shape appears to be dependent on the 

Fig. 2. Discretization level comparison between subbasins (left) and hydrologic response Units (HRUs) (right) in the Spavinaw Creek Priority Watershed.
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landcover distribution within each watershed. Primarily forested 

and primarily cultivated watersheds generated diff erent shaped 

curves. All watersheds studied had very diff erent landcover pro-

fi les (Table 1). Sediment and nutrient losses were highly depen-

dent on landcover (Harmel et al., 2006). Th e relative abundance 

of high-loss landcover types had a signifi cant infl uence on the 

cumulative pollutant load curve. Watersheds with relatively few 

high-loss areas had steeper curves and derived a larger fraction of 

their total load from a smaller contributing area. Th is landcover 

dependency made it diffi  cult to combine predictions from diff er-

ent watersheds for a generalized assessment of the contribution 

of CSAs at the watershed scale.

Critical Sources in Agricultural Areas
One goal of this study was to quantify diff erences in pollutant 

losses from targeted CSAs over randomly selected sites. Within a 

mixed landcover watershed, conservation measure site selection 

would not be truly random. Some landcover types, such as for-

est, would not be considered as candidates for conservation prac-

tices because these areas generally contribute only small amounts 

of pollutants. To truly assess the potential of targeting CSAs at 

the watershed scale, non-agricultural landcovers were excluded 

from this portion of the analysis. Model predictions from each 

study were isolated by the two primary landcovers of interest: 

cultivated crops (including small grains and row crops) and pas-

ture/rangeland (used for grazing cattle and/or hay production). 

Cultivated crops and pasture/rangeland were the primary land-

covers in Turkey Creek, North Canadian River, Fort Cobb Res-

ervoir, and Stillwater Creek (Table 1). Pasture and forest were the 

primary landcovers in Spavinaw Creek and Lake Wister, where 

little land was suitable for cultivation.

Each landcover/watershed combination was analyzed sepa-

rately. A cumulative pollutant load distribution curve for sedi-

ment and/or P was developed by isolating cultivated or pasture 

units within each watershed. A total of 18 watershed/landcover 

pollutant distribution curves were isolated. Eleven were isolated 

for sediment, seven for P, eight for cultivated, and 10 for pasture 

(Table 3). A full factorial of combinations was not possible due 

to the diff ering constituents of interest, landcovers, and objec-

tives for each original watershed study. Th ese curves are given 

Fig. 3. Soil and water assessment tool–predicted phosphorus critical source areas on aerial photography. Cultivated areas with high slopes and 
erosive soils were primarily targeted.
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in Fig. 5, subdivided by landcover (pasture or cultivated) and 

pollutant (sediment or P). Th e degree of overlap between the 

curves in Fig. 5 was greater than expected given the diff erences 

in primary transport mechanisms between sediment and P. To 

evaluate signifi cant diff erences among these subdivided groups, 

a nonparametric Mann–Whitney test (Mann and Whitney, 

1947) was applied at selected intervals of landcover contribut-

ing area. Th e Mann–Whitney test is a two-sample ranked sum 

test that evaluates the equality of population medians based on 

independent random samples. Th is nonparametric approach 

makes no assumption of population distribution. Th is analysis 

yielded probability values at increments across the entire cu-

mulative pollutant load distribution curves; none of the curves 

was signifi cantly diff erent (α = 0.05).

A more traditional parametric statistical approach including 

transformation and comparisons using linear regression was at-

tempted but was found to be highly dependent on how individual 

curves were discretized into samples for analysis. Th is parametric 

procedure was not designed for continuous curves, which must 

be sampled frequently to provide discrete points for analysis. Th e 

frequency of sampling was highly infl uential in comparisons be-

tween pasture and cultivated or sediment and P groups because 

it determined the total number of samples. Because the sampling 

frequency was arbitrary, the approach was abandoned in favor of 

the Mann–Whitney test. Th is was applied at discrete intervals 

across the cumulative pollutant load distribution curve because 

the test was not sensitive to sampling frequency. Cumulative pol-

lutant load distribution curves segregated by landcover and pollut-

ant (Fig. 5) were intermingled, further supporting the conclusion 

that none of these groups was signifi cantly diff erent.

Th e median of all cumulative pollutant load distribution 

curves is given in Fig. 6. A nonparametric, one-sample, Wil-

Table 3. Soil and Water Assessment Tool–predicted fraction of total watershed sediment and phosphorus load originating from critical source areas 
defi ned as the highest 2.5 and 5% loss of the total watershed area.

Contributing watershed 
area threshold

Pollutant load

Spavinaw Creek Stillwater Creek Turkey Creek Fort Cobb Reservoir North Canadian River Lake Wister

––––––––––––––––––––––––––––––––––––––––––––––––––––––%––––––––––––––––––––––––––––––––––––––––––––––––––––––
Sediment 2.5 – 55 18 22 – 48

5.0 – 75 29 33 – 62

Phosphorus 2.5 23 – 18 – 15 30

5.0 35 – 30 – 24 49

Fig. 4. Cumulative sediment yield (top) and total phosphorus load (bottom) load by percent of contributing watershed area.
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coxon signed rank test (Wilcoxon, 1947) was used to calculate 

95% confi dence intervals on the median at selected intervals of 

contributing landcover area (Fig. 6). Nonlinear regression was 

used to develop a model of the median such that the CSA contri-

bution at any given percent of contributing landcover area could 

be estimated without interpolation from Fig. 6. Th is model fi t 

the median curve well, with a coeffi  cient of determination of 

0.99. Th is statistic did not consider the variability in the origi-

nal 18 cumulative pollutant load distribution curves. To better 

address the uncertainty in the application of the median curve, 

prediction intervals were also developed (Fig. 6). Prediction in-

tervals predict the distribution of a future single observation; in 

this case, confi dence intervals bound the position of the median 

curve. To extrapolate these fi ndings to other watersheds, the pre-

diction interval would be the appropriate statistic. Prediction 

intervals are always larger than confi dence intervals because they 

also consider variability collapsed by measures of central tenden-

cy, such as the median. Prediction intervals were calculated using 

nonparametric methods presented by Helsel and Hirsch (2002) 

at selected intervals of contributing landcover area across the 

entire cumulative pollutant load distribution curves. Prediction 

intervals in Fig. 6 can be used to estimate the range in pollutant 

contribution from agricultural CSAs relative to the total agricul-

tural contribution at any fraction of contributing area.

Critical source areas contributed disproportionately high sed-

iment and P loads in the mixed landcover watersheds studied. 

On average, 5% of the watershed area contributed 50 and 34% 

of the entire sediment and P load, respectively. Within the agri-

cultural portions of these watersheds, 5% of the area generated 

between 13 and 52% (based on 95% prediction interval) of the 

total load due to agriculture. On average, the 5% of agriculture 

defi ned as CSAs generated 22% of the total agricultural sediment 

and phosphorus loads. Loads from CSAs were between 3 and 10 

times higher than the average loads for agricultural areas.

Fig. 5. Cumulative pollutant load distribution curves by landcover and pollutant identifi ed by pollutant (left) and landcover (right).

Fig. 6. Median cumulative pollutant load distribution curves with confi dence intervals (left) and prediction intervals (right).
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Conservation measures implemented in CSAs have the 

potential to be several times more eff ective than nondirected 

placement because they have the opportunity to treat a much 

larger quantity of pollutant. Th ese large contributions from 

a relatively small fraction of the watershed illustrate why the 

CSA concept is an eff ective management tool. Th is research 

found highly disproportionate contributions of CSAs at the 

watershed scale and illustrates the potential advantages of the 

targeted placement of conservation measures.

Study Limitations
Th e use of SWAT to target CSAs can be a powerful tool for the 

management of P and sediment at the watershed scale, but there 

are several possible limitations. First, SWAT was designed to make 

predictions at the watershed scale, not to predict pollutant loading 

at the scale of CSAs. Although SWAT has components derived 

from true fi eld-scale models like the Erosion-Productivity Impact 

Calculator (Williams, 1990), it was optimized to function over a 

much larger spatial extent. Second, the HRU concept was devel-

oped to include as much spatial detail as possible without excessive 

computational requirements, but the position of HRUs within 

each sub-basin was not considered. Th e HRU concept disregards 

pollutant and water routing within individual sub-basins because 

loads generated at any point within the sub-basin are treated iden-

tically regardless of position (Gassman et al., 2007). Similarly, the 

use of HRU-level data to extrapolate gridcell-level pollutant load 

does not account for the position of the gridcell relative to the 

nearest water body in terms of sediment delivery ratio or nutrient 

attenuation. Th ird, SWAT considers primarily infi ltration excess 

runoff  mechanisms. Other mechanisms, such as saturation excess, 

may also be important (Garen and Moore, 2005) and a contribut-

ing factor in CSAs. Fourth, the process of calibrating a model at 

discrete locations, such as stream gages or water quality sample 

sites, does not necessarily improve the spatial accuracy of the mod-

el. Generally, data collected at a water quality sample site contain 

no information concerning the source of the pollutant, only that 

it must have originated from somewhere upstream. Th e evaluation 

of CSAs depends heavily on the spatial distribution of pollutant 

loads, which cannot be easily calibrated and validated with avail-

able data. Multiple sets of model parameters exist that may yield 

an adequate calibration using available sample sites yet may yield 

diff ering CSAs. Finally, all of the watersheds in this study were in 

Oklahoma; the results may not be applicable to other regions with 

signifi cantly diff erent climate, soils, or agricultural practices.

Th ese limitations arise from the data used in the model, in-

adequacies in the model, or using the model to simulate situ-

ations for which it was not designed. Hydrologic models have 

limitations because the science behind the model is neither 

perfect nor complete. Th ese limitations may infl uence which 

areas are designated as CSA and their relative contributions. 

Th e use of relative scenario comparisons (i.e., percent diff er-

ence as opposed to absolute predictions [kg ha−1 yr−1]) provides 

higher accuracy results, but prediction uncertainty remains. 

Despite these limitations, there are no other practical tools to 

quantitatively defi ne the contribution of CSAs at the water-

shed scale.

Conclusions
Th e identifi cation and evaluation of CSAs at the watershed 

scale is a valuable tool to eff ectively allocate state and federal 

funding for the establishment of conservation practices where 

they are needed. Th e lack of research to document the relative 

contribution of CSAs at the watershed scale has potentially hin-

dered the adoption of targeting CSAs within these programs. 

From this study, we found that on average 22% of the sedi-

ment and P loads from agriculture originated from only 5% of 

the area. Practices implemented in these targeted areas have the 

opportunity to treat a much larger quantity of pollutant and 

thus have the potential to be more eff ective. It is diffi  cult to 

evaluate how much more eff ective the targeted implementation 

of practices would be in the context of a water quality program. 

More research is needed because conservation practice imple-

mentation costs and eff ectiveness likely diff er between targeted 

and nontarget areas. Nevertheless, the identifi cation of CSAs 

and targeted implementation of conservation measures at the 

watershed scale has the potential to signifi cantly improve the 

eff ectiveness of existing water quality programs.
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