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a b s t r a c t

In the processing of light detection and ranging (LiDAR) data, a step error is an abrupt change

in estimates of elevation between adjacent strips and must be reduced before building a

digital surface model (DSM) of elevation. Existing methodologies in the literature for remov-

ing this artifact require an analyst to (1) utilize the sensor and aircraft information of the

LiDAR mission, (2) isolate homologous flat surfaces within regions of overlap of adjoining

LiDAR strips to estimate the mean offset, or (3) a combination of the two. In this application

involving an agricultural landscape, a different methodology was required because the nec-

essary information from the laser scanner or internal navigation system (INS) of the aircraft

was unavailable and it was not possible to successfully identify homologous flat surfaces.

Therefore, a post-processing, quadratic optimization model was formulated to reduce step

artifacts. Using statistics obtained from the geographic overlap of the strips with a bench-

mark strip, it was possible to determine from the elevation values of the LiDAR point clouds

two quantities: the strip variance and the total variance. Using these values and related

statistics, the optimization model estimated correction constants, called decision variables,

that minimized the among-group variance of the adjoining strips. When the values of these

decision variables are added to the point cloud elevations of their respective LiDAR strips, the

systematic step errors among adjoining strips are minimized with respect to the elevations

provided by the point cloud of the benchmark strip. Decision variable values ranged between

−0.087 and 0.078 m. The adjusted LiDAR strip point clouds were used to build a corrected

DSM of a 638.2-ha agricultural landscape at a spatial resolution of 0.5 m. The elevation range

of the DSM is approximately 44–81 m HAE (height above the ellipsoid), where the higher ele-
vations are the tops of trees. Effectiveness of the optimization model approach to reduce the

step errors was evaluated
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1. Introduction

The capability to create digital surface models (DSMs) of ele-
vation for rural or urban landscapes is facilitated by light
detection and ranging (LiDAR) or laser scanning sensor sys-
tems (Axelsson, 1999; Baltsavias, 1999; Jensen, 2000; Wehr and
Lohr, 1999). A DSM describing landscape elevations creates
opportunities for solving many problems (Ackermann, 1999;
Filin, 2004). DSMs of elevation have been widely applied in
forestry (Kraus and Pfeifer, 1998; Means et al., 2000; Popescu et
al., 2002), bare-earth extraction (Sithole and Vosselman, 2004),
urban planning (Shan and Sampath, 2005) and many other
applications (Barnes et al., 1990; Hollaus et al., 2005; Leyva
et al., 2002). It is essential that LiDAR data be of high qual-
ity (Latypov, 2002) in all of these applications, particularly for
agricultural fields that have low relief.

Sources of errors in LiDAR data can be apportioned into
(1) random and/or (2) systematic causes and (3) blunders
(Baltsavias, 1999; Huising and Pereira, 1998). Blunders and/or
random errors are corrected by manual or automated filter-
ing methods (Fritsch and Kilian, 1994). Systematic errors are
due to characteristics of the laser scanner itself and/or the
internal navigation system (INS) of the aircraft carrying the
scanner. Systematic errors, like the other sources, must also
be corrected in order to produce good quality surface mod-
els of elevational relief (Morin, 2002; Skaloud and Lichti, 2006;
Vosselman, 2002).

An attempt to build a DSM of elevation for an agricultural
landscape near Gunnison, MS, discovered that systematic step
errors among the LiDAR strips compromised its quality (Fig. 1).
A step artifact (Crombaghs et al., 2000) is one type of system-
atic error that represents an abrupt change in elevation that
occurs among adjacent LiDAR strips. Luethy and Ingensand
(2001) discussed issues of quality control for LiDAR data and

stated that step errors were one of six characteristics limit-
ing LiDAR quality, citing poor calibration or poor navigation
data as the most probable causes. In an agricultural DSM,

Fig. 1 – Grayscale image of the digital surface model (DSM)
before step error corrections. Six of the largest step errors
(identified by arrows) are apparent as horizontal stripes
across the image.
Fig. 2 – View of the cultivated land showing the undulations
of the seed bed and furrows with 1.02 m row spacing.

step errors create cliffs or terraces not actually found on the
ground. When other attributes such as curvature, flow accu-
mulation, and slope (Chang, 2006) are derived from the DSM,
these artifacts are propagated, compromising the value of
these hydrological derivatives (ESRI®, 2005). Our interest in
LiDAR-based data products as topographical covariates for the
analyses of site-specific, agricultural experiments (Willers et
al., 2004, 2008) means the effects of step artifacts must be
reduced.

According to Pfeifer (2005), algorithms (or models) used to
control systematic errors are of two general types: (1) sensor
system models and (2) data driven models. A sensor model
approach (Burman, 2002; Filin, 2003; Kager, 2004; Morin, 2002)
relies on information collected during the calibration of the
scanner and/or at the time of data acquisition. For our LiDAR
data, a sensor model was not applicable because the necessary
information about the characteristics of the laser scanner and
the INS data from the aircraft was unavailable. This meant that
some type of data driven approach would have to be utilized
as a post-processing method.

Data driven (e.g., Crombaghs et al., 2000; Pfeifer, 2005) and
some sensor system (e.g., Filin, 2003; Skaloud and Lichti, 2006)
approaches use numerous homologous areas of flat terrain
such as parking lots, flat rooftops, or sport fields to estimate
step error correction values. The issue of flatness should not be
lightly regarded, because as Skaloud and Lichti (2006) remark,
it can be difficult to find sufficiently flat natural terrain sur-
faces, even on features such as athletic fields. In agricultural
landscapes, identifying homologous patches of flat terrain
among LiDAR strips is more difficult. Tillage patterns (Fig. 2),
interference from center pivots (Fig. 3), vegetation on field
roads (Fig. 4) or other irregularities on unpaved roads (Fig. 5)
cause changes in relief that are often greater than the sizes of
the step errors.

Since a sensor model approach was impossible to employ

and homologous areas of flat terrain could not be isolated
for use with published data driven models, we needed to
investigate an alternative approach. Non-linear optimization
models are widely used in many areas of problem solving
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Fig. 5 – View of a barren field road showing wetter (dark)
and drier (light) regions due to effects of small depressions
and ridges, several days after a rain. Recent traffic patterns
are also shown. These are other effects that exclude
agricultural roads as a source of flat terrain for data driven
Fig. 3 – View of a center irrigation pivot.

Himmelblau, 1972) as an alternative to regression analyses
hen its basic assumptions cannot be satisfied (Ignizio, 1982).
ur objective is to describe the development, application,
nd results of a quadratic optimization model as an alterna-
ive data driven methodology to reduce LiDAR step errors. To
ccomplish this objective, Section 2 first describes the LiDAR
ata set and its general processing into a DSM. We next present
he formulation of the quadratic optimization model. Section
discusses several case studies that helped develop and test

he capabilities of the optimization model. The effect of the
odel’s corrections upon the elevation value of the LiDAR

oint clouds used to build a corrected DSM is described. These
mpacts are examined by comparing two smaller subsets geo-
raphically extracted from the pre- and post-correction DSMs.
representative set of profile plots from another geographic
ocation compared the before and after adjustment correc-
ions upon LiDAR point clouds with respect to point elevations
rom an orthogonal LiDAR strip, called the Tie Line. In Sec-
ion 4, additional comments describe the optimization model

ig. 4 – View of a non-paved field road showing that, at
imes, vegetation residues prevent them from being used
s a source of flat terrain for data driven step error
orrection methods.
step error correction methods.

and its application. One benefit was the discovery of an addi-
tional source of random error. Histograms of point elevations
from the geographic overlap of the fifth strip and the Tie Line
are compared. This exercise illustrates that estimates of mean
deviations cannot reduce step errors whenever homologous
areas between strips are not sufficiently flat. A correlation
analysis further demonstrated that an optimization model
approach is superior for reducing step artifacts when homol-
ogous flat areas cannot be utilized.

2. Materials and methods

2.1. Study site and LiDAR data set

LiDAR acquisition (3 June 2003) over a part of Perthshire
Farms, Gunnison, MS and preliminary processing of the strips
were completed by Earthdata Aviation® (Hagerstown, MD) and
delivered as binary (Schuckman, 2003) files. The LiDAR point
clouds of the strips described the elevational relief in meters
above the ellipsoidal height (HAE) using the NAVD88 datum
(using GEOID99) in the Universal Transverse Mercator (UTM)
co-ordinate system.

To reduce costs, the vendor was requested to not process
the LiDAR data into a DSM. The binary files were converted into
point theme shapefiles to allow for wider usage in research.
As shapefile point themes, the original eight digit Earthdata®

labels for the east–west LiDAR strips were re-named (from
north to south) as Strips 1 through 13 (Fig. 6). Also, the
north–south LiDAR strip near the center of the east–west strips
was re-named as the Tie Line.
Using Geographic Information System (GIS) processing,
the next step was to reduce the size of the original strips,
nearly 6 km in length, into smaller lengths that spanned a
specific collection of cotton fields (Fig. 6). These fields were
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Fig. 6 – Illustration showing the relationships among the
LiDAR strips (east–west) and the Tie Line (north–south)
strip for an agricultural area of interest located on
Perthshire Farms, Bolivar County, MS. Locations of the

Cases 1–3 and two quality control (QC-1 and 2) areas of
interest are also indicated.

the requested acquisition target of the LiDAR mission on
the cooperating farm. After this, using commercially avail-
able software, the elevation attributes from the dBASE (DBF)
table of these shapefiles (ESRI, 1998) were filtered for blun-
ders, merged, and processed into a DSM. Results were visually
assessed using a hillshade image that simulates shadows as
if the sun was at a particular orientation. While the ven-
dor provided a LiDAR data set of excellent quality, numerous
step artifacts of small magnitudes were readily apparent
throughout the hillshade image of the uncorrected DSM. Fig. 1
represents a gray scale, raster, image of the same area as the
hillshade image—it also shows several of the larger-sized step
errors.

2.2. Development of the optimization model

Preliminary inspections of the LiDAR point clouds estimated
that these step errors were up to 15 cm in size and were
of varying sizes among the strips. Removing them by man-
ual methods or by focal processing (or other smoothing)
techniques was considered, but not attempted. Manual meth-
ods would be too laborious and/or unreliable. While focal or
smoothing techniques may improve the visual appearance of
the DSM, they would not necessarily provide a better prod-
uct for analysis. To overcome these limitations, a data driven
methodology using an optimization model was developed.

This effort began with GIS processing to (1) isolate the
points (or returns) of each strip that geographically overlapped
with the points of the Tie Line (Fig. 6), (2) label them by strip,
(3) merge them, (4) calculate their co-ordinate attributes, and
(5) then create a new shapefile of point elevations. By defini-

tion, the overlap area of all strips with the Tie Line contains
point observations from a total of L strips. In the optimization
model, the index i is used to indicate a given strip. It is assumed
that strip i = L is the Tie Line which defines the benchmark
r i c u l t u r e 6 4 ( 2 0 0 8 ) 183–193

elevations at its geographic intersection with each strip. The x-
coordinate, y-coordinate, raw elevations of point j in strip i (xij,
yij, and eij), and the decision variables, ai, of the optimization
model are all measured in meters, where ai is the elevation
adjustment of strip i. There is no decision variable associated
with the Tie Line because it is not adjusted; the other strips
(i = 1, 2, . . ., L − 1) are adjusted to reduce step error effects.

Using the new shapefile, points from each strip, along
with the points from the Tie Line, are divided into groups.
These groups ensure that the method is robust and is not
affected by the lack of identical co-ordinate locations among
the points from different LiDAR strips. To accomplish this, the
LiDAR points from a geographically defined area of overlap
are categorized into K groups indexed by k; where the set of
points in group k is such that Sk = {(i,j)| Sub Xk ≤ xij < Sup Xk and
Sub Yk ≤ yij < Sup Yk}. The number of points in strip i in group
k is denoted by nik, and the total number of points in group k
is denoted by nk; thus, nk =∑L

i=1nik. A convenient way to con-
ceptualize this step is to consider all the points found in the
region of overlap as a list sorted by their co-ordinate positions.
This list is binned (or divided) into K binning groups each con-
taining nk points (approximately 3000–5000 points). The strip
label attribute of the point is used to determine the number of
points (nik) in the kth group (k = 1, 2, . . ., K) of the ith strip (i = 1,
2, . . ., L − 1).

The next step is to exclude from further analysis any bin-
ning groups whose raw elevations have a standard deviation
greater than a threshold value (t, in meters) specified by the
analyst according to the characteristics of the landscape. In
other words, the collection of K groups is reduced to a smaller
set of groups, K′, according to the following criteria:

K′ =

⎧⎨
⎩k

∣∣∣∣∣∣
√∑L

i=1�2
ik

L
≤ t

⎫⎬
⎭ (1a)

where

�2
ik =

∑
i,j ∈ Sk

(eij − Eik)2

nik − 1
(1b)

and

Eik =
∑

i,j ∈ Sk
eij

nik
(1c)

The criteria of steps (1a)–(1c) exclude binning groups hav-
ing variances larger than the threshold value. Large variance
values in a binning group may occur due to the blending
of the point elevations from different topographical features.
For example, some of the points in a binning group could be
returns from a power pole, a center irrigation pivot, or other
tall items that were captured by a single strip but not detected
by the others within the geographic location of a particular
binning group. In this instance, that binning group would have
a standard deviation greater than the threshold and would

be excluded from the analysis. The employment of binning
groups resolved the difficulty caused by the lack of numerous,
small patches of homogenous flat terrain in areas of overlap
among the LiDAR strips. The above steps (1a)–(1c) do not filter
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lunders or random errors—other standard processing steps
ccomplished this task during the building of a DSM.

Once the final set of binning groups is determined, let Bk

e the mean elevation of group k before adjustment and Ak

e the mean elevation for the same group after adjustment
k ∈ K′). These mean values are found using:

k =

∑
(i,j) ∈ Sk

eij

nk
and Ak =

∑
(i,j) ∈ Sk

(eij + ai)

nk
= Bk +

L−1∑
i=1

nik

nk
ai

(2)

et Vk be the sum of squared residuals in group k ∈ K′ after
djustment:

k =
∑

(i,j) ∈ Sk

(eij + ai − Ak)2 (3)

Note that with the inclusion of the decision variable, ai,
xpression (3) is not equivalent to the squared residuals term
f ordinary least squares regression.

In order to minimize the step errors, the sum of squared
esiduals of the groups is minimized by determining the val-
es of decision variables ai, i = 1, 2, . . ., L − 1, which leads to the
ollowing unconstrained optimization problem:

in
ai

∑
k

Vk =
∑

k

∑
(i,j) ∈ Sk

(eij + ai − Ak)2 (4)

Since (4) is a convex objective function (Himmelblau, 1972),
xisting optimization solvers work well to obtain a unique
ptimal solution. Notice that the estimated strip adjustment,

.e., the value of the decision variable ai, does not affect the
ithin-strip variances but will minimize the variances among

he strips. In effect, the values of the decision variables ai,
hen added to the elevations of the respective point clouds,

hifts the ith strip closer to the elevations of the Tie Line’s
oint cloud. By iteration, the optimal solution for each strip is
etermined. Once a strip is adjusted, the value of its decision
ariable is treated as a constant in subsequent iterations that
stimate the decision variable for the next strip.

The minimization problem (4) is equivalent to

min
ai

∑
k

∑
(i,j) ∈ Sk

[
2(eij − Bk)

(
ai −

L−1∑
l=1

nlk

nk
al

)

+
(

ai −
L−1∑
l=1

nlk

nk
al

)2
⎤
⎦ (5)

hich is equal to

=
L−1∑

2

⎧⎨
⎩
∑∑

(elj − Bk) −
∑∑

(eij − Bk)
nlk

nk

⎫⎬
⎭ al
l=1 k (l,j) ∈ Sk k (i,j) ∈ Sk

+
L−1∑
l=1

(
nl −

∑
k

n2
lk

nk

)
a2

l −
L−1∑
l=1

L−1∑
s=1,s /= l

2alas

(∑
k

nlknsk

nk

)
.
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The first order derivatives after dividing by 2 are

∂
∑

k

Vk

2∂al
=
∑

k

⎧⎨
⎩
∑

(l,j) ∈ Sk

(elj − Bk) −
∑

(i,j) ∈ Sk

(eij − Bk)
nlk

nk

⎫⎬
⎭

+
(

nl −
∑

k

n2
lk

nk

)
al −

L−1∑
s=1,s /= l

as

(∑
k

nlknsk

nk

)

l = 1, . . . , L − 1 (6)

Expression (5) is a convex function, so one can either solve
it or the linear system (6) set equal to zero.

Decision variables for each LiDAR strip with respect to
their geographic overlap with the Tie Line were estimated by
this optimization model methodology. Strip 1 was excluded
because it did not contain any points from the cultivated land.

2.3. Evaluation of the optimization model

We established several case studies to evaluate the quadratic
optimization model (Eq. (4)). The first set of test data was sub-
set from Strips 3–5, and the Tie Line by GIS procedures. The
specific task of this test, named Case 1 (Fig. 6), was to deter-
mine if the optimization model could iteratively estimate up to
three decision variables with respect to the Tie Line, which was
the benchmark strip. The second test, Case 2 (Fig. 6), tested the
generality of the Case 1 solutions to another set of points from
the same three strips located to the west of Case 1. At the Case
2 location, there were no Tie Line points. The third test, named
Case 3 (Fig. 6), while spatially coincident with Case 2, evaluated
the filtering steps (Eq. (1a)–(1c)) when sharp contrasts in ele-
vation occurred between woods and cultivated land. However,
in Case 3, Strip 4 now functioned as the benchmark strip. New
decision variables were estimated for Strips 3 and 5 using the
overlaps along the edges of these point clouds with the edges
of Strip 4′s point cloud. These lateral regions of overlap defined
the geographic location of the binning groups used in Case 3.

The General Case (Fig. 6) estimated decision variables for
Strips 2–13 with respect to their geographic overlaps with the
Tie Line. The estimated values of the decision variables were
added to all of the point elevations of their corresponding
strip. This process defined a new elevation attribute used to
build a corrected DSM. Comparison of results was accom-
plished by visual inspection of the pre- and post-correction
DSMs (Figs. 1 and 9, respectively).

2.4. Assessments using subsets

Additional visual inspections evaluated the optimization
model’s effectiveness by comparing smaller images that were
subset from the pre- and post-correction DSMs. Profile plots in
two co-ordinate directions from a small set of points extracted
from the point clouds of Strips 4–6 and the Tie Line provided

additional assessments. Comparative histograms of the unad-
justed point elevations from the geographic overlap between
Strip 5 and the Tie Line show the effects of scanning angle,
scanning rate, and flight direction upon the shape of the data
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distributions. Finally, a correlation analysis was performed
between (1) the simple mean deviation estimates of the strip
and Tie Line elevations and (2) the respective decision variable
values from all regions of geographic overlap.

3. Results

Using a color infrared image from June 2004 as a background,
Fig. 6 illustrates the arrangement of the LiDAR strips with
respect to the Tie Line. Also shown are the geographic extents
of three case studies (Cases 1–3) and two quality control (QC-1
and 2) locations.

3.1. Case 1 (estimation of decision variables for three
LiDAR strips that overlap the Tie Line)

The Case 1 data subset (Fig. 6, center) from Strips 3, 4, 5, and
the Tie Line involved a ‘four-fold’ overlap of points. The sam-
ple size of extracted points was 86,305 for Strip 3, 111,035 for
Strip 4, 94,210 for Strip 5, and 149,171 for the Tie Line. Using
3000–5000 LiDAR points in any one binning group (Section 2.2),
a large number of them were established to estimate the deci-
sion variables. For conciseness, the actual sample sizes are
only reported for Case 1, since similar, if not larger, sample
sizes arose for the three additional cases.

Three decision variables were iteratively estimated for
Strip 3 (a1 = −0.049 m), Strip 4 (a2 = −0.033 m), and Strip 5
(a3 = 0.059 m). A visual inspection of pre- and post-correction
hillshade surfaces (not presented) for a DSM for the Case 1
area of interest showed the step artifacts were successfully
reduced.

3.2. Case 2 (applicability of solutions beyond the
geographic extent of the Tie Line overlap)

In Case 2 (Fig. 6, upper left), the generality of Case 1 solutions
was tested by applying them to a new set of points selected
from Strips 3, 4, and 5 at a location approximately 716 m to
the west. Hillshade surfaces of these point elevations before
(Fig. 7A) and after (Fig. 7B) correction again showed the suc-
cessful removal of the step errors. The Case 2 LiDAR point
clouds did not geographically overlap with the Tie Line point
cloud.

For extremely long LiDAR strips, another investigator
(Maas, 2002) found curvi-linear trends in the offset bias as their
length increased. However, for our LiDAR data, where the strip
lengths were less than 3 km, there is no evidence of a curvi-
linear trend. If there had been a curvi-linear trend among
adjacent strips of this LiDAR acquisition, the estimated deci-
sion variables provided by the quadratic optimization model
would fail to reduce them.

3.3. Case 3 (effects of elevational contrasts among
feature types upon obtainment of solutions)
The two previous cases (1 and 2) applied correction values
using LiDAR point clouds acquired over cultivated land. A few
returns due to a center irrigation pivot feature and the grassy
vegetation below it (Fig. 3) were present within the Case 1
r i c u l t u r e 6 4 ( 2 0 0 8 ) 183–193

area of interest. However, the returns from the pivot or the
grasses on the pivot service road were a very small proportion
of the total number of points found in that area of interest.
Their effect upon the estimated values of the decision vari-
ables would be small, even if returns from these features were
not excluded. As a consequence, Case 1 was not the best sce-
nario to determine if the binning groups and/or the application
of Eq. (1a)–(1c) actually were robust concepts. Therefore, we
thought it was necessary to develop a more rigorous test where
features of mixed elevations comprised a large proportion of
the total number of points.

Utilizing Strip 4 as the benchmark elevation at the geo-
graphic location of Case 2 (Fig. 6), it is seen (Fig. 7A) that a
large proportion of points are from both high (treetops) and
low elevation (seed beds or furrows) features. In this type of
overlap with Strips 3 and 5, some of the binning groups con-
tained points from both types of features, particularly at the
interface of different terrain features. As described in Sec-
tion 2.2, all binning groups having variances smaller than the
threshold value (Eq. (1a)) would be used to estimate the deci-
sion variable regardless of whether the feature type was the
tops of tree in the forest or from the cultivated land. Other
binning groups containing mixed features having large eleva-
tional differences would exceed the threshold value and be
excluded from the optimization model.

New decision variables were estimated for Strip 3
(a1 = −0.022 m) and Strip 5 (a2 = 0.077 m) with respect to Strip 4.
The values of these Case 3 decision variables are different than
the values used for Strips 3 and 5 in Cases 1 and 2 because here
there was no region of geographic overlap with the Tie Line.
After correction, the hillshade surface (equivalent to Fig. 7B)
of the DSM showed the algorithm estimated appropriate val-
ues for the two decision variables to reduce the step errors.
The average difference in elevation between the Case 1 and
Case 3 DSMs would be small and approximate the value of
the Case 1 decision variable (−0.033 m) for Strip 4. Case 3 also
demonstrated that it is not necessary for a benchmark strip to
be orthogonal.

3.4. General case

3.4.1. Uncorrected digital surface model
For this agricultural landscape, where the majority of the
slopes with the cultivated land are less than 1%, step artifacts
were apparent in the uncorrected DSM (Fig. 1). These artifacts
essentially disappeared wherever changes in relief were larger
than the size of the step error biases. This is evident by visu-
ally tracing the step features into the wooded areas along the
edges of the cultivated land.

3.4.2. Corrected digital surface model
Estimates for correction values of the strips ranged between
−0.087 and 0.078 m (Fig. 8) and were smaller than the square
of the root mean squared error (RMSE) of 3.0 cm of the parent
data (a vendor provided specification). These estimates, when

added to the original elevations of the corresponding strips
by GIS processing, successfully reduced the systematic step
errors. The grayscale image of the corrected DSM (Fig. 9) clearly
shows improvements in quality.
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Fig. 7 – Hillshade of the digital surface model for the Case 2 and 3 areas of interest. Panel A shows the step artifacts before
c rtifacts after adding the decision variable corrections to the
L

H
a
s
h

F
C
t
1

orrection. Panel B indicates successful removal of the step a
iDAR points.

The elevation range of the DSM is approximately 44–81 m

AE (height above the ellipsoid), where the higher elevations
re the tops of trees, and spanned a 638.2-ha agricultural land-
cape. During acquisition, the LiDAR strips were planned to
ave a 3-fold overlap for each unit of surface area across this

ig. 8 – Bar graph depicting the magnitudes of the General
ase decision variables for each LiDAR strip estimated by

he optimization model. No estimate was obtained for Strip
.

Fig. 9 – Grayscale image of the digital surface model after
application of the step error corrections. Compare to Fig. 1.

area of interest, which provided a data density great enough
to build a DSM at a spatial resolution of 0.5 m.

3.5. Quality control (QC) assessments

A subset of the unadjusted DSM (Fig. 10) was extracted from
the location labeled QC-1 (Fig. 6). A visual examination of this
raster surface subset indicates lower elevations (dark gray or
black) generally occur to the southwest; a higher elevation
(white) ridge rises from the center and runs to the northeast,
while an indistinct drainage feature runs north to south along
the western edge. Along the bottom eastern half, alternating

dark gray (lower elevations) and lighter gray (higher elevations)
bands run parallel to one another in an east–west orientation.
The feature in the extreme southwest corner are the tops of
trees.
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Fig. 10 – Grayscale image of a subset of the uncorrected
DSM for the quality control site QC-1 (see Fig. 6). Note the

Fig. 12 – Profile plot of the uncorrected strips with respect
to the Tie Line viewed by the Easting co-ordinate for the
quality control site QC-2. The sharp dip on the right is the
drainage feature visible just beneath the middle pivot
section in Fig. 3. Linear splines were fit to the point clouds
blurred appearance of drainage features, roadways and
tillage patterns.

For the same geographic location, Fig. 11 shows how the
post-processing of the original LiDAR point clouds reduced
the step artifacts and improved the quality of the DSM. The
appearance of this surface is less blurred and various features
are more distinctive. While the major features of the south-
westerly basin and northeasterly ridge are still seen, it is now
obvious that the north–south drainage feature along the west-
ern edge consisted of two parallel lines of different widths.
Inspection on site showed this to be a drainage feature built
by a tractor drawn implement that created two parallel ditches
to improve surface drainage. The western cut received more

water erosion than the eastern cut, causing it to widen with
time.

The east–west bands lying parallel to one another along the
eastern quadrant of the bottom half of both the uncorrected

Fig. 11 – Grayscale image of a subset of the corrected DSM
for the quality control site QC-1 (see Fig. 6). Note the
increased clarity of drainage features, roadways and tillage
patterns. Compare to Fig. 10.
of each strip for additional clarity.

and corrected DSMs (Figs. 10 and 11) are the results of long
term tillage operations. These parallel bands are not as dis-
tinct in the northern part of these DSM subsets, because the
slope of the land there is gentler, reducing the water flow rate.
In contrast, the slope increases east to west moving toward
the south to produce the darker bands at approximately 10 m
spacings, where tillage passes by eight-row equipment abut
one another. A probable explanation for these parallel bands
is that the rate of erosion is greater along the margins than
the middle of the tillage passes. Parallel patterns correspond-
ing to tillage operations are found throughout the corrected
DSM (see also Fig. 7B).

Profile plots from a second location labeled QC-2 (Fig. 6)
provided another examination of the optimization model’s
ability to estimate decision variables to alleviate step errors.
The before (Figs. 12 and 13) and after (Figs. 14 and 15) profile
plot comparisons for Strips 4–6 clearly indicate reductions in
step error magnitudes. These effects are highlighted by spline
lines fit to the different point clouds. The closely spaced points
occurring as linear patterns in the profile plots viewed along
the Easting co-ordinates (Figs. 12 and 14) belong to similar scan
lines within the strips. The remaining width of the point cloud
profiles for these lateral views of the point clouds in the Easting
and Northing directions, even after correction, is due primar-
ily to the alternating undulation of the crop seed bed and the
furrows (Fig. 2), and/or returns from the grassy vegetation of
the center pivot service road (Fig. 3). Returns from the center
pivot itself (Fig. 3) have been excluded from all profile plots to
enhance the scaling of the y-axis.
4. Discussion

Case 1 estimates for Strips 3, 4, and 5 (Section 3.1) were slightly
different than their corresponding estimates in the General
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Fig. 13 – Profile plot of the uncorrected strips with respect
to the Tie Line viewed by the Northing co-ordinate. Note
t
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Fig. 15 – Profile plot of the uncorrected strips with respect
to the Tie Line viewed by the Northing co-ordinate. Note
the removal of the obvious step error discrepancies among
he obvious step error discrepancy between the point

louds of Strips 4 and 6.

ase (Fig. 8). An explanation is the fact that these strips had to
e reconciled to other adjoining strips that were to the north
nd south of them. For example, Strip 3 geographically over-
apped Strip 2 at the same time it overlapped Strip 4. Strip

geographically overlapped Strip 6 at the same time it over-
apped with Strip 4, and so on. We demonstrated in Case 1
hat the optimization model concurrently works with sets of
djoining strips. Strips 2 and 6 were excluded during Case 1,
ut were included in the General Case application.
The removal of the step errors as shown in the cor-
ected DSM (Fig. 9) and the quality control illustrations
Figs. 11, 14 and 15) were due to the addition of the estimated
ecision variable values to the elevation attribute of each point

ig. 14 – Profile plot of the corrected strips with respect to
he Tie Line viewed by the Easting co-ordinate for the
uality control site QC-2. The point clouds of the strips
etter conform to the elevations of the Tie Line in contrast
o Fig. 12. Linear splines were fit to the point clouds of each
trip for additional clarity.
the point clouds of the strips in comparison to Fig. 13.

of the respective LiDAR strip. No additional smoothing or focal
processing (Chang, 2006; Theobald, 2003) algorithms were
applied while building the corrected DSM with the adjusted
elevation values of the LiDAR point clouds.

One supplemental benefit of our processing efforts was the
discovery of a source of random error in these data. Vary-
ing point density (Fig. 16) due to geographic gaps between
adjoining strips also created linear features at some locations
which primarily show up as textural differences in the cor-
rected DSM. The locations of a few gaps due to this cause were
easily found by visual inspection of the hillshade image of cor-
rected elevations (not shown). The effect of gap errors was
most severe wherever the distance between adjacent LiDAR
strips exceeded 4 m. Thus, this corrected DSM will require
additional GIS processing in those areas wherever the point
sample intensity varied due to gaps of random widths. Hu and
Tao (2005) and Filin and Pfeifer (2005) discussed processing
LiDAR data that vary in point density.

Whenever homogenous areas of flat terrain are unavailable
it is not possible to optimally estimate simple mean devia-
tions between strips. When a common geographical area is not
flat, effects of scan angle and rate, reflectance signatures, and
direction of strip acquisition (Burman, 2002; Morin, 2002) affect
the frequency distribution of point elevations from different
strips (Fig. 17). On non-flat terrain, these cumulative effects
determine the shape of the frequency distribution of eleva-
tion attributes of the different strips obtained from a common
area of geographic overlap and influence the estimates of their
respective mean elevations. As a consequence, the difference
between the strip means for areas of geographic overlap will
not optimally estimate the size of the step error bias. These
comparative histograms also demonstrate that LiDAR eleva-
tion data from homologous, non-flat, areas are not normally

distributed. An optimization model methodology that seeks
to minimize the among-strip variance will perform better
(Ignizio, 1982) when all these types of influences arise.
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Fig. 16 – Illustration of gap (or sampling intensity, Panel A) errors between Strips 10 and 12 at a selected location along their
lengths. This type of random error may cause textural differences in the digital surface model after step error biases are

en S
corrected. Panel B shows the absence of the gap error betwe
between them as shown in the detailed views.

To further examine this issue, estimates of simple mean
deviations of the thirteen strips and the Tie Line elevations
across the fullest possible extent of the various geographic
overlaps were obtained. A correlation analysis between the
respective decision variables and simple differences between
the mean estimates of the strips and Tie Line found a
non-significant correlation of −0.26 (P = 0.4214). This result
illustrates the difficulty of estimating mean strip deviations by
algebraic methods for agricultural landscapes. Therefore, the
major benefit of this optimization model approach was the

estimation of correction constants without the requirement
for highly planar and homologous planar features.

In conclusion, the corrected DSM of the agricultural land-
scape was accepted as an accurate representation of relative

Fig. 17 – Comparative histograms of point elevations in the
region of overlap between Strip 5 and the Tie Line before
removing the step error. A small number of returns from
the center pivot (see Fig. 3) between elevations of 48–52 m
were excluded for clarity.

r

trips 10 and 12 at another location. Strip 11 is centered

elevation since drainage patterns, tree heights, building rela-
tionships, etc. corresponded to features observed on site.
Any remaining error due to the vertical bias of the Tie
Line itself to the actual elevations of this landscape is
likely to be small since the RMSE (3.0 cm) of the unad-
justed data was also small. The quadratic optimization model
approach successfully reduced systematic step errors of small
magnitudes.
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