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In recent years, conservation tillage practices, including re-
duced-tillage and no-till methods, have become more com-

monplace. Th ese methods help protect the soil from erosion, 
improve soil structure, and increase SOC, thus sequestering C 
from the atmosphere. Furthermore, recent research has shown 
that no-till corn is more profi table than conventional tillage sys-
tems, even with reduced yields, due to reduced labor, equipment, 
fuel, and irrigation costs (Archer et al., 2008; McGinnis, 2007). 
Paudel et al. (2006) showed that conservation tillage could be 
more profi table for cotton (Gossypium hirsutum L.) farming than 
conventional tillage. Th ese profi ts can be further augmented by 
subsidies for conservation and the sale of credits for C sequestra-

tion (Causarano et al., 2006). Conservation tillage systems leave 
substantial quantities of crop residues on the soil surface, acting 
as a barrier to wind and water erosion and as a mulch, and return-
ing nutrients to the soil, potentially reducing the need for fer-
tilizer. Spatial information on tillage practices is also important 
for SOC modeling (Causarano et al., 2006, 2008). Recent eco-
nomic developments can encourage farmers to use conventional 
tillage, however. Crude oil prices have increased the demand for 
biofuels, which can result in increased tillage to maximize corn 
grain yields or encourage the harvesting of crop residues even in 
reduced-tillage or no-till situations. Th us, an effi  cient method for 
measuring crop residue cover is needed.

Traditional methods of residue cover measurement, e.g., 
line-point transect or photographic techniques (Lafl en et al., 
1981), are oft en error prone due to operator bias, lack of contrast, 
and spatial variability, and are ineffi  cient for use at the county 
and state levels (Morrison et al., 1993). To this end, multiple 
methods have been proposed utilizing remote sensing, which 
can rapidly map areas at minimal expense. Optically based re-
mote sensing platforms use either space- or airborne multispec-
tral and hyperspectral systems. Spaceborne multispectral sen-
sors include the Landsat 4 and 5 Th ematic Mapper (TM), the 
Indian ResourceSat 1 Advanced Wide-Field Sensor (AWiFS), 
and the NASA Terra Advanced Spaceborne Th ermal Emission 
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Effect of Soil Spectral Properties on Remote 
Sensing of Crop Residue Cover

Conservation tillage practices oft en leave appreciable amounts of crop residues on soil surfaces 
aft er harvesting and generally improve soil structure, enhance soil organic C (SOC) content, and 
reduce soil erosion. Remote sensing methods have shown great promise in effi  ciently estimating 
crop residue cover, and thus inferring soil tillage intensity. Furthermore, these tillage intensity 
estimates can be used in soil C models. Refl ectance spectra of more than 4200 soils and 80 
crop residues were measured in the laboratory across the 350- to 2500-nm wavelength region. 
Six remote sensing spectral indices were used to estimate crop residue cover: the Cellulose 
Absorption Index (CAI), the Lignin–Cellulose Absorption Index (LCA), the Normalized 
Diff erence Tillage Index (NDTI), the Normalized Diff erence Senescent Vegetation Index 
(NDSVI), and the Normalized Diff erence Indices 5 and 7 (NDI5 and NDI7, respectively). 
Soil mineralogy and SOC aff ected these spectral indices for crop residue cover more than soil 
taxonomic order, which generally had little eff ect on spectral refl ectance. Th e values of the 
spectral indices for soils were similar within Land Resource Regions and, specifi cally, for Major 
Land Resource Areas. Th e CAI showed the best separation between soils and residues, followed 
by LCA and NDTI. Although NDSVI, NDI5, and NDI7 had signifi cant overlaps between soil 
and residue index values, assessments of crop residue cover classes may be possible with local 
calibrations. Future satellite sensors should include appropriate bands for assessing crop residue 
and nonphotosynthetic vegetation.

Abbreviations: ASTER, Advanced Spaceborne Th ermal Emission and Refl ection Radiometer; AWiFS, 
Advanced Wide-Field Sensor; CAI, Cellulose Absorption Index; LCA, Lignin–Cellulose Absorption 
Index; LRR, Land Resource Region; MLRA, Major Land Resource Region; NDI, Normalized Diff erence 
Index; NDSVI, Normalized Diff erence Senescent Vegetation Index; NDTI, Normalized Diff erence Tillage 
Index; NDVI, Normalized Diff erence Vegetation Index; SOC, soil organic carbon; SWIR, shortwave 
infrared; TM, Th ematic Mapper.
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and Refl ection Radiometer (ASTER). Airborne advanced mul-
tispectral scanners include the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Airborne Simulator (MAS; King 
et al., 1996) and the MODIS/ASTER Airborne Simulator 
(MASTER; Hook et al., 2001). Hyperspectral sensors include the 
spaceborne EO-1 Hyperion (USGS, 2007) and airborne sensors, 
including the Airborne Visible/Infrared Imaging Spectrometer 
(AVIRIS; NASA Jet Propulsion Laboratory, 2007), HYMAP 
(Integrated Spectronics, Castle Hill, NSW, Australia), and other 
commercial airborne platforms.

Optically based remote sensing methods for crop residue 
identifi cation utilize a number of indices, which are tailored 
to specifi c types of sensors. Th ese remote sensing methods fall 
into three basic categories: (i) normalized diff erence indices, (ii) 
spectral angle methods, and (iii) refl ectance-band height indi-
ces. Normalized diff erence indices are commonly used with 
Landsat TM imagery, e.g., the NDI5 and NDI7 (McNairn and 
Protz, 1993), the NDTI (van Deventer et al., 1997), and the 
NDSVI (Qi et al., 2002). Spectral angle methods include the 
Crop Residue Index Multiband (Biard and Baret, 1997), which 
uses two or more spectral bands. Refl ectance-band height indi-
ces include the CAI (Nagler et al., 2000) and LCA (Daughtry et 
al., 2005), which are similar in nature to hyperspectral continu-
um-removal methods (Clark, 1999; Clark et al., 2003a; Kokaly, 
2001). Of these three methods, refl ectance-band height indices 
usually perform the best, as they are dependent on the distinctive 

spectral features of soils and crop residues, the former of which 
vary depending on mineralogy, SOC, and particle size (Allen 
and Hajek, 1989; Clark, 1999; Daughtry et al., 2005; Kokaly et 
al., 2003; Schulze, 1989; Serbin et al., 2009). Because spectral 
angle methods do not specify which bands to use, they were not 
considered further in this study.

Th e CAI and LCA were shown to be linearly related to 
soils and crop residues by Daughtry et al. (2005). Soil spectral 
properties are a function of multiple factors, including mineral-
ogy and composition (Baumgardner et al., 1985; Brown et al., 
2006; Clark, 1999; Clark et al., 2003b; Stoner and Baumgardner, 
1981; Waiser et al., 2007), water content (Daughtry and Hunt, 
2008; Lobell and Asner, 2002; Nagler et al., 2000; Whiting et al., 
2004), grain size (Clark, 1999; Clark et al., 2003a; Salisbury and 
Hunt, 1968), and structure (Ben-Dor et al., 2003). Soil miner-
als and compounds could bias soil CAI and LCA estimates of 
crop residue cover. Common soil minerals have CAI values that 
are around or less than zero, whereas CAI values of residues are 
always positive (Serbin et al., 2009). Th is is not always the case 
with LCA, however, because common soil minerals, e.g., carbon-
ates, chlorites, and epidotes, are positively biased and can com-
plicate these analyses (Serbin et al., 2009). Water content was 
also found to aff ect the spectral properties of soils and crop resi-
dues (Daughtry and Hunt, 2008; Serbin et al., 2008). Th us, the 
accuracy of remotely sensed residue estimates could be improved 
by incorporating soil information. Additionally, the presence of 
green vegetation in a pixel confounds residue cover estimation 
using CAI and LCA (Daughtry et al., 2005; Serbin et al., 2009).

Neither CAI nor LCA are currently practical for use from 
spaceborne platforms, however, because CAI can only be ac-
quired from the EO-1 Hyperion, which is past its planned opera-
tional lifetime and suff ers from bad detector lines (USGS, 2007), 
and ASTER is a research-only platform also past its planned op-
erational lifetime. Th us, it is important to consider multispectral 
indices as an economical alternative.

Brown et al. (2006) analyzed 4193 diverse soils from within 
the National Soil Survey Center Soil Survey Laboratory data-
base (Soil Survey Staff , 2007a) using a hyperspectral spectropho-
tometer in the laboratory to determine SOC, Fe, clay, and other 
contents. Th e aim of this study was to (i) analyze the soil spectral 
data from Brown et al. (2006) and other sources for spectral in-
dex value ranges, (ii) determine which indices will be eff ective 
for crop residue cover estimation based on soil orders and NRCS 
geographic information, i.e., Land Resource Regions (LRRs) 
and Major Land Resource Areas (MLRAs), and (iii) determine 
if existing soil survey geographic data can be used to improve re-
mote sensing quantifi cation of crop and residue cover.

THEORETICAL CONSIDERATIONS
Visible, Near-Infrared, and Shortwave-Infrared 
Spectra and Optical Sensor Bands

Remote sensing of crop residue cover traditionally utilizes visible 
(400–700 nm), near-infrared (700–1200 nm, NIR), and shortwave in-
frared (1200–2500 nm, SWIR) bands (Fig. 1). A number of spectral in-
dices were devised for the estimation of crop residue cover utilizing the 
Landsat TM platform (McNairn and Protz, 1993; Qi et al., 2002; van 
Deventer et al., 1997). Th ese TM indices use broad TM bands, which 
convolve the spectral responses across the bandwidth, and can possibly 
miss important spectral features that are related to crop residue or soil 

Fig. 1. Visible, near-infrared (NIR), and shortwave-infrared refl ectance 
spectra for two soils, two crop residues, and live corn canopy, with 
ranges of Landsat Thematic Mapper (TM), Advanced Spaceborne 
Thermal Emission and Refl ection Radiometer (ASTER), and Cellulose 
Absorption Index (CAI) bands. Wheat residues were acquired from 
a strip-tilled fi eld in June, ~9 mo after harvest. Corn residues were 
acquired from a fi eld of standing corn residue stubble in May, ~8 mo 
after harvest. Corn canopy was at the silking stage (R1).
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mineralogy and composition (Daughtry et al., 2005; Serbin et al., 2009). 
Th ematic Mapper indices include the NDI5 and NDI7 (McNairn and 
Protz, 1993), NDTI (van Deventer et al., 1997), and NDSVI (Qi et al., 
2002), as well as soil-adjusted indices, e.g., the Modifi ed Soil Adjusted 
Crop Residue Index (Bannari et al., 2000). Daughtry and Hunt (2008) 
showed that while certain soils and residues had similar spectra in the vis-
ible, NIR, and SWIR range below 1920 nm, the spectral shapes of the 
soils and residues were quite diff erent in the upper-SWIR region above 
1920 nm, making this spectral region ideal for residue cover estimation.

Unlike most multispectral systems, hyperspectral systems have the 
distinct advantage of being able to capture specifi c absorptions related 
to residues in the upper SWIR, such as the O–H bending and C–O 
stretching combination at 2101 nm in cellulose and other sugars (Clark, 
1999; Daughtry et al., 2005; Elvidge, 1990; Kokaly and Clark, 1999; 
Workman and Weyer, 2008). Th e ASTER multispectral satellite plat-
form is capable of imaging part of the SWIR spectrum aff ected by or-
ganic compounds (Daughtry et al., 2005; Workman and Weyer, 2008); 
however, this system misses cellulose absorption at 2101 nm.

Spectral Indices
Th e Landsat TM spectral indices used for this research are the 

NDTI (van Deventer et al., 1997):
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and the NDSVI (Qi et al., 2002):
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where TM3, TM4, TM5, and TM7 denote the atmospherically corrected 
refl ectances of TM Bands 3, 4, 5, and 7, respectively (Table 1 and Fig. 1).

Th e refl ectance-band height indices used for this research were the 
CAI (Nagler et al., 2000) and the LCA (Daughtry et al., 2005). Th e 
CAI is determined by
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where R denotes the refl ectance and the subscripts 2031, 2101, and 
2211 denote 11-nm-wide bands centered at 2031, 2101, and 2211 nm, 
respectively (Table 1 and Fig. 1). Th e LCA is determined as

( ) ( )LCA 100 2 A6 A5 A8= - +é ùë û  [6]

where A5, A6, and A8 correspond to ASTER Bands 5 (2145–2185 nm), 
6 (2185–2225 nm), and 8 (2295–2365 nm), respectively (Table 1 and 
Fig. 1). Th e ASTER Bands 5 and 6 fall on the slope and shoulder, respec-
tively, of the 2101-nm cellulose absorption; ASTER Band 8 contains 
the C–H stretching plus CH2 deformation combination at around 
2335 nm seen in cellulose (Daughtry et al., 2005; Workman and Weyer, 
2008). Th e CAI and LCA values that are less than −0.5 are considered 
to be index negative, and those that are >0.5 are considered to be index 
positive. Th ose materials whose index values reside between −0.5 and 
0.5 are considered to be index neutral.

Daughtry et al. (2005) showed that residue cover estimation was 
most eff ective for pixels without signifi cant green vegetation cover. Th is 
was confi rmed for aircraft  estimates of CAI by Serbin et al. (2008). 
High amounts of live green vegetation were also found by Gill and 
Phinn (2008) to confound the detection of nonphotosynthetic vegeta-
tion using LCA. An eff ective method of excluding green pixels is the 
Normalized Diff erence Vegetation Index (NDVI) using atmospheri-
cally corrected refl ectance data from TM bands:
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+
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Daughtry et al. (2005) suggested that pixels with green cover >0.3 be 
excluded from any analysis of residue cover for CAI and LCA. Serbin 
et al. (2008) found that NDVI ≥ 0.30 was a useful cutoff  value for CAI 
in north-central Indiana.

Soil Mineralogy and Composition
Soils are usually heterogeneous mixtures of minerals of vary-

ing particle sizes, which can contain organic matter (Allen and Hajek, 
1989; Baumgardner et al., 1985; Ben-Dor, 2002; Brown et al., 2006; 
Clark, 1999; Schulze, 1989; Stoner and Baumgardner, 1981). Most 
soil minerals are silicates, but also include oxides, hydroxides, sulfi des, 

Table 1. Spectral bands used for the Cellulose Absorption Index (CAI, Eq. [5]), Lignin–Cellulose Absorption Index (LCA, Eq. [6]), 
the Normalized Difference Vegetation Index (NDVI, Eq. [7]), Normalized Difference Senescent Vegetation Index (NDSVI, Eq. [4]), 
the Normalized Difference Indices 5 and 7 (NDI5 and NDI7, Eq. [2] and [3], respectively), and the Normalized Difference Tillage 
Index (NDTI, Eq. [1]). Some common compounds that absorb in each spectral band are listed.

Band† Wavelengths (nm) Index Common absorbing compounds

R2031 2026–2036 CAI Liquid water
R2101 2096–2106 CAI Cellulose, NH4–bearing minerals, topaz

R2211 2206–2216 CAI Clay minerals, muscovite

A5 2145–2185 LCA Cellulose‡

A6 2185–2225 LCA Clay minerals, muscovite

A8 2295–2365 LCA Lignin, cellulose, calcite, dolomite, epidote, certain chlorites, vermiculite

TM3 630–690 NDVI, NDSVI Chlorophyll

TM4 760–900 NDVI, NDI5, NDI7 Wet soil

TM5 1550–1750 NDI5, NDSVI, NDTI Wet vegetation and soil

TM7 2080–2350 NDI7, NDTI Wet vegetation and soil

† Rx are hyperspectral bands at the designated wavelengths; A5, A6, and A8 are Advanced Spaceborne Thermal Emission and Refl ection 
Radiometer (ASTER) bands; and TM3, TM4, TM5, and TM7 are Landsat Thematic Mapper bands.
‡ Trailing edge of absorption feature.
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carbonates, and others (Allen and Hajek, 1989; Schulze, 1989; Soil 
Survey Staff , 2007a). Texture and mineral opacity also aff ect soil refl ec-
tance. Refl ectance will increase as grain size decreases for transparent 
minerals, but will decrease as grain size decreases for opaque minerals. 
A third class, trans-opaque, describes materials, e.g., limonite at vis-
ible wavelengths, that are transparent in one part of the spectrum and 
opaque in another (Baumgardner et al., 1985; Ben-Dor, 2002; Brown et 
al., 2006; Clark, 1999; Salisbury and Hunt, 1968).

Effect of Water Content on Soils and Crop Residues
Water content aff ects soil spectral properties by fi lling the pore 

spaces, creating an optically more homogeneous medium (Irons et al., 
1989; Liu et al., 2002, 2003; Nagler et al., 2000, 2003; Whiting et al., 
2004). Th is was found to aff ect CAI values for both soils and crop resi-
dues (Daughtry and Hunt, 2008; Nagler et al., 2000, 2003; Serbin et al., 
2008). Water content had the greatest eff ect on the R2031 band, which 
is closest to the water absorption centered at 1930 nm (Workman and 
Weyer, 2008), but this was found by Serbin et al. (2008) to also be a 
function of SOC. Soils from Fulton County, Indiana, with low SOC 
showed an initial decrease in CAI with increasing water content, fol-
lowed by an increase thereaft er toward zero due to the way water con-
tent disproportionally aff ected the R2031 band relative to the R2101 and 
R2211 bands. High-SOC soils, which were measurably lower in refl ec-
tance values, had CAI values around or just below CAI = 0, regardless 
of water content. Crop residue CAI values were found to decrease with 
an increase in soil water content toward zero, showing that the con-
trast between soil and residue would be reduced under wet conditions 
(Daughtry and Hunt, 2008).

Soil Mineralogy, Texture, and Taxonomy
Soil mineralogy and texture are diagnostic for Soil Taxonomy pri-

marily at the family and series levels (Brown, 2004; Soil Survey Staff , 
2006). Mineralogy is also diagnostic for the Oxisol (<10% weatherable 
minerals in the fi ne sand fraction and low-activity clays) and Andisol 
(tests for poorly crystalline materials or volcanic glass) orders. While 
other soil orders have mineral and textural tendencies (e.g., Vertisols 
contain smectites and high clay content, Spodosols tend to be sandy, 
Ultisols tend to contain low-activity clays), however, these tendencies 
are either not explicitly required or not uniquely defi ning (smectites or 
high sand contents can be found in most soil orders, and not all Ultisols 
contain low-activity clays). While soil order might statistically predict 
soil texture and mineralogy, with few exceptions this level of classifi ca-
tion does not partition soils into distinct texture and mineral classes.

Land Resource Regions and Major 
Land Resource Areas

Th e NRCS has three land resource categories at state and national 
levels for the United States (NRCS, 2006). Th e broadest category is 
the LRR. Land Resource Regions approximate broad agricultural mar-
kets comprised of geographically associated MLRAs. A Major Land 
Resource Area describes an area’s physiography, geology, climate, hy-
drology, soils, biological resources, and land use. Major Land Resource 
Areas are then further subdivided into more specifi c Land Resource 
Units or Common Resource Areas. Land Resource Units are generally 
coextensive with state general soil map units, but can also be based on 
the subdivision of a general soil map unit when signifi cant geographic 
diff erences in climate, water resources, or land use occur. Common 
Resource Areas are subdivisions of MLRAs based on a number of fac-
tors including resources, soils, hydrology, topography, and human con-

siderations with respect to use and treatment needs. Common Resource 
Areas are more commonly used nationwide; Land Resource Units are 
widely used in the southwestern United States (NRCS, 2006).

MATERIALS AND METHODS
Acquisition of Soil and Material Spectra

Soil and material spectra used in this study were acquired from a 
variety of sources. Th e majority of the soil spectra (4193 samples) from 
the National Soil Survey Center Soil Survey Laboratory database (Soil 
Survey Staff , 2007a) utilized in this study were acquired by Brown et al. 
(2006) using an ASD Fieldspec Pro FR spectroradiometer (Analytical 
Spectral Devices, Boulder, CO) across the 350- to 2500-nm wave-
length region at 1-nm intervals. In that study, soil samples were dried 
at 43°C for 3 d per Soil Survey Laboratory standard protocol. Samples
were crushed and sieved to 2-mm diameter. Soil spectra were measured 
from below through borosilicate glass Petri dishes using the ASD spec-
troradiometer and a high-intensity-source contact probe (Analytical 
Spectral Devices, Boulder, CO) and calibrated against a Spectralon 
(Labsphere, North Sutton, NH) white reference panel. A full descrip-
tion of the methodology used for this data set, including selection crite-
ria for the soils, may be seen in Brown et al. (2006). Soils were analyzed 
for the global set (4193 samples) and a subset of only the surface soils (893 
soils with a horizon top depth of 0 cm and horizon bottom depth >0 cm).

We also acquired refl ectance spectra of additional soils, crop resi-
dues, and live corn canopy with the ASD FieldSpec Pro FR spectrora-
diometer. Additional soil samples were acquired from Fulton County, 
Indiana, and measured in the laboratory. Th e crop residue samples 
consisted of 83 samples of corn (Zea mays L.), soybean [Glycine max 
(L.) Merr.], wheat (Triticum aestivum L.), and cotton residues in the 
laboratory. Th e majority of the crop residue samples (70) were acquired 
in the springtime, but 13 samples of corn and soybean residues were 
acquired in the fall aft er harvest. Lab samples were illuminated by six 
100-W quartz-halogen lamps mounted on the arms of a camera copy 
stand at 45 cm over the sample at a 45° illumination zenith angle. A cur-
rent-regulated DC power supply stabilized the output of the lamps. A 
digital camera and the fore-optic of the spectroradiometer were aligned 
and positioned 90 cm from the sample surface at a 0° view zenith angle. 
A 1° fore-optic with a 1.6-cm-diameter fi eld of view was used for the 
additional soil samples; an 18° fore-optic with a 28.5-cm-diameter fi eld 
of view was used for the crop residues. Th e illumination and view angles 
were chosen to minimize shadowing and to emphasize the fundamental 
spectral properties of the samples. Four spectra of 100 scans each were 
acquired from each sample by rotating the sample tray 90° aft er each 
spectrum. All samples were placed in trays that were spray painted fl at 
black. A 61-cm square Spectralon reference panel was placed in the fi eld 
of view, illuminated, and measured in the same manner as the samples. 
Refl ectance factors were calculated and corrected for the refl ectance of 
the Spectralon. Because the additional soil sample spectra were acquired 
using a diff erent method than used by Brown et al. (2006), the two data 
sets were analyzed separately. Th ese soil samples were analyzed for to-
tal soil C by combustion at 1300°C using a LECO TruSpec CN gas 
analyzer (LECO Corp., St. Joseph, MI). Th e carbonate contents of the 
soils were determined using the modifi ed pressure calcimeter method 
(Sherrod et al., 2002). Soil organic C was determined by subtraction of 
carbonate C from total C.

Refl ectance spectra of green corn canopies were acquired in corn 
fi elds on 16 and 30 June and 7 and 21 July 2006 using the ASD spectro-
radiometer and the 18° fore-optic. Th e silking (R1) stage for the corn 
(Ritchie et al., 2005) occurred on 7 July 2006. Digital photographs were 
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concurrently acquired with each spectrum, and the photographs from 
16 June 2006 were processed to determine the proportions of green 
leaves, shaded soil, and unshaded soil in the photographs.

Comparison of Spectral Indices
Basic statistical parameters (mean, median, standard deviation, 

and range) were computed for index values of the soils from Brown et al. 
(2006), the crop residues, and the live corn canopy. Th e spectral index 
data for each distinct group (soils, residues, and live corn) were com-
pared to assess potential relationships between pairs of indices using 
Pearson correlation and descriptive statistics. Specifi cally, we calculated 
Pearson correlation coeffi  cients (r) and sample population sizes (n) for 
all three groups. Th e critical |r| values at a 95% confi dence interval (P 
value) of normal distribution were calculated from Student’s t-test val-
ues as (Chatterjee and Price, 1977)

( ) 22

t
r

n t
=

- +  [8]

where t values were determined from Lide (2008). Index sensitivity to 
live vegetation and crop residue cover were determined by comparison 
of r values to NDVI and CAI, respectively.

Soil Refl ectance as a Function of Soil Order and 
Land Resource Unit

Th e soil spectra acquired by Brown et al. (2006) were matched 
against pedon and layer information from the National Soil Survey 
Center Soil Survey Laboratory database (Soil Survey Staff , 2007a). For 
the majority of samples, data such as horizon type, top and bottom 
depths, soil taxonomy, geographic coordinates, LRR and MLRA, min-
eralogy, and other parameters were available. While LRR and MLRA 
were available in the National Soil Survey Center Soil Survey Laboratory 
database, entries were not as extensive as were geographic coordinates 
for soil samples, so these data were specifi cally queried using vector 
geographic information system data provided by the NRCS (2006) in 
conjunction with the geographic coordinates from the database (Soil 
Survey Staff , 2007a). Soils from LRRs outside the conterminous United 
States, i.e., Alaska, Hawaii, Puerto Rico, the U.S. Virgin Islands, and the 
Pacifi c Basin, were not included in the LRR analysis.

RESULTS
Spectral Properties of Soils, Residues, 
and Live Vegetation

Soil and crop residue spectra can be similar, as shown in Fig. 
1. In this fi gure, the spectra of two Fulton County, Indiana, soils and 
two crop residues are displayed alongside a live corn canopy spectrum.

Th e corn canopy spectrum shows major diff erences from 
both soils and both crop residues in refl ectance values and spec-
tral shape across all wavelengths. Th e Gilford series soil (a coarse-
loamy, mixed, superactive, mesic Typic Endoaquoll) and crop 
residues in this fi gure had spectral similarities for wavelengths 
shorter than the water absorption band at 1930 nm (Workman 
and Weyer, 2008). Th is was particularly the case for degraded 
wheat residues (9 mo in the fi eld and lying fl at on the ground) 
and the Gilford soil sample, which appear to be very simi-
lar. One soil sample of the Houghton series (euic, mesic Typic 
Haplosaprist), however, was signifi cantly darker than the other 
soils and residues due to higher SOC, and spectrally featureless 
except for the water absorption at 1930 nm. For wavelengths 

>1930 nm, crop residues showed evidence of the O–H bend-
ing and C–O stretching combination absorption centered at 
2101 nm (Daughtry, 2001; Workman and Weyer, 2008).

As crop residue degrades, the refl ectance values decrease 
across all wavelengths and the relative depth of the O–H bend-
ing and C–O stretching combination absorption centered at 
2101 nm decreases. Fall residues (?1 mo in the fi eld) had mean 
CAI values of 5.8 and 5.4 for corn (eight samples) and soybean 
(fi ve samples), respectively. For these fall residues, CAI ranged 
from 4.3 to 7.1 for corn and from 4.3 to 6.6 for soybean. For 
springtime residues (?7–9 mo in fi eld), corn (39 samples) and 
soybean (26 samples) values ranged from CAI = 1.1 to 6.3 and 
1.4 to 4.6, respectively, with mean values at 2.9 for both types of 
crop residue.

Diff erent spectral shapes in the SWIR spectrum aff ect CAI 
and LCA bands, as seen in Fig. 2. For CAI, concavity in refl ec-
tance values renders CAI-positive values, such as the corn residue 
(?7 mo in the fi eld, but with standing corn residue stubble 30–
45-cm high) with CAI = 6.3 and degraded wheat residue (?9 
mo in the fi eld) at CAI = 1.1. Th e discrepancy between the corn 
and soybean CAI values is largely due to residue piece size; small-

Fig. 2. Shortwave-infrared refl ectance (R) spectra for two soils, two 
crop residues, and live corn canopy. Wheat residues were acquired 
from a strip-tilled fi eld in June, ~9 mo after harvest. Corn residues were 
acquired from a fi eld of standing corn residue stubble in May, ~8 mo 
after harvest. Corn canopy was at the silking stage (R1). Gray triangles 
and dark gray circles denote Cellulose Absorption Index (CAI) and 
Advanced Spaceborne Thermal Emission and Refl ection Radiometer 
(ASTER) band values, respectively. Gray and dark gray columns at the 
top of the chart denote widths of CAI and ASTER bands, respectively; 
A5, A6, and A8 denote ASTER Bands 5, 6, and 8, respectively.
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er residues degrade faster, whereas large residues such as corn can 
survive for more than a year in the fi eld. In fact, multiple soy-
bean residue samples contained the previous year’s corn residue 
in them. Additionally, residues that contain standing stubble will 
degrade more slowly because they are less in contact with soil mi-
croorganisms and soil water (Steiner et al., 1999), as can be seen 
with the corn sample in Fig. 2. Spectral convexity in CAI bands 
will produce CAI-negative values, as seen for the Gilford series 
soil, with CAI = −1.3. Spectra that show linear change produce 
CAI-neutral values, e.g., the green corn canopy and Houghton 
series soils produced values of 0.1 and 0.0, respectively. With 
ASTER bands, spectral concavity produces LCA-negative val-
ues, and convexity LCA-positive values (the opposite behavior 
to CAI). Hence, in Fig. 2 the clean corn residue, degraded wheat 
residue, and green corn canopy produced LCA = 9.9, 4.7, and 
2.4, respectively; the Gilford and Houghton series soils are LCA 
neutral at 0.2 and 0.4, respectively. In many soils, mineral-OH 
absorptions aff ect R2211 and ASTER Band 6, which can render 
them index-negative. Th is absorption feature, albeit small, was 
enough to render the Gilford series soil in Fig. 2 CAI-negative; 
however, it was not large enough to aff ect LCA.

Spectral Index Values of Soils, Crop Residues, and 
Live Corn Canopy

Comparison of Spectral Indices
Spectral index mean values, medians, standard deviations, 

and ranges of soils, crop residues, and live corn canopy are shown 
in Table 2 to assess the discrimination potential of pixel compo-
nents from one another. For all indices, the surface soils subset 
showed decreased ranges compared with the full data set. Th e 
decrease in ranges also included a decrease in standard deviations 
for most indices. Mean and median values also varied between 
the surface soils subset and the entire soils data set due to the nar-
rower range of soil properties in the surface horizons.

Median values (which were similar to mean values), along 
with 10th, 25th, 75th, and 90th percentile data plus outliers of 
CAI, LCA, NDTI, NDSVI, NDI5, and NDI7 values for soil 

orders showed shift s between the global soils spectral data set 
and the surface soils subset in Fig. 3 and 4, respectively. Median 
values of CAI were lower for the global soil data set (Fig. 3) than 
for the surface soils data set (Fig. 4). Th e LCA generally showed 
an increase in median value for the surface soils subset (Fig. 4) 
compared with the global set (Fig. 3). Median values of NDTI 
decreased from the global soils data set (Fig. 3) to the surface 
soils data set (Fig. 4). Th e NDSVI showed general increases and 
NDI5 and NDI7 showed decreases in median values for the 
surface soils subset (Fig. 4) compared with the global soils data 
set (Fig. 3). Th e shift  in values is related in large part to min-
eralogy, whereby deeper layers contain more clays or carbonates, 
which have distinctive spectral features aff ecting indices (Allen 
and Hajek, 1989; Brown et al., 2006; Clark, 1999; Clark et al., 
2003b; Dixon, 1989; Serbin et al., 2009). Of all of these indices, 
CAI contrasts the best between soils and crop residues. In gen-
eral, exposure of subsurface strata is likely to increase the contrast 
between crop residue and soil for CAI. Th e opposite case, how-
ever, can be true with respect to the other indices, which show 
overlapping values for both the global and surface soils data sets. 
For these other indices, noticeable overlaps between soil and crop 
residue index values exist for surface soils, which increase for the 
global soils data set. As such, many of these indices, which may 
be useable over uneroded landscapes, may not be appropriate in 
adjacent eroded areas.

Soil spectral index data correlations to one another may be 
seen in Table 3 for the global soil data set. For this population, 
all of the normalized diff erence indices (NDVI, NDSVI, NDI5, 
and NDI7) correlated with one another except NDTI. Th e CAI 
correlated best with NDTI (r = −0.80), such that a soil with a 
relatively high CAI value was likely to have a low NDTI value 
and vice versa. Th e LCA was found to correlate less with NDTI 
than CAI. While it is diffi  cult to assess exactly why the correla-
tion between CAI and NDTI is better than the correlation be-
tween CAI and LCA, it should be noted that ASTER Band 8 
contains a number of mineral absorptions that do not aff ect the 
CAI (Serbin et al., 2009), which may account for the lower |r|.

Table 2. Statistics for the spectral indices Normalized Difference Vegetation Index (NSVI), Cellulose Absorption Index (CAI), 
Lignin–Cellulose Absorption Index (LCA), Normalized Difference Tillage Index (NDTI), Normalized Difference Senescent 
Vegetation Index (NDSVI), and Normalized Difference Indices 5 and 7 (NDI5 and NDI7, respectively) for all soil samples and the 
surface soils subset from Brown et al. (2006), crop residues, and live corn canopy. 

Material NDVI CAI LCA NDTI NDSVI NDI5 NDI7

All soils 
n = 4193

mean 0.12 −3.5 −2.5 0.03 0.27 −0.15 −0.12
median 0.11 −3.4 −2.5 0.02 0.24 −0.14 −0.11

SD 0.05 1.6 1.6 0.04 0.13 0.10 0.11

range −0.01 ? 0.43 −10.5 ? −0.1 −12.4 ? 8.3 −0.13 ? 0.25 −0.20 ? 0.73 −0.57 ? 0.20 −0.59 ? 0.30
Surface soils
n = 854

mean 0.16 −2.5 −1.9 0.00 0.35 −0.21 −0.21

median 0.15 −2.5 −2.1 0.00 0.35 −0.20 −0.20

SD 0.05 0.9 1.2 0.03 0.12 0.10 0.10

range 0.02 ? 0.38 −9.8 ? −0.3 −5.6 ? 3.9 −0.10 ? 0.16 0.00 ? 0.71 −0.57 ? 0.07 −0.59 ? 0.10
Crop residues
n = 83

mean 0.19 3.3 7.0 0.14 0.40 −0.22 −0.09

median 0.19 3.0 6.9 0.14 0.40 −0.22 −0.10

SD 0.02 0.9 1.3 0.04 0.07 0.07 0.10

range 0.15 ? 0.27 1.1 ? 7.1 3.3 ? 11.5 0.02 ? 0.22 0.23 ? 0.53 −0.36 ? −0.07 −0.33 ? 0.10
Green corn
canopy n = 40

mean 0.77 0.0 3.0 0.36 0.64 0.32 0.58

median 0.85 0.0 2.8 0.43 0.68 0.39 0.70

SD 0.16 0.2 0.6 0.13 0.11 0.16 0.23
range 0.42 ? 0.93 −0.4 ? 0.3 2.15 ? 4.65 0.12 ? 0.50 0.41 ? 0.77 0.01 ? 0.54 0.14 ? 0.82
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Crop residue spectral index cor-
relations may be seen in Table 4. Th e 
NDVI did not correlate well with any 
index for this data set. Th e CAI and 
LCA agreed the best with each other 
in comparison with other indices. Th e 
NDTI correlated better with LCA 
than CAI. For TM-based indices, 
NDSVI, NDI5, and NDI7 all corre-
lated very well with each other. Most 
indices were positively correlated with 
CAI. Th ese positive correlations were 
related to residue quality, with the 
freshest (least degraded) residues hav-
ing the highest values, and decreasing 
as the residue sample quality degrad-
ed. Th e NDSVI, however, showed 
an inverse relationship with CAI 
and varying behavior between spring 
and fall residues. Th e highest spring 
NDSVI values were for degraded resi-
dues, whereas better quality residues 
showed lower NDSVI values. Crop 
residue NDSVI had a logarithmic co-
effi  cient of determination with CAI 
of r2 = 0.54. Fall crop residues, how-
ever, showed no consistent relation-
ship between CAI and NDSVI, with 
a linear coeffi  cient of determination 
of r2 = 0.07.

Th e live corn canopy (Table 5) 
showed excellent correlations for all 
normalized diff erence indices (NDVI, 
NDTI, NDSVI, NDI5, and NDI7) 
with one another, and wide ranges of 
index values, as can be seen in Fig. 3 
to 5. Th e CAI showed agreement with 
all indices (Table 5), but had a very 
narrow range of green vegetation val-
ues clustered around CAI = 0, particularly in comparison with 
CAI values of soils and residues (Fig. 3–5).

Soil Taxonomy and Crop Residue Spectral Indices
Of the 4193 soil samples that were analyzed, 324 of these 

were not assigned to a taxonomic order by the National Soil 
Survey Center Soil Survey Laboratory (Soil Survey Staff , 2007a). 
Crop residue indices for these soils, alongside crop residues and 
corn canopy, are shown in Fig. 3. Additionally, we have displayed 
index values for surface soil samples (854 samples, 74 of which 
had undetermined taxonomy) in Fig. 4. We did not assess wheth-
er or not any of these surface soil samples were acquired from 
eroded soil profi les.

All soils in Fig. 3 were CAI-negative in value, while all crop 
residues were always CAI-positive. Green corn canopy had CAI 
values around zero. Th e ranges of soil CAI regardless of depth 
are similar for several orders, with a few exceptions. Gelisols and 
Histosols had the fewest samples but had the highest median and 
75th percentile CAI values of all of the soils groups, as well as 
the smallest ranges (Fig. 3). While this may be attributable to 

small sample sizes, it is more likely due to the preponderance of 
organic materials that occur in these taxonomic orders, which 
would reduce the range of CAI values (Serbin et al., 2009; Soil 
Survey Staff , 2006). Ultisols had the widest range of CAI values, 
whereas Gelisols showed the smallest range. Th e lowest median 
and 25th percentile values were in Oxisols and Ultisols.

Th e LCA values of soil varied from LCA-negative to LCA-
positive (Fig. 3). Th is was expected, as a number of common 
soil minerals had similar or greater values than did crop residues 
(Serbin et al., 2009). Two of the soil orders sampled, Gelisols 
and Spodosols, had at least 25% of the populations that equaled 
or exceeded LCA = 0. Th e soil sample with the highest LCA 
value, an R horizon (unweathered bedrock layer) underlying an 
Indiana Alfi sol loess of the Ryker series (fi ne-silty, mixed, active, 
mesic Typic Paleudalf ), had LCA = 8.3 as it is composed of cal-
cite, which was shown to be strongly LCA-positive (Serbin et 
al., 2009). Th e lowest LCA value soil (LCA = −12.4) was for a 
Shinbone series CR horizon (fi ne-loamy, siliceous, active, mesic 
Typic Hapludult) Ultisol horizon from North Carolina that con-
tained kaolinite, which can bias LCA negatively, and mica. Th e 

Fig. 3. Ranges of Cellulose Absorption Index (CAI), Lignin–Cellulose Absorption Index (LCA), 
Normalized Difference Tillage Index (NDTI), Normalized Difference Senescent Vegetation Index 
(NDSVI), and Normalized Difference Indices 5 and 7 (NDI5 and NDI7, respectively) values for all 
soil sample spectra from Brown et al. (2006), as grouped by soil taxonomic order. Top and bottom 
whiskers denote 90th and 10th percentiles, respectively, and the tops and bottoms of the boxes denote 
the 75th and 25th percentiles, respectively. The lines inside the boxes denote median values. Circles 
denote outlier values beneath and above the 10th and 90th percentiles, respectively. Undet. denotes 
undetermined taxonomy.
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specifi c species of mica was not determined by the Soil Survey 
Laboratory (Soil Survey Staff , 2007a); depending on the specifi c 
mica mineral species, the LCA may vary from strongly posi-
tive to strongly negative values (Serbin et al., 2009). While the 
CAI and LCA ranges of these soil orders do vary, the absolute 
ranges of these values when coupled with outlier values (those 
under the 10th and over the 90th percentile) show measureable 
overlap. Th ese overlaps also appear to be duplicated across small 

spatial distances: spectral data from 
Fulton County, Indiana, shows that 
soil spectral properties were similar 
for Alfi sols, Entisols, Inceptisols, 
and Mollisols, with only Histosols 
being discernable due to their high 
SOC (Fig. 6). Furthermore, the 
Fulton County soils have similar 
mineralogy (Serbin et al., 2008). As 
such, taxonomic-order-based spec-
tral index calibrations for these indi-
ces would be impractical. Th ere was 
also a small overlap in LCA values 
between degraded residues and corn 
canopy. Due to this overlap and the 
tendency of green canopy to shade 
and obscure residues and soils, green 
pixels should be excluded from 
analyses using NDVI or a similar 
vegetation index as in Daughtry et 
al. (2005).

Th e surface soil sample subset 
showed decreased ranges of CAI 
and LCA values (Fig. 4) compared 
with the global soil sample set (Fig. 
3). Th ere still exist some very index-
negative soils, however, such as the 
Clift on series (fi ne, mixed, semi-
active, mesic Typic Hapludult) Ap 
horizon from North Carolina that 
contained kaolinite and had a CAI 
value of −9.8. Th e highest CAI val-
ue (−0.3) belonged to an Andisol of 
the Manu series (ashy, amorphic, iso-
thermic Aquic Hapludand) A hori-
zon from Hawaii, which contained 
mostly glasses with some plant opal 
and diatoms; this soil also had a to-

tal indiscriminate C content of 18.21% (Soil Survey Staff , 2007a), 
which darkened the soil and caused the CAI values to be close to 
zero (Serbin et al., 2009). Th e maximum LCA value (3.9) was a 
Mollisol sampled as the Takpochao series (clayey-skeletal, mixed, 
active, isohyperthermic Lithic Haplustoll) A1 horizon from the 
Northern Mariana Islands that contained signifi cant amounts of 
calcite and plant roots (Soil Survey Staff , 2007a), both of which 

can positively bias LCA (Serbin et al., 2009). In Fig. 4, 
the CAI and LCA ranges overlap for the orders, thus soil 
order is not a good indicator of what values of CAI or 
LCA would apply to a given soil series.

Th e NDTI performed the best of the TM-based 
indices; the other three indices (NDSVI, NDI5, and 
NDI7) did not achieve good results. Th ese indices sepa-
rated best between soils and live green corn canopy, usu-
ally due to water absorption features aff ecting TM Bands 
5 and 7 (Hunt and Rock, 1989). Live green corn canopy 
was found to overlap the ranges of soils and residues, 
however, particularly at early growth stages, such that a 
vegetation index such as NDVI should be used to sepa-
rate out green pixels beforehand to minimize noise be-

Fig. 4. Ranges of Cellulose Absorption Index (CAI), Lignin–Cellulose Absorption Index (LCA), Normalized 
Difference Tillage Index (NDTI), Normalized Difference Senescent Vegetation Index (NDSVI), and 
Normalized Difference Indices 5 and 7 (NDI5 and NDI7, respectively) values for surface soil sample 
spectra from Brown et al. (2006), as grouped by soil taxonomic order. Top and bottom whiskers denote 
90th and 10th percentiles, respectively, and the tops and bottoms of the boxes denote the 75th and 25th 
percentiles, respectively. The lines inside the boxes denote median values. Circles denote outlier values 
beneath and above the 10th and 90th percentiles, respectively. Undet. denotes undetermined taxonomy.

Table 3. Correlation coeffi cients (r) for the spectral indices Normalized 
Difference Vegetation Index (NDVI), Cellulose Absorption Index (CAI), 
Lignin–Cellulose Absorption Index (LCA), Normalized Difference Tillage 
Index (NDTI), Normalized Difference Senescent Vegetation Index (NDSVI), 
and Normalized Difference Indices 5 and 7 (NDI5 and NDI7, respectively) 
for all soils (critical |r| at P ≥ 0.95 is 0.03, n = 4193 samples).

Index NDVI CAI LCA NDTI NDSVI NDI5 NDI7

NDVI 1.00
CAI 0.27 1.00

LCA 0.26 0.64 1.00

NDTI −0.15 −0.80 −0.34 1.00

NDSVI 0.88 0.13 0.19 −0.12 1.00

NDI5 −0.72 −0.05 −0.14 0.10 −0.96 1.00
NDI7 −0.69 −0.37 −0.26 0.49 −0.89 0.92 1.00
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fore analysis, as per Daughtry et al. (2005). Th e NDTI showed 
some separability between residues and all soil samples, albeit 
that there was a potentially problematic overlap with Oxisols 
and Ultisols, both of which had similar 90th percentile values 
to residues. Th ese values were reduced when compared only 
with surface soil samples (Fig. 4), for which overlaps were lim-
ited to the 90th percentile Ultisol and 10th percentile residue 
values, and some outlier values of soils and degraded residues. A 
number of soils that had overlapping values with crop residues 
contained either kaolinite or montmorillonite, both of which 
are strongly CAI-negative minerals and are discussed in depth 
below. In general, it appears that NDTI may be usable in many 
areas, particularly when crop residues are in good condition 
and the soils are relatively uneroded. Th e NDSVI appeared to 
separate poorly among all surface samples excepting Spodosols 
and showed a fair amount of overlap with Aridisols, on which 
the index was originally developed (Qi et al., 2002). Furthermore, 
the NDSVI also showed overlap between green corn canopy and 
residues and soils. Both NDI5 and NDI7 show unacceptable over-
laps for residues and soils in Fig. 4.

 Land Resource Regions, Major Land Resource 
Areas, and Crop Residue Spectral Indices

Surface soils from the 48 conterminous United States were 
analyzed by index and grouped by LRR in Fig. 5 and Table 6. 
As expected, the ranges of index values were generally less when 
sorted by LRR than by soil order for surface samples. Th ere were 
three reasons for this: (i) there were more categories in which to 
bin the data, (ii) there were fewer data points (since a number of 
surface soil samples were acquired from outside the 48 contermi-
nous United States), and (iii) LRRs represent spatially contigu-
ous areas with similar physical and climatological features, which 
result in similar soils, and thus, spectral properties.

Th e CAI values for most LRRs showed that the 10th and 
90th percentile values were usually within 2 CAI value points 
of each other (Fig. 5). Certain LRRs located in the southern 
and eastern United States showed higher standard deviations 
than other LRRs for CAI values in Table 6, namely LRRs J 
(Southwestern Prairies Cotton and Forage Region, extending 
from Kansas to Texas), N (East and Central Farming and Forest 
Region, extending from Oklahoma to Pennsylvania and New 
York), P (South Atlantic and Gulf Slope Cash Crops, Forest, 
and Livestock Region, extending from Texas and Oklahoma 
to Virginia), and T (Atlantic and Gulf Coast Lowland Forest 
and Crop Region, extending from Texas to New Jersey). Land 
Resource Region N, which showed the largest standard devia-
tion, included the Clift on series Ultisol (CAI = −9.8), albeit 
that this soil CAI value was signifi cantly less than the other soils 
in this LRR. Th e Clift on series soil was found to share the same 
MLRA (130B, Blue Ridge) as three other soils, which included 
the soil with the highest CAI value for this LRR, the Balsam 
series (loamy-skeletal, isotic, frigid Humic Dystrudept). Th e 
Balsam series soil was sampled twice by Brown et al. (2006) 
and had CAI values of −0.4 and −0.5, and contained 14.68 
and 10.33% gravimetric SOC as determined by the National 
Soil Survey Center Soil Survey Laboratory (Soil Survey Staff , 
2007a). Both Balsam series samples contained small x-ray dif-
fractometry peaks for kaolinite, vermiculite, and mica in the 
<0.002-mm fraction (Soil Survey Staff , 2007a) but CAI values 

close to zero because of the high organic matter content. Th e 
Clift on series sample, however, contained less organic matter 
(5.49% SOC) and visible mica fl akes; x-ray diff ractometry of 
the <0.002-mm fraction had stronger kaolinite and vermicu-
lite peaks than the Balsam series, and also showed the presence 
of goethite (Soil Survey Staff , 2007a). All four soil samples in 
this MLRA were from two neighboring counties (Mitchell and 
Yancey) in North Carolina. Th e other two soils in this MLRA 
were the Dellwood series (sandy-skeletal, mixed, mesic Oxyaquic 
Dystrudept) with CAI = −1.1 and the Th under series (loamy-
skeletal, mixed, active, mesic Humic Hapludult) with CAI = 

−2.5. Of these four soils, the Clift on and Balsam series samples 
were from Mitchell County; Dellwood and Th under series were 
from Yancey County. While these two counties had a diverse 
range of CAI values, they also have limited agricultural activity, 
as they are mountainous. Th e Clift on series occurs in a limited 
number of counties in the Appalachian Mountains of northern 
Georgia, Tennessee, and North Carolina, and in two counties in 
northern Virginia, with one county in Georgia reporting 13.6% 
areal coverage. Th e Balsam series is restricted to adjacent coun-
ties of North Carolina and Tennessee, and one county in south-
western Virginia, with the highest county areal extent being 
2.1%. Th e Dellwood series is limited to several adjacent counties 
in the Appalachian Mountains of North Carolina and Tennessee 
and one county in southwestern Virginia, and in all cases areal 
extents were 1.1% or less. Th e Th under series is limited to three 
adjacent counties in North Carolina and one county in south-
western Virginia and ranged from 0.4 to 8.1% areal extents in 
these counties. Other MLRAs in this LRR had CAI value ranges 

Table 4. Correlation coeffi cients (r) for the spectral indices 
Normalized Difference Vegetation Index (NDVI), Cellulose 
Absorption Index (CAI), Lignin–Cellulose Absorption Index 
(LCA), Normalized Difference Tillage Index (NDTI), Normalized 
Difference Senescent Vegetation Index (NDSVI), and Normalized 
Difference Indices 5 and 7 (NDI5 and NDI7, respectively) for crop 
residues (critical |r| at P ≥ 0.95 is 0.22, n = 83 samples).

Index NDVI CAI LCA NDTI NDSVI NDI5 NDI7

NDVI 1.00
CAI −0.40 1.00

LCA −0.32 0.93 1.00

NDTI −0.29 0.60 0.71 1.00

NDSVI 0.45 −0.37 −0.32 −0.34 1.00

NDI5 −0.22 0.30 0.26 0.29 −0.97 1.00
NDI7 −0.30 0.48 0.48 0.62 −0.92 0.93 1.00

Table 5. Correlation coeffi cients (r) for the spectral indices 
Normalized Difference Vegetation Index (NDVI), Cellulose 
Absorption Index (CAI), Lignin–Cellulose Absorption Index 
(LCA), Normalized Difference Tillage Index (NDTI), Normalized 
Difference Senescent Vegetation Index (NDSVI), and Normalized 
Difference Indices 5 and 7 (NDI5 and NDI7, respectively) for live 
corn canopy (critical |r| at P ≥ 0.95 is 0.31, n = 40 samples).

Index NDVI CAI LCA NDTI NDSVI NDI5 NDI7

NDVI 1.00
CAI 0.81 1.00

LCA 0.34 0.74 1.00

NDTI 0.98 0.87 0.42 1.00

NDSVI 0.99 0.75 0.23 0.96 1.00

NDI5 0.99 0.82 0.34 0.99 0.98 1.00
NDI7 0.99 0.85 0.39 1.00 0.97 0.99 1.00
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that were signifi cantly less, e.g., MLRA 118 (Arkansas Valley and 
Ridges) with CAI values ranging from −3.0 to −3.5, or MLRA 
120 (Kentucky and Indiana Sandstone and Shale Hills and 
Valleys) with CAI values ranging from −1.5 to −3.6 (in each case 
four soil samples from each MLRA were sampled).

Th e LCA values showed an overall decreasing trend for 
maximal values from the western conterminous United States 
toward the eastern United States. In some cases this is due to the 
dry climates found in most of the western states, which allows 
a number of minerals that are unstable in wetter climates, such 
as calcite, to exist in the soil (Doner and Lynn, 1989). Th e soil 
with the highest LCA value (LCA = 3.6, Fig. 5) was from the 
Th osand series in Custer County, Idaho, a fi ne-loamy, mixed, su-
peractive, calcareous Calcic Cryaquoll, in LRR B (Northwestern 
Wheat and Range Region in Washington, Oregon, Idaho, and 
Utah). Wet climates such as the Pacifi c Northwest, however, 
can also harbor LCA-positive soils. Th e highest LCA value soil 
in LRR A (Northwestern Forest, Forage, and Specialty Crop 
Region) was a Litchy series soil sample (medial-skeletal, ferrihy-
dritic Oxyaquic Duricryand). Th is soil contained some miner-
als identifi ed by Serbin et al. (2009) as LCA-positive, e.g., ver-

miculite and goethite, or potentially 
LCA-positive (pyroxene, undif-
ferentiated into individual mineral 
species in Soil Survey Staff , 2007a). 
However, the Litchy series, which 
is found in the Olympic National 
Forest in the state of Washington, 
is of very limited areal extent 
(<0.3%) there. Unlike other western 
LRRs, LRR A, which extends from 
California to Washington, has some 
of the highest amounts of rainfall 
in the conterminous United States. 
In LRR C (California Subtropical 
Fruit, Truck, and Specialty Crop 
Region), the soil with the highest 
LCA value belonged to the Hentine 
series, a loamy-skeletal, magnesic, 
thermic Lithic Argixeroll from 
Stanislaus, CA, which contained a 
large amount of antigorite, a strong-
ly LCA-positive serpentine mineral 
(Serbin et al., 2009). Th e Hentine 
series was restricted to four coun-
ties in California and was of very 
limited areal extent (the highest 
county value was 0.7%). Soils from 
LRRs A and C also had the high-
est median LCA values, whereas 
LRR B was more or less in line with 
other LRRs elsewhere in the coun-
try. Western LRRs (A–E) all had 
large standard deviations (≥1.0). 
As with the CAI, LRRs J, N, and P 
also had large standard deviations of 
LCA values. Land Resource Region 
P contained the lowest LCA value 
soil, which was the Rion series sam-
ple (fi ne-loamy, mixed, semiactive, 

thermic Typic Hapludult) from North Carolina (LCA = −5.6). 
Ranges of LCA values varied less within specifi c MLRAs than in 
their LRR, e.g., MLRA 134 (Southern Mississippi Valley Silty 
Uplands) LCA values ranged from −3.9 to −2.9, MLRA 133B 
(Western Coastal Plain) values ranged from −3.2 to 0.4, and 
MLRA 136 (Southern Piedmont, which contained the Rion se-
ries soil) varied from −5.6 to −2.8, whereas for the whole of LRR 
P these values ranged from −5.6 to 0.4. Th e Rion series extends 
from Alabama to Virginia, with the maximal areal extent being 
10.2% for a county in North Carolina.

Th e NDTI values for most soils and undegraded crop resi-
dues generally were separable, except for some overlap for LRRs 
N and P. In these LRRs, a number of soils had NDTI values in 
excess of the 10th percentile for crop residues (NDTI = 0.09). 
In LRR N, the Clift on series sample had an NDTI value of 0.10. 
In LRR P, three soil series from two MLRAs had NDTI values 
exceeding the 10th percentile values of residues. From MLRA 
135 (Alabama, Mississippi, and Arkansas Blackland Prairie) in 
Marengo County, Alabama, the Vaiden series (very-fi ne, smec-
titic, thermic Aquic Dystrudert) had NDTI = 0.13. Th e Vaiden 

Fig. 5. Ranges of Cellulose Absorption Index (CAI), Lignin–Cellulose Absorption Index (LCA), Normalized 
Difference Tillage Index (NDTI), Normalized Difference Senescent Vegetation Index (NDSVI), and 
Normalized Difference Indices 5 and 7 (NDI5 and NDI7, respectively) values for surface soil sample 
spectra from Brown et al. (2006), as grouped by Land Resource Region (LRR, uppercase letters on x axis, 
Table 6). Mean values and standard deviations are shown in Table 6. Top and bottom whiskers denote 
90th and 10th percentiles, respectively, and the tops and bottoms of the boxes denote the 75th and 25th 
percentiles, respectively. The lines inside the boxes denote median values. Circles denote outlier values 
beneath and above the 10th and 90th percentiles, respectively.
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series extends from southeastern Texas to Alabama, with one 
county in Mississippi containing up to 13.2% areal extent. In 
MLRA 136 (Southern Piedmont), three soils had high NDTI 
values, namely an unnamed clayey, kaolinitic, thermic Typic 
Kanhapludult originally identifi ed as being with the Cecil series 
from Oconee County, Georgia, with NDTI ranging from 0.06 
to 0.13 (fi ve samples from the same location), the Hiwassee se-
ries (fi ne, kaolinitic, thermic Rhodic Kanhapludult from Rowan 
County, North Carolina) with values ranging from 0.11 to 0.16 
(two samples from the same location), and the Rion series (one 
sample), which had an NDTI value of 0.09. With the exception 
of the Vaiden series, which was smectitic, all the other soils with 
NDTI values ≥0.09 contained signifi cant quantities of kaolinite 
as determined by the National Soil Survey Center Soil Survey 
Laboratory (Soil Survey Staff , 2007a). Of these soils, the Cecil se-
ries is the most prevalent geographically according to the NRCS 
Soil Extent Mapping Tool (Soil Survey Staff , 2007b). Th e Cecil 
series extends from Alabama to Virginia, and in several counties 
in Georgia and South Carolina areal extents exceed 50%. Th e 
Hiwassee series extends from Alabama to northern Virginia with 
up to 19.1% county areal extents occurring. Soils that had high 
NDTI values in this LRR also had low CAI values (between CAI 
= −4.4 and −7.0, considering the inverse correlation between 
CAI and NDTI), showing that while NDTI would be diffi  cult 
for use with those soils, CAI would have increased contrasts 
in this region. Th is also suggests that NDTI may be problem-
atic in areas where clayey horizons (kaolinitic, montmorillonitic, 
etc.) may be present at the surface. Separability between resi-
dues and soils appeared to be best for LRRs K (Northern Lake 
States Forest and Forage Region, from Minnesota to Michigan), 
L (Lake States Fruit, Truck, and Dairy Region, from Illinois to 
New York), R (Northeastern Forage and Forest Region, from 
Ohio to Maine), and S (Northern Atlantic Slope Diversifi ed 
Farming Region, extending from West Virginia and Virginia to 
New York and Massachusetts).

Th e NDSVI showed much overlap between soils and resi-
dues for most LRRs, with the exception of LRRs R and S (both 
of which are located in the northeastern United States), which 
showed separation of values between 10th percentile residue 
(NDSVI = 0.30) and 90th percentile soil values. Two outlier 
soils for these LRRs are the Amostown series (coarse-loamy, 
mixed, active, mesic Oxyaquic Dystrudept, NDSVI = 0.42) 
of Plymouth County, Massachusetts, in MLRA 144A (New 
England and Eastern New York Upland, Southern Part) of 
LRR R, and the Glenelg series (fi ne-loamy, mixed, semiactive, 
mesic Typic Hapludult, NDSVI = 0.37) of Frederick County, 
Maryland, in MLRA 148 (Northern Piedmont) of LRR S. Th e 
Amostown series is of very limited geographic extent and only 
found in Massachusetts, with the highest county areal extent be-
ing 2.5% and the remainder being <0.3%. Th e Glenelg series, on 
the other hand, extends from Virginia through Maryland and 
northern Delaware to southeastern Pennsylvania, with some 
counties in Maryland and Pennsylvania having areal extents be-
tween 10 and 33% (Soil Survey Staff , 2007b). Due to the inverse 
relationship between residue quality and NDSVI, the best sepa-
ration between fresh, clean crop residue and soil was for LRR 
I (Southwest Plateaus and Plains Range and Cotton Region, in 
Texas). Th e NDSVI did show some contrast for median values 
of residues (NDSVI = 0.40) and soils (NDSVI = 0.27) of LRR 

D (Western Range and Irrigated Region, extending from Texas 
to Wyoming, Oregon, and California), within which Qi et al. 
(2002) developed that index; that said, a good deal of overlap 
between crop residue and soils value ranges of that LRR existed, 
and the three soils from MLRA 41 (Southeastern Arizona Basin 
and Range) sampled by Brown et al. (2006) ranged from NDSVI 
= 0.29 to 0.37, within the range of clean spring crop residues.

Th e NDI5 only appeared to have reasonable separability for 
LRR I, albeit that the small number of spectra makes evaluation 
of this index diffi  cult. Some limited use of NDI5 may be possible 
for degraded residues in LRRs R and S.

Th e NDI7 fared better than the NDI5 for separability of 
values between residues and soils; however, it lacked the contrast 
that was seen with NDTI. It may work best in LRRs I and J with 
relatively fresh residues.

 Soils and the Normalized Difference 
Vegetation Index

Soil spectra from Brown et al. (2006) were used to calculate 
the NDVI, with results in Table 2. Th e majority of corn canopy 
spectra had NDVI values (median NDVI = 0.85) well in excess 
of those from both soils and residues. Th e lowest corn canopy 
NDVI was for early stage corn (from 16 June 2006) when the 
mean green cover and sunlit soil areas from the corn canopy 
spectra were 40.7 and 35.4%, respectively. Maturation of the 
corn canopy minimized the sunlit soil areas, and thus the eff ect 
of soil on scene NDVI. In all cases, the median NDVI values 
of soils and crop residues were <0.20. Crop residues had a very 
limited range of NDVI values and were very distinct from those 
of green vegetation (Table 2). Certain soil samples had NDVI 
values >0.40, but these soils occurred seldom in the contermi-
nous United States.

Fig. 6. Spectra of six soil samples acquired from Fulton County, 
Indiana, with varying soil organic C (SOC) content. Soil orders 
were determined from SSURGO maps and NRCS Offi cial Soil Series 
Descriptions (Soil Survey Staff, 2007b).
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Th e ranges of NDVI values for surface horizon samples were 
reduced and median values were shift ed in comparison with the 
global soils data set (Table 2). Th e few surface soils with NDVI > 
0.3 included the Takpochao series from Rota, Northern Mariana 
Islands; the Maho Bay series (loamy, mixed, superactive, isohy-
perthermic, shallow Typic Haplustoll) from St. John, U.S. Virgin 

Islands; the Merriman series (medial-skeletal, ferrihydritic Pachic 
Fulvicryand) from Clallam County, Washington; and the Litchy 
series from Grays Harbor, Washington. Th e Merriman series soil 
is from the Olympic National Forest and of very limited areal 
extent (0.2% of the national forest area).

For most soils, an NDVI value of 0.30 should be suffi  cient 
for separation of green vegetation pixels from 
bare soil pixels. Local calibration of soil spectral 
properties is advised, however, for determining 
the appropriate NDVI value for the separation 
of green vegetation pixels from bare soil and 
residue pixels.

CONCLUSIONS
Soil order did not have a consistent eff ect 

on soil spectral index values. Soils were more 
spectrally similar within LRRs and specifi cally 
MLRAs, albeit that certain MLRAs had wide 
ranges of diversity with respect to spectral in-
dex values. Soil spectral properties, and thus 
index values, were aff ected primarily by soil 
mineralogy and SOC content. Th e ranges of 
surface horizon soil index values were less than 
those of the global data set, which included soil 
index values from all horizons.

Th e best index to use was CAI, which 
showed complete separation between soils and 
residues, followed by LCA and NDTI, which 
generally separated soils and residues well, with 
a few notable exceptions. Th e CAI and NDTI 
were inversely correlated with good agreement. 
Soils with high carbonate contents or with 
minerals that are strongly LCA-positive had 
similar LCA values to crop residues. Th ese 
LCA-positive soils occur primarily in western 
LRRs of the 48 conterminous United States. 
Soils containing appreciable amounts of clay 
minerals (e.g., kaolinite and montmorillonite) 
decreased the diff erences between soil and resi-
due for NDTI, but increased the contrast for 
CAI. Th ese soils occur primarily in the south-
eastern United States (LRR P), but could also 
occur elsewhere when subsurface horizons be-
come exposed by erosion.

Although NDSVI, NDI5, and NDI7 val-
ues for soils and crop residues frequently over-
lapped, suffi  cient contrasts for successful clas-
sifi cation may exist in some areas. For example, 
NDSVI could be a useful index in LRR R of 
the northeastern United States if certain outlier 
soils are not prevalent in the scene.

In all cases, green pixels should be excluded 
from the analysis via NDVI or a similar vegeta-
tion index. Green pixel removal is of particular 
concern for the TM-based residue cover indi-
ces, which can be overly biased by any green 
vegetation in the pixel. Daughtry et al. (2005) 
recommended that pixels with NDVI > 0.3 be 
masked out to eliminate the eff ects of vegeta-Ta
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tion on residue cover estimation, as canopy eff ectively obscures 
residue and soil.

We suggest that local ground truth refl ectance spectra of 
crop residues and soils be acquired and analyzed to determine 
which indices and sensors are appropriate. Although sensors such 
as Systeme Pour l’Observation de la Terre (SPOT) and AWiFS 
do not have the optimum bands in the SWIR wavelength region 
required for the CAI, LCA, and NDTI indices, assessments of 
crop residue cover classes may be possible with local spectropho-
tometric calibrations. Spectrophotometric calibrations should 
cover the range of soils in a scene and should include refl ectance 
measurements of the soils for several water contents from air dry 
to water saturated to allow more accurate results under dynamic 
fi eld conditions. Th ese local calibrations of soil and crop residue 
spectral properties can, in conjunction with soil and crop residue 
water content spatial information, improve crop residue cover es-
timation accuracy for most indices by providing endpoints for 0 
and 100% crop residue cover situations.

Future hyperspectral and advanced multispectral sensors 
should include CAI bands for crop residue and nonphotosyn-
thetic vegetation detection. Additionally, researchers should 
consider the use of CAI for monitoring grass- and rangelands. 
We feel that CAI should be useful not only for monitoring tillage 
practices and subsequent C sequestration modeling, but also for 
rangeland applications and fi re risk hazards.
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