
www.elsevier.com/locate/rse

Remote Sensing of Environment 92 (2004) 521–534
Deriving land surface temperature from Landsat 5 and 7 during

SMEX02/SMACEX

Fuqin Lia,*Thomas J. JacksonaWilliam P. KustasaThomas J. Schmuggea

Andrew N. FrenchbMichael H. CoshaRajat Bindlisha

aUSDA-ARS Hydrology and Remote Sensing Laboratory, Room 104, Building 007 BARC-West, Beltsville, MD 20705, USA
bHydrological Sciences Branch, NASA Goddard Space Flight Center, USA
Received 22 July 2003; received in revised form 19 November 2003; accepted 18 February 2004
Abstract

A sequence of five high-resolution satellite-based land surface temperature (Ts) images over a watershed area in Iowa were analyzed. As a

part of the SMEX02 field experiment, these land surface temperature images were extracted from Landsat 5 Thematic Mapper (TM) and

Landsat 7 Enhanced Thematic Mapper (ETM) thermal bands. The radiative transfer model MODTRAN 4.1 was used with atmospheric

profile data to atmospherically correct the Landsat data. NDVI derived from Landsat visible and near-infrared bands was used to estimate

fractional vegetation cover, which in turn was used to estimate emissivity for Landsat thermal bands. The estimated brightness temperature

was compared with concurrent tower based measurements. The mean absolute difference (MAD) between the satellite-based brightness

temperature estimates and the tower based brightness temperature was 0.98 jC for Landsat 7 and 1.47 jC for Landsat 5, respectively. Based

on these images, the land surface temperature spatial variation and its change with scale are addressed. The scaling properties of the surface

temperature are important as they have significant implications for changes in land surface flux estimation between higher-resolution Landsat

and regional to global sensors such as MODIS.
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1. Introduction

Land surface temperature (Ts) is a key boundary condi-

tion in many remote sensing-based land surface modeling

schemes (Kustas & Norman, 1996). Currently available

satellite thermal infrared sensors provide different spatial

resolution and temporal coverage data that can be used to

estimate land surface temperature. The Geostationary Oper-

ational Environmental Satellite (GOES) has a 4-km resolu-

tion in the thermal infrared, while the NOAA-Advanced

Very High Resolution Radiometer (AVHRR) and the Terra

and Aqua-Moderate Resolution Imaging Spectroradiometer

(MODIS) have 1-km spatial resolutions. Significantly high-

resolution data come from the Terra-Advanced Spaceborne

Thermal Emission and Reflection Radiometer (ASTER)

which has a 90-m pixel resolution, the Landsat-5 Thematic

Mapper (TM) which has a 120-m resolution, and Landsat-7
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Enhanced Thematic Mapper (ETM) which has a 60-m

resolution. However, these instruments have a repeat cycle

of 16 days.

It is possible that these different sources of data can be

used synergistically. Higher-resolution and less frequent

thermal infrared observations from Landsat might be used

to understand the spatial variation within coarser-resolution

observations made by MODIS and AVHRR, which provide

more frequent measurements. This spatial information is

important in estimating energy balance components, which

utilize temperature measurements, because it is known that

(unlike the measured radiance) the fluxes do not exhibit

linear scaling (Bresnahan & Miller, 1997). The flux com-

puted from an average coarse resolution observation is not

the same as the total of the fluxes computed from higher-

resolution observations (Bresnahan & Miller, 1997). The

errors introduced, however, depend on meteorological con-

ditions and the scale and magnitude of the surface contrast

at the subpixel or subgrid resolution (Kustas & Norman,

2000).
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In this paper, we analyzed several aspects of integrating

these various satellite data sources using data collected as

part of the Soil Moisture Experiments in 2002 (SMEX02,

http://hydrolab.arsusda.gov/smex02). SMEX02 was con-

ducted during the summer over central Iowa croplands.

These analyses will require reliable estimates of Ts, which

in turn requires atmospheric correction of the satellite data

and estimation of surface emissivity (Gillespie et al., 1998;

Schmugge et al., 1998; Wan et al., 2002). Newer satellite

systems, e.g., MODIS and ASTER include features to allow

easier calibration and provide Ts as standard products. This

is not true for the Landsat data. Therefore, as a first step in

this analysis for the SMEX02 data sets, available high-

resolution satellite sources of Ts observations were calibrat-

ed. These include Landsat TM and ETM data. Validation

was provided using ground based surface temperature, low

altitude aircraft temperature data and ASTER estimates of

surface emissivity (ek). These computations required atmo-

spheric correction to convert radiance to brightness temper-

ature and estimates of emissivity to convert brightness

temperature to Ts.

The MODTRAN 4.1 radiative transfer model (Berk et

al., 1998) is used with atmospheric profile data to atmo-

spherically correct the Landsat data and ancillary informa-

tion, as described later, for extracting ek. The derived high-

resolution remotely sensed surface brightness temperatures

are compared to ground-based remote sensing observations

of surface brightness temperature. Changes in Ts and frac-

tional vegetation cover due to the rapid growth in the corn

and soybean crops are described, analyzed and discussed.

In addition, spatial variations of Ts at different pixel

resolutions are analyzed and discussed. Changes in variabil-

ity of Ts with scale is evaluated since this variability has an

impact on estimates of land surface fluxes derived from

remote sensing based surface energy balance models (Kus-

tas & Norman, 1996). The analysis of scaling of Ts can be

used to study how more spatially detailed results from TM/

ETM can be compared with the lower-resolution data such

as Terra-MODIS data (which are acquired a short time after

Landsat). In future work, these results will be combined

with other data and used to investigate how fluxes are

affected by the scale or resolution of Ts from operational

satellites, such as MODIS and GOES.
2. Study area description and data sets

2.1. SMEX02

SMEX02 was a soil moisture and water cycle field

campaign conducted in central Iowa between mid-June and

mid-July, 2002. SMEX02 covered a range of spatial scales

from within field sampling of surface soil moisture, vegeta-

tion biomass and cover, flux measurements at the field scale

using tower measurements, and at the watershed and regional

scale with aircraft-based measurements. Optical and micro-
wave remote sensing data were acquired at pixel resolutions

ranging from 1 m to a few kilometers with aircraft-based

sensors and at tens of meters to tens of kilometers from

satellite-based sensors. Details of the experiment can be

found at website (http://hydrolab.arsusda.gov/smex02).

SMEX02 data used for this paper include the Landsat 5

TM, Landsat 7 ETM, ASTER thermal bands, MODIS land

surface temperature data, and radiosonde data within the

study area and from the nearest operational sounding. In

addition, radiometric surface temperature data from tower-

based and aircraft-based sensors on the Canadian Twin Otter

were used.

2.2. Regional and watershed areas

In order to satisfy a variety of research objectives, two

study areas were selected. One was a region called the Iowa

study area and the other was a watershed, called the Walnut

Creek (WC) watershed study area. The WC study area was

18 km North–South� 36 km East–West south of Ames,

IA. The upper left coordinate is 93.832437 W and

42.729216 N and the low right coordinate is 93.391061

W and 41.875254 N.

The WC area was the primary focus of the Soil Moisture

Atmosphere Coupling Experiment (SMACEX) and analyses

conducted here. Fourteen flux towers were located within

the area and the Canadian Twin Otter (MacPherson &

Wolde, 2002) flew several flight tracks over the study site

for evaluating spatial variability in fluxes across the water-

shed (see Fig. 1).

In 2002, nearly 95% of the WC was covered by row

crops. Corn and soybean were the main crop varieties, with

50% in corn, f 40% in soybean, and the remaining f 10%

in forage and grains. The climate is humid and the average

annual rainfall is around 835 mm with one third of the

rainfall typically occurring during May and June.

2.3. Radiometric surface temperature data from the flux

towers

Broadband thermal infrared thermometer (IRT) observa-

tions were made with an Apogee instrument (model IRTS-P).

[Note: Company and trade names were given for the benefit

of the reader and imply no endorsement by USDA.] This

broadband thermal infrared thermometer has a full wave-

length range from 6.5 to 14 Am (but filtered to 8–14 Am) and

was installed at 12 of the 14 flux tower locations within the

WC study area. The accuracy of the instrument is reported to

be F 0.4 jC from 5 to 45 jC and F 0.1 jC when the sensor

body and target are at the same temperature. Detailed

information about this instrument is provided on the web

(http://www.apogee-inst.com/) and in Bugbee et al. (1999).

The IRTs were mounted at nominal heights of 2 m above

ground level (agl) over soybean and 5 m agl over corn with

a nadir view. With a field of view of approximately 1 to 1,

and a soybean crop height of 0.5 m, this resulted in a
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Fig. 1. Fourteen flux tower locations and Twin Otter tracks on the July 1, 2002 Landsat images over watershed area (thin yellow line is the Walnut Creek

watershed, yellow stars are the location of flux towers and thick yellow lines are aircraft tracks).(For interpretation of the references to colour in this figure

legend, the reader is referred to the web version of this article.)

Table 1

Landsat TM coverage for SMEX02

Date Landsat no. Path Row

June 23, 2002 5 26 31

July 1, 2002 7 26 31

July 8, 2002 7 27 31

July 16, 2002 5 27 31

July 17, 2002 7 26 31
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sampling area or pixel size of roughly 1.5 m in diameter. For

corn which grew rapidly from f 0.5 m at the start of the

SMACEX field campaign to f 2 m by July 16, the

diameter of the sampling area changed from 4.5 to 3 m.

2.4. Radiosonde data

As part of the field experiment, radiosonde atmospheric

profiles of pressure, temperature, and water vapor were

collected in the central part of the WC area (42.00 N,

93.61 W). Data were collected between June 15 and July

9, 2002. The radiosonde data used for atmospheric correc-

tion were collected within 2 h of Landsat/ASTER over-

passes during these days. On the other days with Landsat

coverage, July 16 and 17, radiosonde data from the two

nearest operational sounding stations were acquired. The

stations are Omaha/Valley, NE (station number 94980,

41.32N, 96.23W) and Davenport Municipal AP, IA (station

number 94982, 41.60N, 90.57W). Radiosonde data from the

two stations were interpolated to the same heights and then

data from the two stations were averaged to provide input to

the atmospheric correction models. Since the operational

sounding data were only available at 0 and 12 GMT

standard time, the closest time to the satellite overpasses,

12 GMT was used. The time difference between these

radiosonde data and the satellite overpass were 4–5 h.

2.5. Aircraft-based IRT measurements from the Canadian

Twin Otter

An IRT was installed on the Canadian Twin Otter for

measuring surface temperature from an altitude of approx-

imately 40 m agl. The waveband of the instrument is 9.6–

11.5 Am. It has a 2.7j FOV with an accuracy of f 0.5 jC
(see http://www.wintron.com/Infrared/kt19spec.htm). With

a flying height of around 40 m agl and a nadir view, the

diameter of the sampling area was about 4 m. Since the IRT

observations were sampled at 32 Hz, the data were averaged
along the flight track to yield 60 m segments for comparing

with the satellite-derived land surface temperatures. Mac-

Pherson and Wolde (2002) provide further details about the

flights and how the surface temperature was calculated.

2.6. Satellite data

During the SMEX02/SMACEX field campaign, two

Landsat 5 TM and three Landsat 7 ETM scenes were

acquired over the WC study area. The wavelengths of the

thermal bands for both TM and ETM are 10.4–12.5 Am.

These data were used to produce high-resolution (60 m for

ETM and 120 m for TM) land surface temperature data

products with the two thermal channels (high and low gain)

of the ETM and the single thermal channel of the TM. At the

same time, NDVI calculated from corrected surface reflec-

tance from bands 3 and 4 were used to calculate the fractional

vegetation cover (Choudhury et al., 1994). Details of the

Landsat scenes are listed in Table 1. An ASTER image was

also collected on July 1, 2002. ASTER has five thermal

bands within a wavelength range from 8 to 12 Am. To

compare the scaling results, one MODIS land surface tem-

perature image was also obtained over the watershed area.
3. Approaches for estimating land surface temperature

There are three commonly used methods to retrieve Ts,

depending mostly on how the sensor thermal bands were
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designed. These are the split window method, such as is

used for NOAA–AVHRR data (Becker & Li, 1990), the

day/night pairs of thermal infrared data in several bands,

such as are used for MODIS (Wan et al., 2002) and single

band correction (Price, 1983). Some satellites have multi-

thermal bands, which allow simultaneous estimation of

surface emissivity ek and Ts.

A number of methods have been developed to separate ek
and Ts using multi-thermal band data (Li et al., 1999).

Examples of sensors with multiple thermal bands include

ASTER and MODIS. Methods used to analyze the data

include the reference channel method (Kahle et al., 1980),

the emissivity normalization method (Gillespie, 1985;

Realmuto, 1990), the spectral ratio method (Watson,

1992), the alpha residuals method (Kealy & Gabell,

1990), and the temperature and emissivity separation algo-

rithm (Gillespie et al., 1998; Schmugge et al., 2002).

However, for satellites with a single thermal band, such as

Landsat TM and ETM, obtaining Ts is more difficult. In

addition to an accurate radiative transfer model and some

knowledge of the atmospheric profile, ek information is also
Fig. 2. Flowchart for estimation and verification of
required. For this reason, Landsat TM/ETM thermal data

have not been widely used for temperature mapping al-

though they have high spatial resolution (Qin et al., 2001).

As a result, extensive processing and analysis of the Landsat

data was required. The procedure and results are outlined in

Fig. 2 and described in the following sections.
4. Atmospheric correction and calibration of Landsat

thermal data

The TM/ETM images were level 1G products, partly

geo-registered and also radiometrically corrected. However,

the data were not corrected for atmospheric effects. The data

are satellite-based digital numbers, which can be calibrated

to sensor radiance using Ik = a + b�DN, where Ik is radi-

ance at the sensor, a is offset, b is gain, and DN is the digital

number from the image. If information about the atmospher-

ic profile (especially water vapor) is known, this satellite-

based radiance can be corrected to ground-based radiance

using a radiative transfer model.
land surface temperature from satellite data.



Table 2

Atmospheric correction for Landsat 5 and 7 (thermal bands)

Date Satellite tk dk (W m� 2

sr� 1 Am� 1)

Idk (W m� 2

sr� 1 Am� 1)

June 23, 2002 Landsat 5 0.6925 2.5082 3.9513

July 1, 2002 Landsat 7 0.6127 3.1751 4.8249

July 8, 2002 Landsat 7 0.5371 3.6956 5.7257

July 16, 2002 Landsat 5 0.6594 2.7202 4.1743

July 17, 2002 Landsat 7 0.5636 3.5038 5.2668

Fig. 3. Temperature comparison between aircraft measurement and Landsat

5 TM on June 23, 2002.
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4.1. Basic radiative transfer for thermal data

The sensor radiance Ik can be expressed as (Schmugge et

al., 1998):

Ik ¼ tkIkð0Þ þ dk ð1Þ

where tk is atmospheric transmittance, dk is the spectral

radiance added by the atmosphere, and Ik(0) is the surface

leaving radiance.

The temperature corresponding to a black body radiator

emitting the same radiance is called the brightness temper-

ature (TB). The radiance data can be converted into equiv-

alent brightness temperatures. However, more generally the

surface leaving radiance can be expressed in terms of

surface temperature as:

Ikð0Þ ¼ IBk ðTBÞ ¼ ekI
B
k ðTsÞ þ ð1� ekÞIdk ð2Þ

where ek is the surface emissivity (wavelength dependent),

Idk is the down-welling sky radiance due to the atmosphere,

and Ik
B(Ts) is the spectral radiance from a blackbody at

surface temperature Ts.

Using the atmospheric radiative transfer model MOD-

TRAN (Berk et al., 1998), tk, dk, and Idk can be obtained

using the Landsat band response functions and the radio-

sonde data previously presented with the default aerosol

values provided in the model. Table 2 lists tk, dk, and Idk.

Based on the Planck function, the relationship between

the radiance at a single wavelength and blackbody temper-

ature (brightness temperature) is

Tj ¼
C2

kjln½C1=Ijk
5
j p þ 1�

ð3Þ

where C1 and C2 are 3.74151�10� 16 (W m2) and

0.0143879 (m K), respectively, and Ij (W m� 2) is radiance

at wavelength kj (m).

The relationship between band radiance and brightness

temperature is complex. For a given waveband, let W(k)
represent the response function and ml0 W ðkVÞdk ¼ 1, then

radiance at a waveband (Iw) can be expressed as:

Iw ¼
Z l

0

W ðkVÞIkV½T �dkV ð4Þ

Among various approaches used to make this transforma-

tion, one is to approximate the relationship for a wavelength
band by a function with the same form as the monochro-

matic Planck function. That is, the relationship between

surface temperature and band integrated Ik
B may be approx-

imated as:

Ts ¼
k2

ln½k1=IBk þ 1� ð5Þ

where Ts is surface temperature in Kelvin, Ik
B is integrated

band radiance from Eq. (2) (W m� 2 sr� 1 Am� 1), and k1 and

k2 are ‘‘calibration’’ constants chosen to optimize the

approximation for the band pass of the sensor. For Landsat

7, k1 = 666.09 W m� 2 sr� 1 Am� 1, k2 = 1282.71 K (http://

ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html);

for Landsat 5, k1 = 607.76 W m� 2 sr� 1 Am� 1, k2 = 1260.56

K (Schneider & Mauser, 1996).

Thus, if band emissivity is known, the surface tempera-

ture can be calculated from Eqs. (1), (2), and (5). If it is

assumed that the emissivity is 1.0 then Ik(0) is equal to

Ik
B(Ts) and the surface temperature obtained from Eqs. (1),

(2), and (5) is the same as the brightness temperature.

However, when the emissivity is less than 1, the surface

leaving radiance is reduced by the emissivity and increased

by the reflected sky radiance. These must be estimated to

approximate the actual surface temperature.

4.2. Calibration of Landsat 5 thermal data

O’Donnel (2001) found that temperature values derived

from Landsat 5 thermal data have become cooler since it

was launched in 1985. Hence, any calibration algorithms

converting DN to radiance value require modification. His
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Fig. 4. Comparison of brightness temperature between Landsat TM/ETM

and tower measurements.
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results show that in 1999, Landsat 5 was underestimating by

1.18 jC compared with the Landsat 7 and ground measure-

ments. Thus, the temperature data from Landsat 5 require

additional calibration beyond the products provided.

For the thermal data, it is difficult to calibrate using

other satellites or even ground observations because of the

high spatial and temporal variations of surface temperature.

Fortunately, during the SMEX02 experiment, synchronized

low altitude aircraft measurements were available on June

23, 2002, which can be used for the calibration. Data from

the aircraft and satellite are plotted in Fig. 3. Based upon

the observed pattern, a linear regression with zero intercept

function was fit to establish the following correction

equation.

TB;AIR ¼ 1:0384TB;TM ð6Þ

where TB,AIR is aircraft brightness temperature, and TB,TM
is TM brightness temperature. The resulting linear least

squares regression yielded an R2 = 0.78 and root-mean-

square difference (RMSD) of approximately 1.5 jC.
Since the two sensors being compared have different

bandpass widths (Landsat 10.4–12.5 Am and aircraft 9.6–

11.5 Am), when the landcover emissivities are wavelength
Table 3

Atmospheric correction for Landsat 5 and 7 (visible bands)

Date Lp (W m� 2 sr� 1 Am� 1) Edir (W m� 2 sr� 1 Am� 1)

Channel 3 4 3 4

June 23, 2002 11.9275 3.8637 905.9411 659.8629

July 1, 2002 11.9486 3.9834 920.4499 678.6285

July 8, 2002 12.6030 4.3623 891.4602 650.6311

July 16, 2002 11.8540 3.8552 893.8681 651.2191

July 17, 2002 11.7550 3.9165 901.7579 660.9069
dependent, the sensors can have different effective emis-

sivities and hence create a bias for the brightness temper-

ature. Unfortunately, this error could not be excluded,

which is discussed in the following section, although since

the bandpasses are not too dissimilar and the emissivities

are high it is not likely to have a major effect in our

comparison.

Within the limitations discussed above, the results are

consistent with those reported by O’Donnel (2001), imply-

ing that the satellite temperature is around 1.2 jC cooler

when the observed surface brightness temperature is around

30 jC.

4.3. Brightness temperature extraction and comparison

with tower measurements

From Eq. (5), the brightness temperature (TB) for Landsat

data at the surface was obtained through the atmospheric

correction. In order to investigate the reliability of the

atmospheric correction, TM/ETM brightness temperatures

at the ground surface were compared with the tower

measurements. At this point, only the accuracy of the

atmospheric correction is considered. By using TB measure-

ments rather than Ts to compare the results, errors due to

choice of emissivity and the sky radiance estimation were

minimized—although the emissivity does affect our com-

parison, as we shall describe.

In Fig. 4, the Landsat TB values are compared to the

tower-based IRT measurements. This figure shows that

most points are close to the 1:1 line, with RMSD= 1.5

jC and mean absolute difference (MAD) = 1.2 jC respec-

tively for all the Landsat data, with RMSD= 1.2 jC and

MAD= 1.0 jC for Landsat 7 and RMSD= 1.8 jC and

MAD= 1.4 jC for Landsat 5. However, for some individ-

ual points, MAD reached 3–4 jC. These differences are

due in part to the different wavelength bands. Radiometers

on board the aircraft, the towers and on Landsat have

different wavelength band passes, with 6–14 Am (filtered

to 8–14 Am) for the tower based Apogee, 9.6–11.5 Am for

the aircraft data and 10.4–12.5 Am for Landsat. If the land

cover emissivity varies spectrally, this can lead to different

TB values being recorded for the same Ts. This difference is

greatest for bare soil since soil emissivity can vary signif-

icantly over the wavelength range from 6 to 14 Am. In the

SMEX02 watershed area, based on soil samples which

were taken to be analyzed by the Jet Propulsion Labora-
Ediff (W m� 2 sr� 1 Am� 1) S s

3 4 3 4 3 4

264.8494 120.6393 0.0992 0.0597 0.9052 0.9029

264.8016 123.5521 0.0991 0.0607 0.9052 0.9090

287.2881 139.0162 0.1044 0.0661 0.8986 0.8936

262.4292 119.6224 0.0988 0.0594 0.9056 0.9028

261.7690 121.6008 0.0981 0.0600 0.9052 0.9028



Table 4

Atmospheric correction, emissivity, and temperature of water for the ASTER thermal bands (July 1, 2002)

ASTER bands Ik (W m� 2 sr� 1 Am� 1) tk dk (W m� 2 sr� 1 Am� 1) Idk (W m� 2 sr� 1 Am� 1) ek k (Am) Ts (jC)

10 8.1588 0.493 3.5967 5.4795 0.9829 8.291 26.55

11 8.6879 0.613 2.8519 4.4435 0.9837 8.634 26.69

12 8.9734 0.688 2.3660 3.7861 0.9850 9.075 25.94

13 9.2663 0.672 2.7689 4.3504 0.9906 10.657 26.81

14 8.8790 0.627 3.0774 4.7266 0.9904 11.29 26.01
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tory, soil emissivity is relatively high. Vegetation canopies

have high effective emissivity at all wavelengths and soil

emissivity is also high at most wavelengths (in the range

6–14 Am) being about 0.97 except for wavelengths be-

tween 8.1 and 9.7 Am, where the soil emissivity drops to

0.92–0.95 due to the presence of quartz. However, since

the SMEX02 observations are over canopy covered surfa-

ces, the emissivity error is relatively small and the greatest

impact is most likely on the Apogee data. The comparison

between TB from Landsat and the tower measurements

indicates similar results for both soybean and corn fields

(Fig. 4). Hence, even though there is a fairly large

difference in canopy cover between corn and soybean,

which presumably would impact emissivity, there is no

real effect on TB.

There is a small effect on the measured TB due to the

differing instrument field of views. A wider angle might

result in a TB reduction. However, a significant source of

discrepancies between tower and satellite TB is likely due

to the large differences in the pixel resolution of the

sensors. As discussed in previous sections, tower-based

IRT footprints are on the order of 1–3 m above the

canopy, while Landsat TM has a 120-m, and ETM has a

60-m pixel resolution. Both Landsat resolutions are 1–2

orders of magnitude larger than the Apogee radiometer and

sample a much larger area relative to the tower measure-

ments. Hence, spatial variability in TB at the meter

resolution could contribute significantly to the scatter

between Landsat and tower-based observations. Further-

more, errors associated with image georeferencing and in

the atmospheric correction due to incomplete knowledge of

the water vapor and aerosol profiles contribute to this

scatter. However, given all of these sources of uncertainty,

the differences illustrated in Fig. 4 are similar to those

found in other studies (Gillespie et al., 1998).
Fig. 5. Emissivity estimation based upon two different methods.
5. Surface emissivity estimation

5.1. Background and methods

Emissivity information is required to convert brightness

temperature to kinetic surface temperature. As mentioned

previously, there are several methods to retrieve surface

emissivity. However, these methods are only suitable for

multi-band satellites, such as ASTER or MODIS. Since

Landsat has only a single window for thermal data, it is
impossible to obtain emissivity directly for TM/ETM data

without using other spectral bands and/or ancillary data

and assumptions.

One technique for estimating emissivity that can be

applied is a fractional cover mixture model. It is assumed

that the soil background and the vegetation have specific

known emissivities and that they ‘‘mix’’ according to the

fractional cover (Sobrino et al., 2001). The fractional

vegetation cover is then estimated from the NDVI. Some

investigators have also established empirical models be-

tween NDVI and emissivity (Valor & Caselles, 1996; Van

de Griend & Owe, 1993).

If the surface is homogeneous and flat, then the basic

equation can be expressed as (Sobrino et al., 2001):

ekcevfv þ ð1� fvÞes ð7Þ

where ek is the composite emissivity, ev is the vegetation

emissivity, es is the soil emissivity, and fv is the fractional

vegetation cover.

Here, the soil emissivity was based upon laboratory

analysis of soil samples collected in the watershed. The

average value for the Landsat thermal band is 0.978. The

vegetation emissivity (ev) may be estimated as 0.985

(Sobrino et al., 2001).



Fig. 6. Land surface temperature images derived from TM/ETM images over the watershed area.
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Fig. 6 (continued ).
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5.2. NDVI data source

Landsat visible and near-infrared bands were used to

compute the Normalized Difference Vegetation Index

(NDVI) as follows:

NDVI ¼ qðband4Þ � qðband3Þ
qðband4Þ þ qðband3Þ ð8Þ

where q is band reflectance.

These bands must also be atmospherically corrected

before applying Eq. (8). For these bands, the atmospheric

correction is affected more by aerosols than the thermal

bands.

If the area surrounding a target is assumed to be the same

as (or similar to) the target and the target is assumed to be

Lambertian and uniform, the reflectance at the target can be

expressed conveniently as (Adler-Golden et al., 1999;

Vermote & Vermeulen, 1999; Vermote et al., 1997):

q ¼ pðLt � LpÞ
ðEdir þ Ediff Þs þ pSðLt � LpÞ

ð9Þ

where q is reflectance, Lt is the satellite-based radiance, S is

the reflectance of the atmosphere, Lp is the atmospheric path

radiance, Edir is the direct irradiance at the surface, Ediff is

the diffuse irradiance at the surface, and s is the total diffuse
transmittance from the ground to the top of the atmosphere

in the view direction of the satellite.

Using the same atmospheric correction model informa-

tion in MODTRAN as for the thermal bands with a default

aerosol profile from the model, we can obtain S, Lp, Edir,

Ediff, and s. These are listed in Table 3.

Even when the assumptions described above are not fully

applicable or the atmospheric conditions are not precisely

known, the formula provides a useful normalization of the

data and was used here to standardize the NDVI index.
Additional details on the processing of these bands are

provided in Jackson et al. (2004).

Choudhury et al. (1994) found that the relationship

between NDVI and fractional cover can often be expressed

as:

fv ¼ 1� NDVImax � NDVI

NDVImax � NDVImin

� �a

ð10Þ

where NDVImax is the NDVI for complete vegetation cover

and NDVImin is NDVI for bare soil. In this paper, NDVImax

and NDVImin were assigned values of 0.94 and 0.0, respec-

tively, based upon NDVI values derived from several days

of TM/ETM data. The coefficient a is a function of leaf

orientation distribution within the canopy, where erectophile

to planophile canopies have values between 0.6 and 1.25. A

value of 0.6 was used in the current investigation. The

fractional vegetation cover was compared with limited

ground observations and the results were consistent. Emis-

sivity was then estimated using the derived fractional

vegetation cover and the specified emissivity values of soil

and vegetation.

5.3. Emissivity from ASTER

Emissivity estimated based upon fractional vegetation

cover could not be directly evaluated with ground-based

observations. However, we were able to compare these

estimates with those derived using multichannel band ther-

mal-IR data. It should be noted that it is difficult if not

impossible to judge which method is more reliable without

more information or a data set where there is greater

variation in emissivity.

The multichannel thermal data used were collected by

ASTER on July 1, 2002 very close in time to the Landsat 7

overpass, thus providing the satellite data needed to com-

pare the two techniques for estimating emissivity. The

ASTER data were version 2.06. Here, the normalized

method was used to extract emissivity from the ASTER
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data. Details on how to use the method can be found in

Gillespie (1985) and Realmuto (1990). The maximum

emissivity is assumed as 0.985, which is the vegetation

emissivity in Eq. (7).

Before using this method, we checked both the atmo-

spheric correction and the calibration of the ASTER image

by taking 3� 3 arrays of pixels from the central area of a

lake and averaging the radiance so that noise from the image

is reduced and the radiance truly represents the water

radiance. The method used for atmospheric correction of

the ASTER data was the same as that used for the TM/ETM

data. Following atmospheric correction, the brightness tem-

peratures of channels 10 and 11 were compared. Emissiv-

ities of the two channels were expected to be similar so only

variation in water vapor should create a difference. We

found that the water vapor originally used should have been

slightly lower. Therefore, the adjusted water vapor profile

was used for both ETM and ASTER data. Following this,

the emissivity of water for the ASTER bands was obtained

from http://speclib.jpl.nasa.gov. Using the adjusted atmo-

spheric water vapor amount, the water temperature was

obtained from the five channels using Eqs. (1), (2), and

(5), where k1 and k2 were calculated from ASTER central

wavelengths (Table 4). The results of this algorithm are

listed in Table 4.

Theoretically, the water temperature should be the same

for the five channels. Table 4 shows that the temperatures

from channels 12 and 14 were over 0.5 jC cooler compared

with other channels. These differences could not be

explained by incorrect atmospheric corrections. This indi-

cates that the ASTER data for these two channels required an

additional calibration. Assuming that the average tempera-

ture from the five channels could be regarded as the true

water temperature, the calibration coefficients for the five

channels can be adjusted to achieve the balance. These

calibration coefficients were then applied to the whole image.

5.4. Emissivity comparison between ASTER and NDVI

The emissivity comparison between the values derived

from fractional vegetation cover and those from the ASTER

normalized method over the watershed area is shown as Fig.

5. In the figure, the emissivity from ASTER is the average

of channels 13 and 14 which, when combined, have a

similar wavelength bandwidth to the TM/ETM thermal

band. Points in the figure were selected from the 31
Table 5

Spatial statistics of 5 days of land surface temperature data

Date Maximum (K) Minimum (K) Average (K)

June 23 315.73 289.00 306.53

July 1 322.76 283.54 307.73

July 8 328.47 290.11 305.10

July 16 317.70 289.14 301.40

July 17 329.63 290.83 304.76
watershed sites. Since the ASTER narrow bands had some

noise (stripes in the image), the sites located on the stripes

were excluded. Fig. 5 shows that the results from the two

different methods were close and that the emissivity from

the normalized method has a larger spatial variation. The

similarity in results gives us confidence in using the simpler

and more extendable fractional vegetation cover method of

estimating emissivity in this investigation.
6. Surface temperature products

Combining the emissivity estimates with Eqs. (1), (2),

and (5), Ts can be computed. The five TM/ETM Ts images

are displayed in Fig. 6. For June 23 and July 1, the images

show that the Ts and its spatial variation were high. On these

two days, the weather was clear, and the soil dry, especially

on July 1. But for July 8, July 16, and July 17, both Ts and

its spatial variation were lower. For July 8 and July 17, a

small fraction of the image had cloud cover.

The spatial and temporal variations in Ts reflect the

different cover types, the changing fractional vegetation

cover fv, and the available soil moisture. For the June 23,

fv for corn and soybean was nominally 0.4–0.6. Ts values

for this image were relatively high as the result of high soil

temperatures. Due to dry surface moisture condition the

spatial variation of Ts was a function of crop type. The corn

fields had higher fv, especially after July 1 when fv was

around 0.8. With adequate moisture in the root zone and

high fv, this produced lower Ts values. Also notice that Ts in

urban areas and at road intersections were significantly

higher than the surrounding crop areas (Fig. 6 and Table

5), especially after July 8. This is primarily due to the

soybean and corn crops reaching near full cover ( fvf 1),

whereas the roads and urban areas still contain a significant

fraction of bare soil, and/or non-transpiring surface (i.e.,

roof tops, concrete, and asphalt). The results from Table 5

were calculated using the classified image. Most of the

pixels classified as corn and soybean contain that single land

cover type. However, most road surfaces and urban area

pixels contain a mixture of vegetation, bare soil, and

manmade surfaces (e.g., concrete). Therefore, actual Ts for

purely road surfaces and building roof tops are likely to be

higher than indicated by the pixel integrated value.

The spatial and temporal variations in Ts also reflect

surface soil moisture variations. On days with lower soil
Standard

deviation (K)

Average

corn (K)

Average

soybean (K)

Average road

and urban (K)

2.79 305.40 308.85 306.71

3.13 305.88 309.87 308.92

2.41 303.97 305.20 307.37

2.22 300.49 301.26 303.77

2.58 303.53 304.76 307.64

 http:\\www.speclib.jpl.nasa.gov 


Fig. 7. MODIS derived land surface temperature of the watershed area on July 1, 2002.
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moisture levels, such as on July 1, 2002, Ts values were

higher in contrast to days following precipitation events,

such as July 8. In addition, the higher surface moisture

significantly reduced spatial variation and contrast in Ts
(Table 5). Since TM has a 120-m resolution (June 23 and

July 16, 2002), the data range and spatial variations were

smaller than these observed for the 60-m resolution ETM

data. The Ts values in Table 5 are comparable only for

images having the same pixel resolution, namely July 1,

July 8, and July 17 from ETM, and June 23 and July 16

from TM.
Table 6

Statistical comparison of Landsat derived products at different spatial

resolutions on July 1, 2002

Resolution

(m)

Maximum Minimum Average Standard

deviation

Temperature

(K)

60 322.76 299.30 307.90 3.09

960 312.73 304.38 307.90 1.56

NDVI 60 0.9314 0.0929 0.7324 0.1338

960 0.8622 0.3562 0.7324 0.0760
7. Scale analysis

For the lower pixel resolution imagery from MODIS and

AVHRR, although they are more useful for operational

monitoring purposes, detailed spatial variations of Ts within

and between individual fields will not be detectable because

typical field sizes for many agricultural regions have dimen-

sions on the order of 102 m, whereas MODIS and AVHRR

thermal data have a pixel resolution on the order of 103 m.

The MODIS Ts image of the watershed area on July 1, 2002

(Fig. 7) illustrates how much of the detailed spatial distri-

bution of Ts is no longer present when compared to Landsat 7

(Fig. 6). The image is a MODIS Ts product (http://www.

icess.ucsb.edu/modis/LstUsrGuide/usrguide.html) made

available to the project by M. Friedl, Boston University.

Compared with the Landsat 7 ETM temperature image

shown in Fig. 6, there is much less spatial structure, with

no discrimination of field boundaries due to the low resolu-

tion. Thomas et al. (2002) observed a similar result when

they analyzed coastal sea surface temperature variability

using Landsat and AVHRR data.

Direct quantitative comparison between MODIS and

TM/ETM Ts values is not possible because MODIS data

are acquired f 30 min after the Landsat overpass. During

summer, Ts changes rapidly in the mid morning period of

10:40 to 11 AM local standard time. Ground-based obser-

vations indicated the brightness temperature difference be-

tween the Landsat overpass and the Terra overpass times

can range from 0.8 to 2.0 jC, depending on the vegetation

cover. Instead, we resampled or averaged the TM/ETM Ts
data to represent MODIS pixel resolution observations. An

analysis of the resolution effects on Ts was conducted using

the Landsat data. A 304� 304 block of pixels (60-m

resolution) was extracted from the July 1, 2002 Landsat 7

Ts and NDVI images over the watershed area and converted

to a coarser resolution of 960 m (19� 19 pixels), which is

similar to the MODIS thermal-infrared resolution. Table 6

lists the statistical results obtained using the two different

scales of images.

The results shown in Table 6 indicate that when the

resolution changes from 60 to 960 m, both the spatial

standard deviation (r) and range in Ts are dramatically

reduced. The r for the 960-m resolution image is nearly

half that of the 60-m resolution image for both NDVI and Ts.

This means that at such coarse resolutions, such as MODIS

Ts data, much of the spatial pattern in Ts due to variations in

land cover type and condition is lost. This loss of critical

information with resolution has been discussed by Town-

shend and Justice (1988) who argued that spatial resolutions

of 250–500 m are needed to monitor land-use and land-

cover changes brought about by human activities. More-

over, when sub-pixel variability in Ts and fv is significant,

this can lead to significant errors in pixel-average surface

energy balance estimation (Kustas & Norman, 2000).

To confirm that the conclusions in regard to MODIS are

reasonable, we compared the scaling of MODIS and AS-

TER Ts. As described above, a small area of the WC was

used for the analysis. ASTER data had a 90-m resolution

which is between the resolutions of the Landsat ETM and

TM. However, unlike Landsat, the ASTER data were

obtained as the same time as the MODIS. Unfortunately,

only one ASTER image collected on July 1, 2002 was

 http:\\www.icess.ucsb.edu\modis\LstUsrGuide\usrguide.html 
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Fig. 8. Land surface temperature comparison between MODIS and ASTER

at a 926-m resolution on July 1, 2002.
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available. The ASTER Ts were resampled to a 926-m

resolution, which is the resolution of the MODIS Ts product

we have. In order to make the two data sets spatially

comparable, the MODIS data were reprojected to the UTM

system. The mean and the r for the two data sets are listed in

Table 7. The research area in this comparison was slightly

different from the one that was used for Table 6 because the

ASTER image did not fully cover the watershed area. The

results in Table 7 indicate that r at the high resolution of

ASTER Ts is more than twice that of the lower-resolution

MODIS Ts observations. These results are consistent with the

scaling analysis performed with the Landsat data.

In Table 7, there is f 0.5 K difference in average Ts for

the two data sets. A pixel by pixel Ts comparison between

the MODIS and ASTER is illustrated in Fig. 8. RMSD and

MAD are 0.9 and 0.7 K, respectively. Some pixels reach a

f2 K difference for the two data sets. This is largely due to

the different sensors, georeferencing, and differences in

atmospheric and emissivity corrections algorithms used to

derive Ts. The MODIS Ts data were obtained from a system

generating an operational product, while ASTER Ts data

were processed using local atmospheric observations with

the procedure outlined in previous sections.

The spatial and temporal variation observed in Landsat

and ASTER data is useful for interpreting within-pixel

variations from MODIS resolutions. For estimating fluxes,

the impact of using MODIS versus Landsat resolution Ts
data is investigated by Kustas et al. (2004). A key result

from this study is that using 103-m resolution Ts data, one

cannot distinguish a variation in fluxes, particularly evapo-

transpiration between soybean and corn fields. A possible

procedure for recovering fluxes of individual fields is to

make use of a procedure described by Kustas et al. (2003)

for sharpening the resolution of thermal band data to that

of visible/near-infrared bands, using the functional rela-

tionship between surface temperature and vegetation indi-

ces. The Landsat and ASTER data can be used to evaluate

such sharpening procedures, and the resulting accuracy in

surface flux estimation at the higher resolutions.
8. Error analysis

The conversion of the radiances to land surface temper-

ature involves a number of assumptions and approxima-

tions. There are three sources of error, one comes from

sensor properties (calibration, assumption from broad band
Table 7

Statistical comparison of ASTER temperature and MODIS derived

temperature on July 1, 2002

Sensors Resolution

(m)

Maximum

(K)

Minimum

(K)

Average

(K)

Standard

deviation (K)

ASTER 90 324.24 292.91 309.35 3.50

926 313.94 302.21 309.30 1.49

MODIS 926 312.62 302.50 308.83 1.15
to single band), a second from atmospheric correction

(radiative transfer model MODTRAN 4.1 and water vapor),

and the third from estimating surface emissivity.

The error from using Eq. (5) is difficult to quantify, but

should be relatively minor. As for the calibration error, Barsi

et al. (2003) showed that the error is within F0.6 K for

ETM obtained after December 2000. For Landsat 5 TM

data, calibration error is more difficult to quantify but other

studies indicated it is significant and requires recalibration

with on site data (O’Donnel, 2001), as performed here with

the aircraft observations.

Assuming that the error from the MODTRAN algorithms

is small, provided the input information is accurate, atmo-

spheric correction error arises mainly from the accuracy of

water vapor measurements. We have made an assumption

that it is nominally 10% (Schmugge et al., 1998). If the

target temperature is 300 K brightness temperature, this

could lead to a brightness temperature error of around 0.5 K.

The emissivity error can come from the NDVI estimation

error and the use of the approximate Eqs. (7), (9), and (10).

Ts values are sensitive to the emissivity (Van de Griend &

Owe, 1993). Fortunately, the emissivity of the soil is

relatively high at this site and is also vegetated which
Table 8

Error analysis for ETM land surface temperature estimation

Sensor

calibration error

Eq. (5) and

sensor calibration

0.6 (K)

Atmospheric

correction error

MODTRAN 4.1

and water vapor

0.5 (K)

Emissivity error NDVI, Eqs. (7), (9),

and (10)

0.2 (K)
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resulted in the general applicability of an emissivity of

about f 0.98. The emissivity error for this site should be

less than 0.005 which could lead to a change of 0.2 K in the

land surface temperature when the target brightness temper-

ature is 300 K. The result of using these assumptions and the

error levels associated with them are summarized in Table

8 for Landsat ETM data. The total error is similar to the

approximately 1 K difference obtained in comparisons with

the tower and satellite data.
9. Discussions and conclusions

The findings from this investigation show that it is

possible to extract accurate land surface temperature of

about 1 K from Landsat TM/ETM data with a radiative

transfer model (MODTRAN 4.1), on site radiosonde data,

and an emissivity algorithm. The brightness temperatures

derived from Landsat satellite measurements were compared

with ground measurements. The results of the comparison

suggest that the average difference is 0.98 jC for Landsat 7

and 1.47 jC for Landsat 5. Considering the potential bias in

the actual atmospheric profile information, the different

wavelength bands and footprint sizes, the results are rea-

sonable and consistent with the accuracy found in other

studies (Gillespie et al., 1998).

Emissivity was determined using the fractional area

average of canopy emissivity and soil emissivity. fv was

estimated by satellite-derived NDVI. In the SMEX02/SMA-

CEX field experiment, this method is a reasonable approx-

imation due to the high soil emissivity. The emissivity

derived from fv was compared with values derived from

an ASTER image using the normalized method. The results

show that the difference is within 0.01, although the overall

variation is too small to draw any general conclusions.

Based on this result, fv was used to estimate the emissivity

over the entire SMEX02/SMACEX study area.

From these results, we conclude that with adequate

ancillary information and atmospheric correction, the high-

resolution TM/ETM data can be used to extract detailed

information about vegetation cover and surface temperature.

These are both important surface boundary conditions for

modeling surface fluxes. At the higher spatial resolution of

Landsat, this information can be used to assess crop con-

ditions within fields and the impacts of land cover and land

use changes on surface energy balance. In addition, because

MODIS images are acquired about 30 min after ETM, the

Landsat data provide excellent validation of the broader

scale data as well as information about the effects of

subpixel variability on surface flux estimation (Kustas &

Norman, 2000).

The five images of Ts from the SMEX02/SMACEX field

experiment covered a period from June 23, 2002 to July 17,

2002. These high-resolution Ts images show that Ts changed

with fv and surface soil moisture conditions. With the higher

fv and/or high surface moisture (particularly for the images
after July 1) the magnitude and spatial variability in Ts were

relatively low. The spatial variation in Ts also responded to

the different types of land cover. It has been shown that

many of the details of spatial and temporal variation cannot

be accessed at the lower spatial resolution thermal infrared

images, such as MODIS and AVHRR.

Routine Ts data must rely on lower-resolution satellite

data, such as AVHRR, MODIS, and GOES. These data can

provide daily to half-hourly coverage. They are appropriate

for operational monitoring, but the low spatial resolution

limits their use for detailed spatial analysis of land cover

changes and states in intensively managed and fragmented

agricultural areas such as Iowa (Kustas et al., 2003). When

subpixel variability in fv and Ts is significant, large errors in

pixel average flux estimation can result. Landsat and AS-

TER data offer higher spatial resolution data, but are

available on a biweekly basis at best. Recently, there has

been an effort to merge the high temporal/low spatial

resolution with high spatial/low temporal resolution satellite

data in a nested-scale flux modeling system (Norman et al.,

2003). This modeling framework used in concert with the

thermal sharpening scheme of Kustas et al. (2003) may be

one of the more effective modeling systems for providing

both routine and high spatial resolution data necessary for

monitoring agricultural conditions at the field scale. Landsat

TM and ETM data and coincident MODIS and ASTER data

provide a framework to evaluate these techniques.
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