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Abstract: Wetland hydrology is an important factor controlling wetland function and extent, and

should therefore be a vital part of any wetland mapping program. Broad-scale forested wetland

hydrology has been difficult to study with conventional remote sensing methods. Airborne Light

Detection and Ranging (LiDAR) is a new and rapidly developing technology. LiDAR data have mainly

been used to derive information on elevation. However, the intensity (amplitude) of the signal has the

potential to significantly improve the ability to remotely monitor inundation – an important component

of wetland hydrology. A comparison between LiDAR intensity data collected during peak hydrologic

expression and detailed in situ data from a series of forested wetlands on the eastern shore of Maryland

demonstrate the strong potential of LiDAR intensity data for this application (. 96% overall accuracy).

The relative ability of LiDAR intensity data for forest inundation mapping was compared with that of a

false color near-infrared aerial photograph collected coincident with the LiDAR intensity (70% overall

accuracy; currently the most commonly used method for wetland mapping) and a wetness index map

derived from a digital elevation model. The potential of LiDAR intensity data is strong for addressing

issues related to the regulatory status of wetlands and measuring the delivery of ecosystem services.
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INTRODUCTION

Efforts are being made to conserve wetlands and

many regulatory policies have been adopted in

support of this goal. To manage the loss, preserva-

tion, and/or restoration of wetlands and to judge the

effectiveness of these efforts in preserving associated

ecosystem services, wetlands must be routinely

monitored. Wetland mapping is an essential part
of this monitoring program and much effort has

been made by state and federal government agen-

cies, as well as other organizations, to provide

quality map products. Wetland hydrology is the

most important abiotic factor controlling ecosystem

function and extent (Mitsch and Gosselink 2007),

and should be an important part of any wetland

mapping or monitoring program.
Optical data (e.g., aerial photographs and multi-

spectral images) have traditionally been used to map

wetlands and information on topography has been

used to supplement that approach (Lang and

McCarty 2008). However, broad-scale forested

wetland hydrology has been difficult to study with

conventional remotely sensed methods (Tiner 1990,

Lang and McCarty 2008). As a result, forested
wetlands are one of the most difficult types of

wetlands to map. Regardless, remote observation of

forested wetlands is necessary because they are often

difficult to access on the ground, and on-site

mapping at the landscape scale is usually cost

prohibitive (Silva et al. 2008). New approaches are

needed to map forested wetlands because they are

the most common type of wetland found in the U.S.

and the type of wetland most likely to be lost in the

future (U.S. Fish and Wildlife Service 2002).

Light Detection and Ranging (LiDAR) is a

rapidly evolving remote sensing technology, which

has the potential to improve the detail and reliability

of forested wetland maps and the ability to monitor

parameters such as wetland hydrology (i.e., inunda-

tion; Lang and McCarty 2008). LiDARs are active

sensors, sending and receiving laser energy produced

by the sensor itself instead of relying on the sun’s

energy. This study focused on the use of discrete

point return LiDAR data, which are increasingly

available from state or local governments (Roger

Barlow, U.S. Geological Survey, personal commu-

nication, Vierling et al. 2008), are readily available

from commercial mapping companies (Rosso et al.

2006), and are most commonly used for terrestrial

LiDAR mapping activities. LiDARs emit short

pulses of energy and these pulses illuminate very

small portions of the land’s surface. Therefore,
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LiDAR pulse density refers to the number of these

pulses emitted by the sensor per area (i.e., pulses

transmitted/m2) whereas the phrase LiDAR point

density or LiDAR point cloud density is used to

refer to the number of these pulses which are

recorded by the sensor per area (i.e., data points/

m2). A recent survey of airborne LiDAR sensors

(Lemmens 2007) found that most terrestrial LiDAR

sensors operate in the 900 to 1550 nm range, with

1064 nm being a very commonly used laser wave-

length (Goodwin et al. 2006). LiDAR data can be

used to calculate precise x,y,z locations by calculat-

ing the distance to an object by recording the

amount of time it takes for an emitted pulse, or a

portion of that pulse, to return to the sensor

(Goodwin et al. 2006, Vierling et al. 2008). If the

return signal is above a certain threshold the sensor

will record it. Return intensity is largely determined

by the reflective properties of materials within the

light path. Signal return intensity data are common-

ly delivered by LiDAR providers. LiDAR intensity

or amplitude is generally the amount of energy

returned to the sensor per LiDAR echo relative to

the amount of energy transmitted by the sensor per

laser pulse (Chust et al. 2008). A digital elevation

model (DEM) is the most common product derived

from LiDAR data (Kaasalainen et al. 2008). A

wetness index map is a secondary product, which

can be generated from a DEM and is simply a

function of the topographic characteristics (e.g.,

slope and contributing area) of the DEM (Böhner et

al. 2002, Murphy et al. 2007). More information on

LiDAR sensors can be found in Wehr and Lohr

1999, Flood 2001, and Goodwin et al. 2006.

Intensity data can be used to identify different

types of materials on the ground, especially if those

features have very distinct reflectances in the portion

of the electromagnetic spectrum detected by the

sensor. Due in part to the rapid development of

LiDAR technology and lack of a widely accepted

method to standardize LiDAR intensity data

(Hyyppä et al. 2008), few studies have utilized

LiDAR intensity data for image classification. Most

LiDAR intensity studies have focused on forestry

and other types of vegetation related applications.

Song et al. (2002) was one of the first studies to

examine the ability of LiDAR intensity data to

differentiate different materials (e.g., tree, grass,

house, and asphalt road) on the ground. A few

studies have used LiDAR intensity data along with

other inputs to classify open water (e.g., ocean and

pond; Brennan and Webster 2006, Antonarakis et

al. 2008). Chust et al. (2008) and Goodale et al.

(2007) used a variety of LiDAR derived products to

map coastal ecosystems but only Goodale found

LiDAR intensity to be valuable. No studies

have examined the ability of LiDAR intensity data

to map inundation below the forest canopy,

especially relatively small discontinuous areas of

inundation.

With the rapid evolution of LiDAR technology,

standardized procedures for handling intensity data

are still lacking and methods necessary for many

applications have not been fully developed (Flood

2001). However, we hypothesize that LiDAR

intensity data are well suited for the identification

of inundation even below the forest canopy due to

the strong absorption of incident near-infrared

energy (the energy detected by most terrestrial

LiDAR sensors) by water and the ability to filter

the data by order of return. The objective of this

paper is to demonstrate the feasibility of using

LiDAR intensity data to improve mapping of

inundation below the forest canopy and to compare

the relative ability of LiDAR intensity data for this

purpose to that of optical data, currently the most

commonly used method for wetland mapping.

METHODS

Study Site

The 33 km2 study site is located within the

headwaters of the 1756 km2 Choptank River Wa-

tershed (Figure 1) which is situated on the Delmarva

Peninsula within the Coastal Plain Physiographic

Province. The area is characterized by a humid,

temperate climate with annual precipitation of

approximately 120 cm/yr on average (Ator et al.

2005). About half of annual precipitation is lost to

the atmosphere via evapotranspiration while the

remainder recharges ground water or enters streams

via surface water. Surface water levels vary through-

out the year with peak expression in early spring

(March/April) while levels of evapotranspiration are

still relatively low. The watershed is relatively flat

(max elevation , 30 masl) and land cover is

dominated by agriculture (, 65%) with smaller

amounts of forest (26%) and urban area (6%; Fisher

et al. 2006). A large percent of the watershed’s

forests are forested wetlands. However, much of the

watershed has been drained or otherwise hydrolog-

ically modified to accommodate agriculture and it is

likely that the area of forested wetlands in the

watershed was once much greater (Lang et al. 2008).

The primary types of wetlands found within the

study area are wetland depressions (e.g., Delmarva

bays) and wetland flats, with smaller amounts of

forested wetland area in riparian wetlands. These

forested wetlands have the potential to reduce and
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transform agrochemicals before they enter the

Choptank River, a major tributary of the Chesa-

peake Bay.

Remotely Sensed Data

The Optech ALTM 3100 LiDAR sensor was used

by the Canaan Valley Institute (Morgantown, West

Virginia) on March 27, 2007 to collect data on

elevation and return intensity over a 33 km2 area in

the headwaters of the Choptank River Watershed

(Figure 1). This date corresponded with seasonally

high ground water levels and an extended period of

low evapotranspiration resulting in the inundation

of most forested wetlands. The sensor was flown at

610 m above the Earth’s surface and data were

collected with a pulse frequency of 100,000 pulses of

1064 nm energy per second at a scan angle of 6 20u
using a scan frequency of 50 Hz. Up to 4 returns

were collected (i.e., first, second, third, and last) and

intensity of each return was captured with a 12 bit

dynamic range. Raw data were converted to LAS

files containing x, y, z, and intensity data and bare

Earth points were classified by the data provider

using Terrascan (Terrasolid Limited, Jyväskylä,

Finland) software. LiDAR points were validated

using over 100 precision GPS points collected at

areas of stable elevation (e.g., road intersections)

using a Trimble RTK 4700 GPS/base station

combination and a surveyed Maryland State High-

way Administration benchmark. Average horizontal

and vertical precision of the Trimble GPS was found

to be 0.006 m (standard deviation 0.005 m) and

0.009 m (standard deviation 0.010 m), respectively.

The resultant data had a vertical accuracy of #

15 cm, an average bare Earth point density of ,
2.5 pts m22 (, 0.4 m post spacing), and an average

point cloud density of , 12 pts m22 including all

returns. The intensity data were not calibrated due

to the lack of a commonly accepted LiDAR

intensity calibration process and the basic informa-

tion necessary to standardize the data set (e.g., range

per point). It should be noted that information

necessary to calibrate or standardize LiDAR inten-

sity data is usually not provided to data users.

Regardless, the influence of confounding parameters

(i.e., factors other than the parameter of interest)

was minimized by collecting data at a study site with

minimal topographic variations, using a moderate

scan angle to reduce variations due to range (Luzum

et al. 2005), and collecting the data over a short time

period on a day with no noticeable atmospheric

interference to reduce the impact of atmospheric

absorption. The ALTM 3100 sensor was coupled

with a digital camera to capture coincident 12 cm

spatial resolution aerial photography in the near-

infrared (720–920 nm), red (600–720 nm), and green

(510–600 nm) bands.

Figure 1. Map of the study site showing placement within the Choptank Watershed.
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A Leica ALS50-II multiple return laser scanning

system was used by Fugro EarthData on December

24, 2007 to collect a second overpass of airborne

LiDAR data over the same study site. These data

were collected when wetlands were not inundated to

test the ability of LiDAR intensity data to detect

inundation and to insure accurate vertical point

measurements for the creation of a DEM. The

ALS50-II sensor and the Optech ALTM 3100

sensors were similar (e.g., 4 return LiDAR sensors

using 1064 nm energy). Moreover, flight and sensor

parameters were modified to maximize similarities

between data collections and similar efforts were

made to preprocess the data and ensure data

accuracy. The resultant data had a vertical accuracy

of # 15 cm and a pulse density of , 2.8 pts m22

(, 0.35 m post spacing).

Ground Data

Forested areas contained within two Nature

Conservancy (TNC) reserves were visited within

one week of the March LiDAR data collection

to observe conditions on the ground during over-

flight. No significant precipitation occurred dur-

ing this period. Transects were walked through

forested areas collecting GPS points with a Trimble

GeoXT Pocket PC approximately every 5 to

10 meters. The Trimble GeoXT GPS was designed

to operate under a forest canopy and is capable of

collecting data with sub-meter accuracy. GPS

accuracy was enhanced by real-time WAAS correc-

tion and multiple (. 15) GPS readings were

collected at each location to increase the positional

accuracy of the data. The location of transects was

not pre-determined and was, in part, controlled by

accessibility after entering forest patches from

random access points. At each stop, it was noted

whether or not an area was inundated or not

inundated. GPS points were collected in areas of

either inundation or non-inundation, which were $

4 m in diameter. A homogeneous area of this size

(4 m diameter) was selected to exceed the guidelines

suggested by Justice and Townshend (1981) and to

allow for data filtering (smoothing). Large areas of

open canopy (. 25 m in diameter) were avoided to

limit the scope of the study to areas with a forest

canopy, in keeping with the original project goal.

Over 1,000 points were collected regardless of tree

species. GPS points, along with categorical data (i.e.,

inundated or not inundated) and notes, were

outputted to an ArcGIS shapefile to help assess

the ability of the LiDAR intensity data to dis-

criminate between inundated and non-inundated

areas.

Analysis

LP360 software (QCoherent Software, LLC) was

used to import the tiled bare Earth LAS files.

Inverse weighted distance (IDW) interpolation was

used to produce a 1 m gridded digital elevation

model for the December date and intensity images

for both dates (3/27/07 and 12/24/07). Similar to

other interpolation methods, the use of IDW and the

nature of LiDAR data can lead to local variation in

values and filtering is used to suppress sudden

increases or decreases in pixel values that may result

from noise (Yu et al. 2002).

Before filtering the March and December 2007

intensity images, the ‘‘extract values to points’’

function (cubic convolution interpolation) in Arc-

GIS spatial analyst was used to extract an intensity

value for each ground data collection point. By

using cubic convolution interpolation when sam-

pling the raster values, a weighted average of pixel

values from the 16 nearest cell centers to the point

location was used to compute a mean (ArcMap 9.2).

The ability of the minimally processed intensity data

to distinguish areas with inundation from areas

without inundation was then assessed by computing

the number of ground data collection areas from

each hydrologic class (i.e., inundated or non-

inundated) within 10 digital number (DN) intervals

using the March intensity values (i.e., a frequency

distribution was created). This procedure was

repeated using the December LiDAR intensity data.

An iterative filtering procedure was then used to

reduce noise in the March intensity image while

preserving boundaries between land cover classes

(e.g., inundated and non-inundated forests). The

image was passed through an enhanced Lee filter

(Lee 1980) 5 times with gradually increasing kernel

sizes of 3 (twice), 5, 7, and 9 to reduce noise. Lee

filters are often used to suppress noise that appears

as image speckle. However the Lee filter also

preserves image sharpness and mean value. After

filtering, the ‘‘extract values to points’’ function in

ArcGIS spatial analyst was used to sample pixel

value for each ground data collection area. The

ability of the filtered intensity data to distinguish

areas with inundation from areas without inunda-

tion was then assessed by creating a frequency

diagram.

Due to decreased overlap between intensity values

of the inundated and non-inundated classes evident

in the filtered data, this dataset was used to map

inundated and non-inundated forests within the

study area. Given the strong separation between the

inundated and non-inundated forest classes, a simple

threshold technique was used to produce the
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classification after masking non-forested areas off

using a map of forest canopy cover (Homer et al.

2004). Areas with intensity values between 0 and 50

were mapped as inundated while areas with intensity

values between 80 and 255 where mapped as not

inundated. The 30 DN range between the 2 classes

was mapped as transition to help account for

variability in intensity caused by differences in

vegetation condition (e.g., evergreen and deciduous)

and because areas that are not 100% inundated or

not inundated are often present in the natural

environment.

A map depicting evergreen forest was developed

using the 3 band visible/near-infrared digital image

collected coincident with the March LiDAR data

(see earlier section on remotely sensed data) to help

determine how large of an area and which areas may

be influenced by evergreen forest canopy. The

evergreen map was created by resampling the 3

band visible/near-infrared data to 1 m, using the red

and near-infrared bands to produce a normalized

difference vegetation index (NDVI; NIR-Red/

NIR+Red; Tucker 1979), and then thresholding

the NDVI so that pixels with an NDVI value of 0.08

and higher were considered to have evergreen

vegetation. The threshold was set at an NDVI value

of 0.08 based on visual interpretation of the full

12 cm resolution 3 band visible/near-infrared imag-

ery. The evergreen map was then filtered using a 5 3

5 median filter to reduce outliers or noise. The area

of evergreen canopy found within each forest class

(i.e., inundated, non-inundated, and transition) was

calculated by converting raster map classes to

vectors and then using the intersect function in

ArcMap. The same method was used to calculate the

area of total forest considered to be wetland by the

NWI along with the area considered to be wetland

within the inundated, non-inundated, and transi-

tional classes.

The relative utility of LiDAR intensity data for

mapping inundated areas beneath the forest canopy

was then compared with that of the visible/near-

infrared data collected coincident with the March

LiDAR data using an integrated 3 band digital

camera as well as topographic information derived

from the December LiDAR data. The ability of the

1 m near-infrared band of aerial photography was

assessed using the same approach used to examine

the unfiltered intensity values (i.e., frequency distri-

bution). In this way, the relative abilities of bare

Earth LiDAR intensity and aerial photography to

map inundation could be compared using the same

spatial resolution and portion of the electromagnetic

spectrum. An unsupervised Isodata classification

process (Duda and Hart 1973) was then used to

create a map of inundated and non-inundated

forested areas using all bands of the 1 m digital

aerial photography. All 30 Isodata classes were then

manually combined in order to best differentiate

areas that were inundated from areas that were not.

A third class was necessary due to the large number

of pixels corresponding with evergreen vegetation

that could not be defined as inundated or not due to

the obscuration of the ground by the canopy. The

resultant map was filtered using a 5 3 5 median

filter to remove numerous land cover patches of 1 or

2 pixels in size.

Since topographic wetness indices have been used

to locate areas of concentrated water accumulation

in the past, the ability of the LiDAR intensity

derived product to identify areas of water accumu-

lation was compared with that of a topographic

wetness index. The DEM derived from the Decem-

ber LiDAR data was resampled to 3 m and filtered

iteratively using a low pass filter to eliminate sinks

(i.e., pixel(s) that were not adjacent to pixels with

lower values) that do not represent overall wetness

patterns (i.e., fine scale fluctuations that may be

noise or a tiny depression that does not exert a

significant influence on the accumulation of water)

before using the data to compute a wetness index.

The wetness index was calculated using SAGA

version 2.0 (Cimmery 2007) according to the

procedure described in (Böhner et al. 2002). The

contribution of topographic information to the

ability to detect inundation was determined using

the frequency distribution method described above.

RESULTS

Inundated and non-inundated classes could be

distinguished using the unfiltered original intensity

data but a small amount of overlap between classes

was evident on the frequency distribution (Figure 2).

Areas identified as inundated using the ground

control data had intensity values ranging from 2 to

237 (26 mean) with all but 64 (out of 658 total)

having intensity values between 2 and 50. Areas

identified as not inundated on the ground had

intensity values ranging from 11 to 255 (175 mean)

with all but 19 (out of 488 total) having intensity

values between 50 and 255. After filtering, inundated

and non-inundated classes were easier to distinguish

because filtering reduced variability in intensity

values within inundated and non-inundated classes

(Figure 2). Areas identified as inundated using the

ground control data had intensity values ranging

from 0 to 110 (6 mean) with all but 23 (out of 658

total) inundated sites having intensity values be-

tween 0 and 50. Areas identified as not inundated on
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the ground had intensity values ranging from 27 to

237 (176 mean) with all but 4 (out of 488 total)

having intensity values between 50 and 255. As

expected, inundated and non-inundated classes were

not easily distinguished using the December LiDAR

intensity data (Figure 2). Areas identified as inun-

dated using the ground control data had intensity

values ranging from 0 to 255 (100 mean). Areas

identified as not inundated on the ground had

intensity values ranging from 0 to 235 (100 mean).

The filtered intensity data were able to map areas

of inundation beneath the forest canopy with a high

degree of accuracy (overall accuracy 96.3% when

including all transitional areas as errors; Congalton

and Green 1999). Of the 658 ground data collection

sites that were identified as inundated, the classifi-

cation identified 636 correctly (96.7%) and none

(0%) as non-inundated (22 identified as transitional

areas, 3.3%). Of the 488 ground data collection sites

that were identified as non-inundated, the classifi-

cation identified 464 (95.1%) correctly and 4 (0.8%)

as inundated (20 identified as transitional areas,

4.1%). Approximately 4% of the entire forested area

had an evergreen canopy. Areas with an evergreen

canopy were primarily found within the transitional

class (46%), with almost as much found within the

Figure 2. Frequency distributions of: A) unfiltered March LiDAR intensity data, B) filtered March LiDAR intensity

data, and C) December LiDAR intensity data. All frequency distributions were created with data sampled from areas

found to be inundated or non-inundated on the ground.
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non-inundated class (39%), and much less found

within the inundated class (15%).

Near-infrared digital aerial photography collected

coincident with the March LiDAR data was much

less accurate in distinguishing areas of inundation

below the forest canopy as compared with the

LiDAR intensity data (filtered and unfiltered;

Figure 3). Areas identified as inundated using

ground control data had intensity values ranging

from 56 to 182 (113 mean). Areas identified as not

inundated on the ground had intensity values

ranging from 93 to 192 (138 mean). The 3 band

digital aerial photography mapped areas of inunda-

tion beneath the forest canopy with a moderate

degree of accuracy (overall accuracy 70.0% includ-

ing evergreen areas as errors; Congalton and Green

1999). Of the 658 ground data collection sites that

were identified as inundated, the classification

identified 433 correctly as inundated (65.8%) and

213 as non-inundated (32.4%; 12 [1.8%] identified as

areas with an evergreen canopy; Figure 4). Of the

488 ground data collection sites that were identified

as non-inundated, the classification identified 368

(75.4%) correctly as non-inundated and 82 (16.8%)

as inundated (37 [7.6%] identified as evergreen). The

classifications of forest inundation produced using

the digital aerial photography and the LiDAR

intensity data generally identified the same areas as

inundated (Figure 5). However, the map produced

using the near-infrared digital aerial photography

was much grainier and boundaries between classes

were less distinct even after the classification was

filtered.

Approximately 53% of the total forested area

found within the study area was categorized as

wetland by NWI. Of that 8.30 km2 area, 65%

(5.37 km2) was deemed to be non-inundated by the

filtered intensity based map, 18% (1.50 km2) to be

inundated, and 17% (1.42 km2) to be transitional.

Significant areas of forest that were mapped as

wetland by NWI did not appear to be wetlands on

the digital aerial photography. However, ditches

were found in some of these areas (Figure 6).

Although similarities were found between the

forest inundation map produced using the March

LiDAR intensity data and the wetness index

produced using the DEM (Figure 6), the wetness

index was less able to distinguish inundated from

non-inundated areas (Figure 3). The inundated

areas were generally found to have higher wetness

index values and the non-inundated areas were

generally found to have lower wetness index values

but there was a large amount of overlap between

inundated ground data collection areas having

wetness index values between 7.58 and 13.27 (mean

11.34) and the non-inundated ground data collection

points having wetness index values between 7.33 and

12.78 (mean 10.28).

DISCUSSION

Enhanced Lee filtering was found to increase the

ability of LiDAR intensity data to distinguish

between areas with and without inundation (Fig-

ure 2). The use of this filter changed the mean of

non-inundated areas by only 1 DN but it decreased

average DN in inundated areas by 20, which was

unexpected as enhanced Lee filtering does not
normally alter the mean. Filtering resulted in the

concentration of intensity values near class means,

reducing the range over which values were spread.

This may be due to the ability of filtering to reduce

noise (Song et al. 2002, Chust et al. 2008) thus

improving signal to noise ratio. When considering

LiDAR intensity data, there are multiple sources of

the noise. The salt and pepper appearance (speckle)
of unfiltered intensity image can be at least partially

attributable to sensor error (Song et al. 2002, Yu et

Figure 3. Frequency distributions of: A) 1 m near-

infrared digital aerial photography data and B) wetness

index values which were computed using the December

digital elevation model. Both frequency distributions were

created with data sampled from areas found to be

inundated or non-inundated on the ground.
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al. 2002, Chust et al. 2008) and to the irregular

orientation of objects (e.g., tree trunks or hum-

mocks) below the canopy leading to variations in
local incidence angles and thus varying degrees of

energy being returned to the sensor. Other studies

confirm that the use of filtering improves land cover

classification (Song et al. 2002, Chust et al. 2008).

The forest inundation classification identified

areas of inundation with a high degree of accuracy

(, 96.7%), which should be acceptable for most

natural resource applications. Antokarakis et al.
(2008) achieved similar accuracies (95–99% accura-

cy) when classifying open water (i.e., a river) using a

combination of LiDAR intensity and LiDAR

derived elevation metrics. The sensitivity of the

March intensity image to inundation was further

supported by the lack of apparent inundation

features on the December image (Figure 7). The

accuracy of the intensity derived forest inundation
map was bolstered by focusing the analysis on the

feature of interest (i.e., ground below the forest

canopy) through the use of a forest mask and

filtering the LiDAR returns by elevation.

The small amount of classification error identified

in the LiDAR derived forest inundation map can be

attributed to both ground and sensor characteristics.

It is probable that the presence of an evergreen

canopy caused a slight decrease (# , 3.3%) in the

accuracy of the map. The majority of areas with an

evergreen canopy (46%) corresponded with the

transitional class on the forest inundation map.

These transitional areas had intensity values that

were higher than most areas of inundation but lower

than most areas without inundation. Although this

may have been caused by mixed (inundated and not

inundated) pixels due to GPS error or differences in

soil moisture (Goodale et al. 2007, Antonarakis et

al. 2008), it could also have been caused by the lower

intensity of ground returns beneath evergreen

canopy. This reduction in signal could be caused

by a variety of factors including reduced transmit-

tance of energy through the forest canopy or

reduced sensitivity of the sensor to the returned

energy as controlled by gain, the first explanation

being more probable. Figure 4 illustrates a portion

of the classification with a relatively large area of

evergreen vegetation. Note that there is some

correspondence between areas designated as transi-

tional and areas with an evergreen canopy. The

study area had a relatively small area of evergreen

forest (4%), primarily as American holly (Ilex opaca

Aiton) and mixed pines (e.g., Pinus taeda L. and

Pinus virginiana Mill.). Forested wetlands are one of

the most difficult classes of wetlands to detect and

evergreen forested wetlands are one of the most

difficult types of forested wetlands to detect using

optical data. Therefore a slight reduction in

classification accuracy due to the presence of

evergreen vegetation was expected and is a relative

improvement upon the ability to map evergreen

forested wetlands. In addition to fine scale variabil-

ity in intensity (i.e., speckle), overall variations in

intensity within the inundated class may be caused

by differences in scan angle across flight lines

(Kaasalainen et al. 2005, Luzum et al. 2005).

Variability due to variations in vegetation structure

and local incidence angle (a combination of sensor

scan angle and the orientation of objects on the

ground) dominates in rougher surfaces, such as

upland forests (Kaasalainen et al. 2005).

Even when using the same portion of the

electromagnetic spectrum and an identical spatial

resolution (1 m), the LiDAR intensity data (filtered

and unfiltered) was much more capable of distin-

guishing inundated from non-inundated areas below

the forest canopy than the near-infrared optical

Figure 4. Forest inundation map derived from the

March LiDAR data overlain with polygons representing

areas of evergreen forest produced using the aerial

photographs collected coincident with the March

LiDAR data.
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band. This is evident in the frequency distributions

of the intensity and optical data (Figures 2 and 3).

The frequency distribution based on optical data

shows a much greater number of pixels with values
that could belong to areas with or without

inundation, as compared with the LiDAR intensity

based frequency distributions. Figure 5 illustrates

that although the general placement of inundated

areas is evident with both types of data, boundaries

between classes and total area of inundation are

much clearer when examining the intensity data.

Although it is informative to directly compare
LiDAR and optical imagery collected using the

same portion of the electromagnetic spectrum,

wetlands are traditionally mapped using all available

bands of digital aerial photography. For this reason,

the LiDAR based inundation map was also com-

pared with a map produced using all 3 bands of the
visible/near-infrared aerial photography collected

coincident with the March LiDAR imagery. The

forest inundation map derived from the digital aerial

photography was significantly less accurate (65.8%

of inundated areas identified correctly) than the

forest inundation map derived from the filtered

LiDAR intensity data (96.7% of inundated areas

identified correctly). Evergreen areas had a signifi-
cant impact on the ability of the optical data to

correctly identify areas of inundation below the

Figure 5. The original datasets (filtered intensity, above left and aerial photography, above right) used to produce two

different forest inundation maps (resultant map directly below parent data set).
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forest canopy; 1.8% of inundated validation sites

and 7.6% of non-inundated validation sites were

identified as evergreen for a total of 9.4% of

validation sites where ground conditions could not
be identified due to the presence of evergreen

vegetation. However, the presence of the leaf-off

deciduous forest canopy likely had a greater impact

on the ability of the optical data to identify

inundated areas. The optical data identified 32.4%

of inundated validation sites as non-inundated and

16.8% of non-inundated sites as inundated. Two

primary causes of this misclassification were mixed
pixels and shadow. Since water is a strong absorber

in the green, red, and near-infrared portions of the

electromagnetic spectrum, pixels with a lower

reflectance are generally categorized as inundated

while those with a higher reflectance are categorized

as non-inundated (Antonarakis et al. 2008). The
reflectance recorded at a significant percent of

inundated validation sites was likely increased due

to the relatively high reflectance of tree branches and

boles. Conversely, reflectance of the 16.8% of non-

inundated validation sites that were classified as

inundated may have been lowered by shadow.

Unlike optical data, LiDAR intensity is not affected

by shadow (Donoghue et al. 2007; i.e., the reduction
of the sun’s energy by features blocking its

pathway), which often complicates the use of optical

Figure 6. Forest inundation map derived from filtered LiDAR intensity data (top, right) and false color near-infrared

digital aerial photograph of the same area (bottom, right). Wetlands as mapped by NWI are displayed on both images.

Forest inundation map derived from filtered March LiDAR intensity data (top, left) and wetness index derived from

digital elevation model for the same area (below, left). Note that many of the areas mapped as inundated on the forest

inundation map (top, left) have high wetness index values (below, left).
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data. We concluded that the combined influence of

mixed pixels due to reflectance from tree branches

and boles and shadows contributed to the finer scale

texture (likely misclassifications; Figure 5) present in

the forest inundation map derived from the optical

data. Land cover patches in the intensity derived

map were more contiguous. However, some small to

medium scale patches were present in both maps and

are likely due to hummocks and very small

depressional wetlands (, 10 m).

NWI mapped over half of the forested area within

the study site as wetlands, which is not surprising

since many of the forested areas in the Choptank

Watershed remain forested because they are unsuit-

able for farming or development due to their

relatively high water levels. What was surprising

was finding that 82% of the area mapped as wetland

by NWI was not mapped as inundated using the

March LiDAR intensity data. Generally, NWI maps

error more by omission than commission, especially

in forested wetlands (Tiner 1990). Estimates of the

extent of NWI’s forested wetland omission errors

vary widely but can be substantial (Stolt and Baker

1995, Rolband 1995, Kudray and Gale 2000, Wright

and Gallant 2007). Although not all wetlands are

inundated and instead simply exhibit saturation in

the root zone for a significant portion of the growing

season, the LiDAR data were collected during a

time of year when wetlands often exhibit high water

levels during periods of average to above average

precipitation, like the spring of 2007. Figure 6

illustrates large variation in spatial agreement

between the LiDAR derived forest inundation map

and the NWI wetland polygons. It is possible that

areas of disagreement were caused by the draining of

wetlands between the date when the NWI map was

created (early 1980s) and 2007. Multiple ditches

traverse the western portion of this site (see aerial

photography in Figure 6). Although the minimum

mapping unit is greater for NWI and this factor may

be partially responsible for the overall variation

between NWI and the LiDAR product, this does

not appear to have caused the discrepancy illustrat-

ed in Figure 6.

Although the wetness index resulted in values

between 7.33 and 13.27 and a higher average wetness

Figure 7. Filtered LiDAR intensity collected when most wetlands were inundated (left, top and bottom) and non-

inundated (right, top and bottom). Images on top were collected over the same area of herbaceous restored wetlands and

the images on the bottom were collected from the same area of forested wetlands.
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index value was found, as expected, among inun-

dated validation areas, means of inundated and non-

inundated validation areas varied by only 1.06 and

the frequency diagram indicated a poor potential for

discriminating areas of inundation from areas

without inundation. Regardless, the map of wetness

index values provides an additional source of

information that could be used by natural resource

managers to identify areas with a high likelihood of

inundation based purely on topographic position

(i.e., slope and contributing area) and areas that

were likely inundated in the past (drained wetlands).

Areas that are not shown to be inundated on the

intensity derived forest inundation maps, but have a

high wetness index, are potential candidates for

wetland hydrologic restoration.

LiDAR intensity is often considered to be

analogous to optical reflectance; however, because

there are distinct differences between LiDAR

intensity and optical reflectance, LiDAR data are

not directly comparable to reflectance data obtained

from optical sensors. Multiple factors, other than

the reflectance of the material on the ground, can

influence the intensity of the LiDAR return (Good-

win et al. 2006, Donoghue et al. 2007). Regardless,

the potential of these data to address fundamental

ecosystem processes and improve land cover classi-

fication is strong (Donoghue et al. 2007). This is

especially true when attempting to differentiate

classes with very distinct reflectances in the portion

of the electromagnetic spectrum utilized by the

sensor (e.g., water, dry leaves, soil, vegetation).

Furthermore, assuming that atmospheric conditions

are relatively constant during acquisition, LiDAR

intensity will depend primarily on the reflectance of

objects on the ground at the wavelength of the laser

(Luzum et al. 2005) and other properties of the

material being sensed. The influence of confounding

parameters can be greatly reduced by optimizing

collection parameters to reduce noise, such as in this

study and others (Holmgren and Persson 2004,

Donoghue et al. 2007).

The increasing availability of LiDAR sensors that

use various wavelength lasers and other instrument

specifications (e.g., pulse repetition rate; Lemmens

2007, Hyyppä et al. 2008) means that proper

instrument selection will be increasingly important

to wetland monitoring. The relationship between

laser wavelength and the absorption features of

water and other materials should be considered. If

possible, LiDAR data should be collected to

different specifications based on their application.

For example, higher point densities and collection of

data at lower altitudes may be necessary for

mapping in forested areas with relatively subtle

topographic change (Luzum et al. 2005, Goodwin et

al. 2006). Temporal considerations (e.g., date of

acquisition) are also important. For example, it was

necessary to collect the March dataset so that

inundation could be assessed but these data could

not be used to create an accurate DEM because the

presence of water precludes accurate detection of the

land surface.

The full potential of LiDAR technology has not

been realized, in part due to the low utilization of

certain LiDAR products, such as LiDAR intensity

data. This is largely due to the sparse documentation

of the potential of this unique product to help solve

some of our most intractable natural resource

problems, such as the mapping of forested wetlands.

LiDAR derived forest inundation maps can be used

to guide numerous management and regulatory

decisions. For example, LiDAR data can be used

to map hydrologic flow pathways, which regulate

the ability of wetlands to provide ecosystem services

(e.g., water quality). The ability to identify these

hydrologic connections could be key to the preser-

vation of many forested wetlands. Recent federal

court case rulings incorporating the ‘‘significant

nexus’’ concept in the jurisdiction of the Clean

Water Act for wetland regulation have presented

additional information requirements for establishing

regulatory status. New tools that can establish

connectivity between wetlands and stream networks

would better inform debates and enhance the ability

to preserve wetlands under current laws (Kusler et

al. 2007).
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J. Hyyppä, and E. Ahokas. 2008. Brightness measurements and
calibration with airborne and terrestrial laser scanners. IEEE
Transactions on Geoscience and Remote Sensing 46:528–34.

Kudray, G. M. and M. R. Gale. 2000. Evaluation of national
wetland inventory maps in a heavily forested region in the
upper great lakes. Wetlands 20:581–87.

Kusler, J., P. Parenteau, and E. A. Thomas. 2007. ‘‘Significant
nexus’’ and Clean Water Act jurisdiction. Association of State
Wetland Managers, http://www.aswm.org/fwp/significant_nexus_
paper_030507.pdf

Lang, M. and G. McCarty. 2008. Wetland Mapping: History and
Trends. p. 74–112. In R. E. Russo (ed.) Wetlands: Ecology,
Conservation and Management. Nova Publishers, New York,
NY, USA.

Lang, M., G. McCarty, J. Ritchie, A. Sadeghi, D. Hively, and D.
Eckles. 2008. Radar monitoring of wetland hydrology: dynamic
information for the assessment of ecosystem services. Proceed-
ings of the 2008 IEEE International Geoscience & Remote
Sensing Symposium, Boston, MA, USA.

Lee, J. S. 1980. Digital image enhancement and noise filtering by
use of the local statistics. IEEE Transactions on Pattern
Analysis and Machine Intelligence 2:165–168.

Lemmens, M. 2007. Airborne lidar sensors. GIM International
21(2):24–27.

Luzum, B. J., K. C. Slatton, and R. L. Shrestha. 2005. Analysis of
spatial and temporal stability of airborne laser swath mapping
data in feature space. IEEE Transactions on Geoscience and
Remote Sensing 43:1403–20.

Luzum, B., M. Starek, and K. C. Slatton. 2004. Normalizing
ALSM Intensities. Geosensing Engineering and Mapping
(GEM) Civil and Coastal Engineering Department, University
of Florida, USA. GEM Center Report No. Rep_2004–07–001.

Mitsch, W. J. and J. G. Gosselink. 2007. Wetlands, fourth
edition. John Wiley and Sons, Inc., New York, NY, USA.

Murphy, P. N. C., J. Ogilvie, K. Connor, and P. A. Arp. 2007.
Mapping wetlands: a comparison of two different approaches
for New Brunswick, Canada. Wetlands 27:845–54.

Rolband, M. S. 1995. A comparison of wetland areas in northern
Virginia: National wetland inventory maps versus field
delineated wetlands under the 1987 manual. Wetland Journal:
Research, Restoration, Education 7:10–14.

Rosso, P. H., S. L. Ustin, and A. Hastings. 2006. Use of lidar to
study changes associated with Spartina invasion in San
Francisco Bay marshes. Remote Sensing of Environment
100:295–306.

Silva, T. S. F., M. P. F. Costa, J. M. Melack, and E. M. L. M.
Novo. 2008. Remote sensing of aquatic vegetation: theory and
applications. Environmental Monitoring and Assessment
140:131–45.

Song, J. H., S. H. Han, K. Y. Yong, and Y. I. Kim. 2002.
Assessing the possibility of land-cover classification using
LiDAR intensity data. International Archives of Photogram-
metry, Remote Sensing and Spatial Information Sciences
34:259–62.

Stolt, M. H. and J. C. Baker. 1995. Evaluation of National
Wetland Inventory maps to inventory wetlands in the southern
Blue Ridge of Virginia. Wetlands 15:346–53.

Tiner, R. W. 1990. Use of high-altitude aerial photography for
inventorying forested wetlands in the United States. Forest
Ecology and Management 33:593–604.

Tucker, C. J. 1979. Red and photographic infrared linear
combinations for monitoring vegetation. Remote Sensing of
Environment 8:127–50.

U.S. Fish and Wildlife Service. 2002. National wetlands
inventory: A strategy for the 21st century. US Department of
the Interior, Fish and Wildlife Service, Washington, DC, USA.

Vierling, K., L. Vierling, W. Gould, S. Martinuzzi, and R.
Clawges. 2008. Lidar: shedding new light on habitat charac-
terization and modeling. Frontiers in Ecology and the
Environment 6:90–98.

Wehr, A. and U. Lohr. 1999. Airborne laser scanning – an
introduction and overview. ISPRS Journal of Photogrammetry
& Remote Sensing 54:68–82.

Wright, C. and A. Gallant. 2007. Improved wetland remote
sensing in Yellowstone National Park using classification trees
to combine TM imagery and ancillary environmental data.
Remote Sensing of Environment 107:582–605.

Yu, K., S. H. Han, H. Chang, and T. Ha. 2002. Potential of
reflected intensity of airborne laser scanning systems in
roadway features identification. Geomatica 56:363–74.

Manuscript received 30 September 2008; accepted 15 June 2009.

1178 WETLANDS, Volume 29, No. 4, 2009


