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As climate variability increases, it is becoming increasingly critical to find predictable patterns that can
still be identified despite overall uncertainty. The El-Niño/Southern Oscillation is the best known pattern.
Its global effects on weather, hydrology, ecology and human health have been well documented. Climate
variability manifested through ENSO has strong effects in the southeast United States, seen in precipita-
tion and stream flow data. However, climate variability may also affect water quality in nutrient concen-
trations and loads, and have impacts on ecosystems, health, and food availability in the southeast. In this
research, we establish a teleconnection between ENSO and the Little River Watershed (LRW), GA., as seen
in a shared 3–7 year mode of variability for precipitation, stream flow, and nutrient load time series.
Univariate wavelet analysis of the NINO 3.4 index of sea surface temperature (SST) and of precipitation,
stream flow, NO3 concentration and load time series from the watershed was used to identify common
signals. Shared 3–7 year modes of variability were seen in all variables, most strongly in precipitation,
stream flow and nutrient load in strong El Niño years. The significance of shared 3–7 year periodicity over
red noise with 95% confidence in SST and precipitation, stream flow, and NO3 load time series was con-
firmed through cross-wavelet and wavelet-coherence transforms, in which common high power and co-
variance were computed for each set of data. The strongest 3–7 year shared power was seen in SST and
stream flow data, while the strongest co-variance was seen in SST and NO3 load data. The strongest
cross-correlation was seen as a positive value between the NINO 3.4 and NO3 load with a three-month
lag. The teleconnection seen in the LRW between the NINO 3.4 index and precipitation, stream flow,
and NO3 load can be utilized in a model to predict monthly nutrient loads based on short-term climate
variability, facilitating management in high risk seasons.

� 2009 Elsevier B.V. All rights reserved.
Introduction

Climate variability and change are areas of high priority re-
search both locally and globally. Recent research has shown that
extremes of climate such as heat waves, droughts, floods and trop-
ical cyclones may be becoming more common (IPCC, 2007). Cli-
mate variability directly affects a range of hydrological variables,
such as precipitation and water quantity. By extension, climate
variability also may affect water quality as seen in pollutants,
although these concerns are often overlooked in favor of focusing
on stream flow amounts and timing. However, volumes of stream
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flow may not be the most important factor if water quality is low-
ered to a point where the utility in natural or manmade ecosys-
tems is compromised. There is a need to identify climate non-
stationarities and their links to watershed outcomes. In particular,
for risk management, inter-annual modes of climate variability and
their seasonal expression are of interest. The specific contribution
of this paper is that it is one of the first analyses to link water qual-
ity parameters to these non-stationary climate modes. The recent
IPCC technical paper ‘Climate Change and Water’ suggests with
high confidence that the increase in global climate variability and
extremes may exacerbate some types of water pollution, leading
to declines in water quality that could affect food availability, hu-
man health, water infrastructure operating costs, and ecosystem
health (Bates et al., 2008). This research is targeted at exploring
the relationship between climate variability at the inter-annual le-
vel via the El-Niño/Southern Oscillation (ENSO) and hydrology and
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water quality at the small basin scale in the Little River Watershed,
Georgia (GA). By quantifying the relationships between inter-an-
nual climate and water quality, it may be possible to use this infor-
mation to reduce pollutant loads into target watersheds during
high risk months using short-term climate predictions.

The ENSO is a periodic ocean and atmospheric phenomenon
with strong effects on the climate of the southeast United States.
The tri-state region especially, Florida, GA, and Alabama, experi-
ences strong ENSO effects. El Niño winters tend to be cooler and
wetter than those in neutral years; whereas La Niña winters tend
to be warmer and drier (Kiladis and Diaz, 1989; Hanson and Maul,
1991; Schmidt et al., 2001). Different ENSO phases are identified
using indices of sea surface temperatures (SST) in the equatorial
Pacific Ocean and associated pressure and wind pattern changes.
Generally, an ENSO year is classified as El Niño if the 6 month spa-
tially averaged mean is at least +0.5 �C greater than average, La
Niña if it is �0.5 �C lower than average, and neutral otherwise,
although the precise definition has changed over time and varies
by study (Trenberth, 1997). In this research, categorical definitions
such as the Japan Meteorological Agency’s ‘‘El Niño” or ‘‘La Niña”
will not be used to define entire years (JMA Atlas, 1991). Instead,
the continuous SST anomaly time series averaged over the region
bounded by 5�N–5�S, from 170�W to 120�W and called the NINO
3.4 index is used to encompass finer temporal variability within
the ENSO signal (Trenberth, 1997). ENSO phase has previously
been shown to have predictable effects on stream flow, precipita-
tion, monsoon occurrence, crop yield, cholera occurrence, flood fre-
quency, and simulated water quality data in different regions
around the world (Chiew et al., 1998; Piechota and Dracup,
1999; Rajagopalan and Lall, 1998; Handler, 1990; Kulkarni, 2000;
Hansen et al., 1997; Pascual et al., 2000; Keener et al., 2007). In
monitoring and research efforts during the 20th century, ENSO
indices have emerged as one of the most consistent for describing
inter-annual climate variability on both global and regional scales
(Ropelewski and Halpert, 1986).

Often in research, hydrological processes over long periods of
time are assumed to be stationary. Observed data for many differ-
ent variables provide evidence to the contrary. Spectral analysis
methods have been used to investigate the frequency relationships
between large scale climate indices such as the ENSO, North Atlan-
tic Oscillation (NAO) and Pacific Decadal Oscillation (PDO) and
hydrologic variables such as stream flow and precipitation (Rajag-
opalan and Lall, 1998; Einfield et al., 2001; D’Arrigo et al., 2001).
Spectral wavelet methods allow one to explore non-stationary as-
pects of time series within the frequency domain.

The ENSO phenomenon is recognized as having an approximate
periodicity of 3–7 years (Rasmusson and Wallace, 1983), which has
various affects on global climate. If relationships shown in other
locations between observed precipitation, stream flow, and the
ENSO index (Rajagopalan and Lall, 1998; Labat, 2008) are valid in
the Little River Watershed in Georgia, it may be possible to use
the NINO 3.4 anomalies as a predictor for high risk monthly nutri-
ent loading, and thus as part of a best management practice (BMP)
or BMP selection tool. The wavelet analysis allows the character-
ization of the low-frequency oscillations and amplitudes associ-
ated through time with geophysical data such as rainfall, SST
(Wang and Wang, 1996; Torrence and Compo, 1998), and nutrient
loading. Coherence and cross-wavelet analysis then allows the di-
rect comparison of two time series, SST and precipitation, stream
flow, or nutrients, for the purpose of identifying areas in which
they co-vary with high power (Grinsted et al., 2004). Investigating
and identifying significant oscillation periods in precipitation,
stream flow, and nutrient loads in the southeast United States that
correspond to ENSO oscillations is a crucial first step in ultimately
reducing risks associated with climate variability in managing
water resources and agricultural systems. The result is an under-
standing of both recurrent, episodic phenomena, and also a meth-
od of quantitatively describing climate risk that is changing in
time.

Hydrological relationships involving storm runoff and infiltra-
tion rates that apply in much of the US do not apply for the coastal
plain (Sheridan et al., 2001), and it is therefore often necessary to
create new models with specific hydraulic relationships for the re-
gion. Existing models often rely on empirical algorithms to repre-
sent processes that are not well understood, making wavelet
analysis appealing, in which long term, high, or low frequency pat-
terns can be found and used to advance understanding of these
processes. Inclusion of the impacts of the large riparian zones in
the LRW on flow and water quality is critical to accurate physical
hydrological modeling (Sheridan et al., 1983). Evidence exists that
seasonal precipitation in the region may be shifting, with more
rainfall from September to March, and less during the growing sea-
son from April to August (Sheridan and Knisel, 1989; Baigorria
et al., 2007). The southeast United States is an important region
both economically, agriculturally, and socially, because of its rap-
idly growing population that will add water demand and environ-
mental stress to currently stressed or degraded ecosystems. To
address the multitude of issues associated with the changing cli-
mate in the southeast, finding new methods of making predictions
for hydro-climatic variables based on periodic non-stationary phe-
nomena such as the El-Niño/Southern Oscillation is an important
tool. In this research, wavelet analysis explores the link between
nutrient loading, hydrology, and ENSO in the Little River Wa-
tershed near Tifton, Georgia. This study is a first step in ultimately
modeling how flushes of nutrient loading in the southeast may be
reduced via management based on current or short-term predic-
tions of ENSO phase.
Methods and procedures

Field site

The Little River Watershed (LRW) in Tifton, southeast Georgia, is
an example of a stereotypical coastal plain watershed. Occupying a
large area in the southeast US, coastal plain watersheds are charac-
terized by broad, flat alluvial flood plains with low-gradient, poorly
defined channels, sandy soils, and slow moving streams. The LRW
covers 334 km2, of which approximately 40% of the southern half
and 30% of the northern half are agricultural cropland (Bosch
et al., 2004). It is comprised of eight sub-basins of size varying from
9 to 115 km2 (Fig. 1), and has extensive riparian buffers and gentle
stream slopes ranging from 0.1% to 0.5%. All analyses in this paper
were done on sub-basin K, a 16.8 km2 area with 106–146 m eleva-
tion in the watershed uplands with the most comprehensive nutri-
ent data available of the basins.

Climate in the LRW region is humid sub-tropical, characterized
by long and hot summers, short and mild winters, and an average
growing season of 245 days (Sheridan, 1997). Annually, the area’s
average precipitation (1922–1988) is 1208 ± 214 mm (Sheridan
and Knisel, 1989), with variable monthly distribution. As in much
of the southeast US, summer rainfall is characterized by convective
storms with shorter individual events that occur with greater fre-
quency and intensity than in other seasons. In this regard, sum-
mers in the LRW usually have total greater rainfall than other
seasons (Sheridan, 1997). Typically, the fall months have the least
total rainfall, but are more likely to have extended storms with
longer average duration between precipitation events (Feyereisen
et al., 2008). Late summer and fall months may also receive heavy
rainfall from tropical storms. Winter and spring seasons receive
more total rainfall than the fall season, and continue to be charac-
terized by variable low-intensity storm events. Average tempera-



Fig. 1. The Little River Watershed and sub-basins, Tifton, Georgia. The total area is 334 km2. All analysis was done with data from upland sub-basin K, with an area of
16.8 km2. Triangles indicate weir/stream flow measurement locations for each sub-basin.
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tures range from a monthly minimum of 4.2 �C in January to a
maximum of 32.7 �C in August, with an annual average of 19.1 �C
(Sheridan, 1997).

Shallow, groundwater flow is the primary runoff component in
uplands, accounting for up to 80% of streamflow (Sheridan, 1997).
Groundwater flow is also the primary flow route for soluble nutri-
ents (Lowrance et al., 1984a). The soils of sub-basin K are mainly
sandy loam and loamy sand with characteristically high infiltration
capacity. Infiltration at the surface is restricted by a plinthic layer
of clay/sandy clay loam with low hydraulic conductivity (Feyerei-
sen et al., 2008). Groundwater recharge to aquifers below the sur-
ficial aquifer is restricted by the Hawthorn formation, which makes
up the confining layer for the artesian aquifer under the watershed
(Stringfield, 1966). The shallow lateral subsurface flow and
groundwater flow from the surficial aquifer contribute to seasonal
stream flow (Sheridan, 1997).

Sub-basin K in 1968 was defined as mixed-use agricultural, and
vegetative mapping showed land use as 39% agricultural (mostly
peanuts, corn, cotton, soybean, tobacco), and 61% woodland
(mostly slash and longleaf pine with wiregrass or broomsedge,
some hardwood pine, swamp hardwood, and pine/oak) (Sheridan
et al., 1983). In 2003, the land use had changed to approximately
29% agricultural and 57% woodland (Feyereisen et al., 2007b).
The Southeast Watershed Research Lab (SEWRL) in Tifton has col-
lected hydraulic and climatic data continuously for the entire wa-
tershed since 1965, and water quality data in sub-basin K
beginning in the mid-1970s (Feyereisen et al., 2008). There are also
historical land-use and fertilizer records starting in the late 1970s.

Historically, the environment and water quality of the LRW has
not been overly adversely affected by agricultural practices, due to
the effect of large riparian filters throughout the heavily forested
watershed. However, the cultivated agricultural area in sub-basin
K has been increasing since the early 1990s with a related decline
in upland and riparian areas, meaning that the ecology and water
quality are being increasingly impacted. Because of the large
amount of data available for the LRW, analysis of this impact is
possible. Within the 30% of cultivated area in sub-basin K in
2004, cotton is the major crop grown, comprising 68% of all culti-
vated area with peanut next with only 29%. As one of the more up-
land sub-basins, field studies in 1984 showed that K was
accumulating the most nutrients in the LRW, which suggested that
more intensive cropping of the upland fields could lead to more
efficient use of nutrients by having actively growing crops for more
of the growing season (Lowrance et al., 1984b). Currently, almost
year round production of row crops has led to extensive and sus-
tained use of fertilizer and pesticides on the watershed (Bosch
et al., 2004). On the other hand, less intensive agriculture coupled
with increased forest and riparian area could have similar effects
on efficient use of nutrients.

In past studies done by SEWRL, the LRW has shown the highest
overall stream flow concentrations of nitrate (NO3) and total
phosphorus (P) from January to March, and minimums from July
to September (Lowrance et al., 1984b). Low rainfall and low evapo-
transpiration, decreased denitrification and decreased uptake in
the upland and riparian zones may contribute to higher nutrient
concentrations in the winter, while crop nutrient uptake and low
leaching may cause low concentrations in the summer (Lowrance
et al., 1984a). Decreased NO3 and P concentrations were observed
during April to June even though runoff was still high and fertilizer
application occurred, in part because of biological effects such as
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nutrient uptake, transpiration, and utilization. Nitrate loads are
highest when stream flow is highest, from December to February,
and lowest when flow is least, from September to November.
Nutrient loads are disproportionately low from June to August
while flow is still relatively high, as crops are utilizing the most
nutrients in this season (Lowrance et al., 1984b; Lowrance et al.,
1985). Over the past 25 years, there have been numerous studies
by SEWRL documenting the hydrology, ecology and stream chem-
istry of the LRW (Bosch et al., 2006; summarized in Feyereisen et
al., 2008), yet nothing investigating the relationship between the
hydrology and local ENSO effects.
Little River Watershed data

Observed precipitation and stream flow data from sub-basin K
of the LRW used in this study ranges from February of 1968 to June
of 2005, and have been recorded and compiled by researchers at
SEWRL in Tifton, Georgia (Table 1). Details on the daily flow and
precipitation data collection, quality, and processing are thor-
oughly discussed in Bosch et al., 1999, 2007; Bosch and Sheridan,
2007. Flow in the LRW is measured every 5 min at eight concrete
v-notch weirs built between 1967 and 1971, one of which lies at
the outlet of sub-basin K (Yates, 1976). There are currently 46 ac-
tive rain gauges in the LRW, 13 of which are within and surround-
ing sub-basin K, and were used to calculate the weighted
watershed area daily precipitation (Bosch et al., 2007). Daily pre-
cipitation data within sub-basin K were created from watershed
weighted data using the methods of Dean and Snyder (1977) (Bos-
ch et al., 2007), summed into monthly cumulative values, and then
normalized by monthly average to remove annual cycles for each
month of the record. Processed daily stream flow data (Bosch
and Sheridan, 2007) for all 37 years were summed into monthly
cumulative values and normalized by monthly average as well.

Nitrate and total phosphorous concentration datasets contain
varied collection frequencies from 1974 to the present, ranging
from every 5 min to once a week. Researchers at SEWRL have in-
filled the nutrient data to the daily level using a variety of methods
based on the sampling method that was used (i.e. automatic sam-
ple, manual grab). The in-filling provided complete daily time ser-
ies of 24 years of total P concentration (from January, 1979 to
December, 2003), and 29 years of NO3 concentration (from Janu-
ary, 1974 to December, 2003). The detailed methods and reasoning
behind stream chemistry in-filling are discussed in Feyereisen
et al., 2007a, and additionally located on the LRW public database
website, located at ftp://www.tiftonars.org/, under the file
‘‘streamchemistry_readme.txt”. Daily concentration data were
converted to loads by multiplying daily flow by nutrient concen-
tration. Nutrient concentrations and loads were average into ba-
sin-wide monthly values and normalized by median monthly
Table 1
LRW time series data and sources used.

Variable Years Source

NINO 3.4 SST (�C) 1968–2005 Kaplan extended in
ingrid.ldeo.columb
.KAPLAN/.EXTENDE

Precipitation (mm) 1968–2005 ftp://www.tiftonar
Precipitation/Daily

Stream flow (m3) 1968–2005 ftp://www.tiftonar
streamflow/daily

NO3 concentration (mg/L) 1974–2003 ftp://www.tiftonar
stream_water_qua
long_term_water_q

NO3 load (kg) 1974–2003 ftp://www.tiftonar
stream_water_qua
long_term_water_q
values, creating time series of averaged monthly anomalies with
the annual cycle removed. Median values were used to normalize
nutrient concentrations and loads to minimize difficulties associ-
ated with the different methods of nutrient data in-filling.

Sea surface temperature anomalies were calculated from the
Kaplan extended NINO 3.4 index (27.5–22.5�E and 87.5�S–
87.5�N), which is available from the Lamont–Doherty Earth Obser-
vatory data library (Table 1) (Kaplan et al., 1998). The SST data are
gridded by 5� � 5� delineations, and range from 1856 to the pres-
ent, although only the 1968–2005 data are used in this study. Tem-
peratures were converted to monthly average and seasonal
average anomalies by being normalized against the total month’s
average. All variables’ raw time series were plotted against time
(month and year) to provide an initial visualization of the data
trends (Fig. 2).
Wavelet analysis

Wavelet analysis is a spectral method of decomposing a time
series into time and frequency space, allowing the identification
and analysis of dominant localized variations of power, i.e., where
the variance of the time series is largest for a given frequency. In
this context, a main purpose of using the wavelet analysis tech-
nique is to quantify and visualize statistically significant changes
in the ENSO SST and nitrate load variance over a multi-decadal
time scale. The windowed Fourier transform is typically used to
analyze a signal in frequency space at a global level, however, it
is scale-dependant, and is hence inefficient and inaccurate when
attempting to perform an analysis on non-stationary environmen-
tal data sets with different signal powers that evolve through time
(Torrence and Compo (1998)). A well known and relevant example
is that of SST’s in the equatorial Pacific Ocean, where the dominant
mode of variability is ENSO, shown by frequency signals on a time
scale of 3–7 years (Rasmusson and Wallace, 1983). Superimposed
on this signal are much longer inter-decadal fluctuations, visible
in the wavelet power spectrum over time as the evolution of the
SST signal power. The inter-decadal fluctuations have the effect
of modulating the amplitude and frequency of occurrence of El
Niño events. Torrence and Compo (1998) have written a compre-
hensive guide to wavelet use for geophysical data, the basic theory
they discuss will be summarized here.

With any time series, xn(n = 0, . . . , N � 1) with time spacing dt,
there is a corresponding wavelet function, wo(g), with zero mean
and localized in time and frequency space, that depends on a
non-dimensional time parameter, g, and the non-dimensional fre-
quency, x0. In this analysis, the Morlet wavelet (Eq. (1)), consisting
of a plane wave modulated by a Gaussian, is used for all time ser-
ies, the frequency of which, in practice, is given the default value of
x0 = 6 for all analyses (Farge, 1992):
Comments

dex, http://
ia.edu/SOURCES/
D/.ssta/

Anomaly data averaged monthly

s.org/databases/LREW/ Summed, averaged and normalized
monthly. Some in-filled values

s.org/databases/LREW/ Daily values averaged and normalized
monthly. Some in-filled values

s.org/databases/LREW/
lity/
uality

Daily/weekly values averaged and
normalized by median monthly. Some In-
filled data

s.org/databases/LREW/
lity/
uality

Daily/weekly values averaged and
normalized by median monthly

http://ingrid.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.ssta/
http://ingrid.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.ssta/
http://ingrid.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.ssta/
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Fig. 2. Raw monthly time series of (a) precipitation (mm), (b) stream flow (m3/s), (c) NO3 concentration (mg/L) and (d) NO3 load (kg).
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W0ðgÞ ¼ p�1=4expix0gexp�g=2 ð1Þ

A Morlet wavelet is a non-orthogonal, complex function that can be
used with the continuous wavelet transform, Wn(s). The continuous
wavelet transform (Eq. (2)) of a discrete sequence xn, is the convo-
lution of xn with a scaled and translated version of wo(g):

WnðsÞ ¼
XN�1

n0¼0

xn0w
� ðn0 � nÞdt=s½ � ð2Þ

where (�) is the complex conjugate, s is the wavelet scale, n is the
localized time index, n0 is the translated time index, and w is the
normalized wavelet. An approximate value of Wn can be found by
performing the convolution N times for each scale, where N is the
number of points in the time series. All convolutions can then be
done in Fourier space using a discrete Fourier transform of xn, (Eq.
(3)), which in our case, is:

x̂k ¼ ð1=NÞ
XN�1

n¼0

xnexp�2pikn=N ð3Þ

where k = (0, . . . , N � 1) is the frequency index. By the convolution
theorem, the wavelet transform (Eq. (4)) is the inverse Fourier
transform of the product of the discrete Fourier transform of xn

and W*, with angular frequency xk:

WnðsÞ ¼
XN�1

k¼0

x̂kŵ
�ðsxkÞexpixkndt ð4Þ
Finally, the wavelet power spectrum is defined as |Wn(s)|2, and the
amplitude at each point, |Wn(s)| and phase, tan�1[I{Wn(s)}/R{Wn(s)}]
can be found. Significance levels for wavelet spectra are found by
comparison against a random background distribution, which, for
geophysical spectra, are modeled as either white or red noise
(increasing power with decreasing frequency). In this study, red
noise is used (Wang, 1995; Torrence and Compo, 1998), and mod-
eled as a univariate lag-1 autoregressive (AR-1) process.

The wavelet variance is indicated by the Global Wavelet Spec-
trum (GWS), calculated by the integration of the squared transform
coefficients at different scales for all data points. Areas of global
wavelet significance are shown as a dashed blue line, above which
indicates a 95% confidence limit above red noise. Continuous Mor-
let wavelet transforms and wavelet power spectra were computed
and visualized for all monthly normalized time series in Table 1 to
find significant periodicities that correspond to ENSO signals. All
univariate wavelet analysis was done using the WAVETEST Matlab
script for WAVELET (Torrence and Compo, 1998), which can be
downloaded from: http://paos.colorado.edu/research/wavelets/.

Cross-wavelet and coherence transforms

A detailed explanation of cross-wavelet transform (XWT) can be
found in Torrence and Compo (1998). Given two different time ser-
ies, X and Y, with different wavelet transforms WX

n (s) and WY
n (s),

the cross-wavelet transform is WXY
n ðsÞ ¼WX

n ðsÞ WY�
n (s), where (�)

denotes the complex conjugate. The spectrum is complex, thus

http://paos.colorado.edu/research/wavelets/
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the cross-wavelet power can be defined as |WXY
n ðsÞ|. The cross-

wavelet transform finds regions in time frequency space where
the two time series show high common power, and thus, signifi-
cance. In particular, this transform examines whether regions in
time frequency space with large common power have a consistent
phase relationship, and therefore are suggestive of causality be-
tween the time series (Grinsted et al., 2004).

Computing the wavelet-coherence transform (WTC) finds re-
gions in time frequency space where the two time series co-vary,
but do not necessarily have high power. For this reason, both the
cross-wavelet transform and the wavelet-coherence transform
are necessary when analyzing two time series to assess both cau-
sality and local co-variance. Generally, a WTC will have more sig-
nificant areas than an XWT figure, as the significance is sacrificed
for the desirable visualization of shared power in the XWT. From
Torrence and Compo (1998), the wavelet-coherence transform of
two time series (Grinsted et al., 2004) is defined as:

R2
nðsÞ ¼

jSðs�1WXY
n ðsÞÞj

2

Sðs�1jSðWX
n ðsÞÞj

2Þ � S s�1jSðWY
nðsÞÞj

2
� � ð5Þ

where S is a smoothing operator defined by the wavelet type used
and the entire expression is similar to that of a traditional correla-
tion coefficient localized in time–frequency space. The statistical
significance level of the wavelet coherence is estimated using
Monte Carlo methods, and then the significance level for each scale
is calculated using only values outside the cone-of-influence.

Cross-wavelet and coherence transforms were done on normal-
ized NINO 3.4 SST time series with precipitation, stream flow, NO3

concentration and NO3 load, all calculated to 95% significance lev-
els. Wavelet coherence and cross-wavelet software used was via
the XWT and WTC scripts written by Aslak Grinsted for Matlab,
� 2002–2004, downloadable at http://www.pol.ac.uk/home/re-
search/waveletcoherence/.

Cross-correlation time series analysis

The lagged cross-correlation between the ENSO index and the
hydrological time series, x(i) and y(i), at different delays
(d = 0, . . . , N � 1) were computed as:

R ¼
P

i ðxðiÞ � lxÞ � ðyði� dÞ � lyÞ
h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
iðyði� dÞ � lyÞ

2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

iðxðiÞ � l2
x Þ

p ð6Þ

In which N is the length of the time series and lx and ly are the
respective means. A positive correlation is associated with the ser-
ies correlated in their current configuration, while a negative corre-
lation indicates a relationship with the inverse of one of the time
series. The delay at which maximum correlation is seen describes
the most significant time lag relationship between the two data ser-
ies. Cross correlations were calculated between the NINO 3.4 SST
time series and precipitation, stream flow, NO3 concentration and
NO3 load for delays from 0 to 24 months. Significance was calcu-
lated at 95% confidence corrected for time series autocorrelation
(World Meterorological Organization, 1966).

Results

Wavelet analysis

The monthly wavelet power spectra for the NINO 3.4 SST, pre-
cipitation, stream flow, and NO3 concentration and load time series
are shown in Fig. 3a–e. As previously demonstrated (Wang and
Wang, 1996; Torrence and Compo, 1998), when the annual cycle
is removed, SST power (Fig. 3a) is concentrated within the ENSO
periodicity band of 3–7 years, although the amplitude and domi-
nant modes tend to shift through time. From 1911 to 1960, a 5–
7 year period is strongest, while a 4–5 year period dominates from
1972 to 1992 (Wang and Wang, 1996). Longer decadal variations
cannot be assessed with significance given the limited length of re-
cord. The annual cycle of ENSO is associated with observing strong
La Niña power in the wavelet spectrum (Wang and Wang, 1996), as
well as normal seasonal variations (Baldwin et al., 2001). The
enhancement of annual power by La Niña, and respective weaken-
ing during El Niño, has been hypothesized to be due to the thermo-
cline becoming shallower and the trade winds strengthening,
which reinforces the ocean upwelling effect that modulates the an-
nual SST cycle (Gu and Philander, 1995). Therefore, by removing
the annual cycle, we are able to more easily visualize powerful El
Niño events in the 3–7 year band. The most pronounced SST vari-
ability within the wavelet power spectrum is observed during
the strongest El Niño phenomena encompassed within this time
series, namely the 1982–1983 and 1997–1998 events—the latter
of which is the strongest El Niño recorded in the 20th century
(Chavez et al., 1999).

Precipitation in the southeast US and the LRW has distinct sea-
sonality. In the coastal plain region and more specifically the LRW,
the most intense precipitation events are in the spring and summer
months, associated with convective or cyclonic storms (Sheridan,
1997). Summer events are shorter, smaller in area, and more fre-
quent and intense, while fall and winter events are frontal in nat-
ure, milder, but longer in duration. The wavelet power spectrum of
monthly precipitation anomalies from 1968 to 2004 is shown in
Fig. 3b. Low frequency precipitation information corresponding
to the 3–7 year ENSO signal has been demonstrated in the Florida
Everglades via wavelet analysis, as well as in the western US,
(Kwon et al., 2006; Rajagopalan and Lall, 1998), and the Little River
Watershed shares that signal. Regions of high power relative to the
noise background are seen in the precipitation record in the same
3–7 year periodicity as for the NINO 3.4 series (Fig. 3b), although
the signal is not powerful enough for statistical significance, nor
is it as clear as the SST record in Fig. 3a. Since a 4–5 year quasi-peri-
odicity dominates ENSO from 1972 to 1992 as seen in longer SST
wavelet analyses (B. Wang, 1995; Wang and Wang, 1996), this
may explain the 4–5 year period visible in the precipitation time
series. Again, the strongest power at that frequency is seen from
1981 to 1992 and surrounding the 1997–1998 El Niño event,
which implies that ENSO variability clearly is associated with pre-
cipitation in basin K of the LRW (Fig. 3b). The high power still vis-
ible at the 1–2 year period, despite removal of the annual cycle,
may represent the variability from a seasonal anomaly. Analyzing
summer and winter seasons separately with each hydrological var-
iable showed slightly stronger 3–7 year ENSO wavelet power in
winter months, although not enough to be statistically significant.

In basin K of the LRW, average annual stream flow depth is
approximately one-third of annual precipitation (Sheridan, 1997;
Feyereisen et al., 2008), a figure comparable to similar statistics
from other coastal plain watersheds. As such, the inter-annual
component of the wavelet power spectrum (Fig. 3c) for the stream
flow record for 1974–2003 shares much of the power and variabil-
ity pattern seen in the precipitation spectrum, although the signal
is actually stronger as it is less noisy than the precipitation record.
The ENSO periodicity is seen again as high power in stream flow for
the 3–7 year period, surrounding the 1982–1983 and 1997–1998
El Niño events. High power is again seen in the 1–2 year period,
perhaps related to intense summer storms. Clearly, the observed
3–7 year periodicity in the stream flow spectrum demonstrates
that while ENSO signals have been found in large rivers around
the world (Chiew et al., 1998; Labat, 2008), the relationship is valid
for small, slow-moving coastal plain streams and rivers in the LRW
as well.

http://www.pol.ac.uk/home/research/waveletcoherence/
http://www.pol.ac.uk/home/research/waveletcoherence/


Fig. 3. Significant Wavelet Power Spectra are shown within the cone-of-influence, which depends on time series length and degrees of freedom. Figures are color-mapped to
indicate high wavelet power with reds and oranges, and low powers in blue and white. The Global Wavelet Spectrum (GWS) at the right of each figure shows power
integrated over all scales and times. The 95% confidence limit is shown on the GWS (dashed blue line), the periodicities above which show significance. (a) Monthly NINO 3.4
(�C) sea surface temperatures, (b) monthly precipitation anomaly (mm), (c) monthly stream flow anomaly (m3), (d) monthly NO3 concentration anomaly (mg/L), and (e)
monthly NO3 load anomaly (kg).
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Wavelet power spectra of nitrate concentration (mg/L) and load
(kg) are shown in Fig. 3d and e, respectively. While it has been
shown that categorical ENSO signals exist in model simulated
nutrient loads in south Florida (Keener et al., 2007), observed
and continuous data have not been analyzed in the literature. Both
nutrient series extend from 1974 to 2003. NO3 concentration
exhibits less marked high power in the ENSO periodicity than
either precipitation or stream flow, which is expected due to a less
direct relationship with the atmosphere. There is also high power
centered on the 1988–1989 La Niña, at 1–2 year periodicity, and
may signify an anomalous event. These regions of high variability
imply that NO3 concentration is more sensitive to the high inten-
sity rains characteristic of La Niña summers or hurricane in the
southeast, although no periods are significant at the 90% level as
manifested in the global wavelet spectra. The minimal concentra-
tion power visible indicates that the concentration signal does
not change in a significant or systematic way, and that flow and
load should remain the main focus.

Nitrate load (Fig. 3e) is a combination of stream flow and
concentration spectra. Accordingly, there is a broader band of
ENSO-related high power in the 3–7 year period centered on the
1982–1983 El Niño, and only medium power visible in the cone-
of-influence around the 1997–1998 El Niño. A longer time series
may reveal more about the load structure during the latter El
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Niño. High power is seen in nitrate load in the 1–2 year periodicity
centered around 1986–1989, which may reflect the stream flow’s
modulation of the concentration, and the La Niña event of 1998–
1999, the pattern of which is also reflected in high power seen in
precipitation, stream flow, and SST spectra. This may again be re-
lated to the high annual power noted in some strong La Niña or
seasonal events (Wang and Wang, 1996).

Cross-wavelet analysis

Although one can see regions in the wavelet power spectra in
the previous section where two time series show high common
power, a more direct analysis of two series is needed. Significance
levels of the cross-spectra power are calculated against a red noise
background, indicated by thick black outlines in the cross-wavelet
transform figures (Fig. 4a–d) to the 5% level. The cross-wavelet
transform between SST and precipitation (Fig. 4a) shows that areas
that were picked out as possibly sharing power in the single wave-
let spectra, do indeed share significant power in the 3–7 year peri-
odicity surrounding the 1982–1983 and 1997–1998 El Niño. The
significant areas within the 3–7 year period are phase-locked pos-
itively, which when considered with the fact that ENSO is a main
driver of global climate variation, suggests a causal relationship be-
tween SST and precipitation in the LRW that was already sus-
pected. The same patterns of shared power, phase, and 3–7 year
periodicity are seen in the cross-wavelet transform between SST
and stream flow (Fig. 4b).

The cross-wavelet transform relationship between NO3 concen-
tration and SST (Fig. 4c) shows less significant shared power,
although there is a small area from 1985–1990 around 3–4 year
periodicity. The general 3–7 year period area shows high power,
but too little for significance at the 5% level. The lack of definitive
relationship between SST and concentration is explained by nutri-
ent concentrations being very much an extraneous variable,
Fig. 4. Cross Wavelet Spectrum between (a) monthly SST and Precipitation, (b) monthly
monthly SST and NO3 Load (kg). Black figure outlines indicate areas significant to 95%
clockwise indicate in-phase behavior, while counter clockwise arrows indicate anti-pha
dependent on both local agricultural activities and rainfall or river
flow. Nutrient load, on the other hand, takes stream flow into ac-
count. The cross-wavelet transform of NO3 load and SST (Fig. 4d)
shows the same significant area as the cross-wavelet transform
with stream flow and precipitation, a shared 3–7 year in-phase
periodicity extending from 1980 to 1990, and a 1–2 year periodic-
ity in the area around the 1998–1999 La Niña.

Wavelet coherence analysis

Compared with the cross-wavelet transform, a larger area in the
wavelet coherence figures is marked as significant. However, nei-
ther the significance of the wavelet-coherence transform nor the
cross-wavelet transform on their own do not necessarily imply
causality, as any two variables can be significantly correlated by
chance. Small areas of wavelet-coherence transform significance
are unlikely to be causal taken on their own. More extensive areas
of significance, however, are less likely to be due to chance, and
should be examined carefully for additional relationships to a
physical mechanism. The wavelet-coherence transform between
SST and precipitation (Fig. 5a) and SST and stream flow (Fig. 5b)
show very similar sustained significant areas from 1979–2000 in
the 3–7 year period, indicating high correlation between SST and
each time series in the area relating to ENSO signal. Longer time
series would be desirable for every variable to further investigate
the changing periodicities; however within the cone-of-influence,
there is a sustained ENSO signal.

The wavelet-coherence transforms between NO3 concentra-
tion and SST is shown in Fig. 5c. There are arguably no areas
of causal significance, especially when considered with respect
to the importance of variables outside of this analysis such as
fertilizer application or land-use changes. Practically, this means
that the two time series do not show any significant correlation
at any periodicities of interest to this study, although there is a
SST and stream flow (m3), (c) monthly SST and NO3 concentration (mg/L), and (d)
confidence, while arrows represent variables’ phase relationship. Arrows pointing
se behavior.



Fig. 5. Wavelet Coherence Analysis between (a) monthly SST and Precipitation, (b) monthly SST and stream flow (m3), (c) monthly SST and NO3 concentration (mg/L), and (d)
monthly SST and NO3 load (kg). Black figure outlines indicate areas significant to 95% confidence, while arrows represent variables’ phase relationship. Arrows pointing
clockwise indicate in-phase behavior, while counter clockwise arrows indicate anti-phase behavior.
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small area of ENSO related significance in the XWT. The concen-
tration significance in the XWT may be a remaining artifact from
the much stronger stream flow signal seen in Figs. 4 and 5b,
showing up despite the stochastic nature of the concentration
series. When analyzed in conjunction with the WTC, it becomes
clear that this is probably an artifact and should not be assigned
any causal explanation. Nitrate load, however, (Fig. 5d) shows a
very high correlation with SST throughout all the years within
the cone-of-influence at 3–7 year periodicity. This correlation re-
flects a combination of the strong stream flow ENSO signal with
Fig. 6. Cross-correlation analysis between NINO 3.4 (�C) and LRW sub-basin K (a) precip
and stream flow (m3). A negative lag indicates months that the NINO 3.4 SST leads the va
the NINO 3.4 index is SST leading stream flow by two months, while the strongest hydro
below dashed lines indicate significant correlation above 95% confidence, corrected for
the weak concentration ENSO signal, but should not be dis-
counted as non-causal, as stream flow response is directly re-
lated to precipitation and SST. The in-phase correlation and
power of SST and NO3 load suggests that a model based upon
the 3–7 year periodicity of ENSO could have predictive skill for
LRW nitrate loads. Across all the wavelet power analyses, the
ENSO signal appears in sustained and common 3–7 year fre-
quency bands. This frequency structure is replicated across the
NINO 3.4, precipitation, stream flow, and NO3 load time series,
and is moreover found within the cross-wavelet and wavelet
itation (mm) (b) stream flow (m3) (c) NO3 (kg), and between (d) precipitation (mm)
riable in question. The strongest cross-correlation function (CCF) relationship within
logic relationship overall is between precipitation and stream flow. Values above or
autocorrelation.
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coherence spectra, supporting this ENSO structure and demon-
strating that the ENSO climate teleconnection extends to precip-
itation, hydrology, and observed NO3 loads in the small streams
of the LRW.
Cross-correlation analysis

As common frequency bands and high or significant power
were found in wavelet analysis of SST and precipitation, stream
flow, and NO3 load, time series cross-correlation analysis was per-
formed to temporally quantify how these relationships actually
manifest during the year. After the removal of annual trends from
each variable considered, significant monthly correlations were
found between SST and all hydrological variables (Fig. 6a–c) The
correlation of highest magnitude is between SST and NO3 load
(Fig. 6c), which is reinforced by the wavelet-coherence transform
analysis in Section ‘‘Wavelet coherence analysis”. All cross-corre-
lations were dominated by significant positive correlations with
the ENSO 3.4 index. Precipitation and stream flow had maximum
cross-correlation function (CCF) values of 0.139 and 0.342 with
SST at a four month and two month lag, respectively, and NO3

load a maximum of 0.360 at a three-month lag. This means that
high or low precipitation and stream flow are correlated with
high or low sea surface temperature observed four and two
months earlier, while NO3 load is positively correlated with SST
three months prior—observations that are supported by the
cross-wavelet transform and wavelet-coherence transform spec-
tral analyses.

Additional cross-correlation analyses were done to determine
the strength of the lag relationship between precipitation and
stream flow, precipitation and NO3 load, and stream flow and
NO3 load. In each relationship, the most significant lag was at zero
months, suggesting that a smaller time-step may be needed to as-
sess the correlative lag more accurately. However, the strongest
CCF value of 0.663 (Fig. 6d) was seen between precipitation and
flow at lag zero, followed by stream flow and NO3 load with a
CCF of 0.472, and finally precipitation and load with 0.268. These
values show that the NO3 load is most directly correlated with
flow, which supports the previous wavelet analyses.
Summary and conclusions

This paper uses wavelet analysis to identify and quantify the
significance of a teleconnection between sea surface temperatures
associated with the NINO 3.4 index and precipitation, stream flow,
and nitrate concentration and load in the Little River Watershed in
Georgia. We found common areas of high power and time series in-
ter-annual variability manifested in the ENSO signal for 36 years of
LRW monthly precipitation data, and 29 years of stream flow, ni-
trate concentration and nitrate load data. Areas of the highest
power for all hydrological variables were observed in the 3–7 year
periodicity known to be related to ENSO modes of variability. Tem-
porally, the area of greatest variability was centered on the 1997–
1998 El Niño event, which is on record as the strongest anomaly in
the 20th century. Sea surface temperatures dramatically decreased
from the transition of the 1997–1998 El Niño to the 1998–1999 La
Niña, which may be reflected in the anomalous variability visible in
the wavelet power spectra of the hydrologic variables. Nitrate con-
centration was the variable with the weakest ENSO signal power,
which is due to it being more dependent on extraneous variables
such as human-caused agricultural activities. High or significant
power was seen in precipitation, stream flow, and nutrient loads
in the 1–2 year period centered on the 1998–1999 La Niña, and
may be related to strong seasonal signals. The stronger power seen
in nitrate load time series, rather than concentration or precipita-
tion, suggest that stream flow variability dominates the trends
seen in loads.

Regions of shared power were found between the NINO 3.4 in-
dex and the hydrological variables of interest. There was common
high power and phase in the 3–7 year mode of variability for
strong El Niño events, as well as in the 1–2 year mode of variability
for strong La Niña episodes for SST and precipitation, stream flow,
and nitrate load. High time series co-variance exists in the same 3–
7 year period for SST and precipitation, stream flow, and nitrate
loads. The cross-wavelet transform and wavelet-coherence trans-
form confirm that the known physical mechanism of ENSO tele-
connection in the southeast United States (Schmidt et al., 2001;
Ropelewski and Halpert, 1986) is causally linked to inter-annual
variability within precipitation, stream flow, and nitrate load sig-
nals in the LRW. The high shared power and significant correlation
between these variables confirms that the ENSO teleconnection
seen in the precipitation and stream flow signals in large river
and watershed systems around the world (Chiew et al., 1998; Raj-
agopalan and Lall, 1998; Handler, 1990; Kulkarni, 2000; Hansen
et al., 1997; Pascual et al., 2000) extends to the hydrology and,
more interestingly, nitrate loads in a small basin of the Little River
Watershed.

Mechanistically, El Niño (La Niña) events result in increased
(decreased) sea surface evaporation. The mid-latitude jet is dis-
placed equatorially (poleward), increasing (decreasing) winter
frontal precipitation in the southeast United States. Additional
winter moisture is advected into the southeast from the tropical
Pacific by the sub-tropical jet stream (Ropelewski and Halpert,
1986). Precipitation in El Niño winters typically increase as a re-
sult, and as seen in the large El Niño events centered around
1985 and 1997–1998 in the LRW, resulted in increased river dis-
charge and pollution transport. It is unusual that the ENSO signal
is more visible in the stream flow and nitrate loads of the LRW
than in the precipitation signal. Although the thirteen weather sta-
tions used to form the precipitation series in this research are well
distributed across the 16.8 km2 area of basin K in the LRW, spatial
variability of rainfall in the southeast United States is great, and
still does not encompass all of the variability inherent in the wa-
tershed. For this reason, the ENSO signal present in the precipita-
tion record may be somewhat damped, especially when
considered next to the stream flow record. In addition to being a
smoothed function of precipitation, stream flow in the Little River
Watershed may be amplifying the ENSO signal. As has been previ-
ously discussed, groundwater flow in the LRW is responsible for up
to 80% of the total stream flow (Sheridan, 1997), as well as com-
prising the main route for movement of soluble nutrients (Low-
rance et al., 1984b). The ENSO signal in stream flow may be
amplified by the significance of the role of groundwater, and addi-
tionally amplified due to the presence of the Hawthorn confining
layer, restricting flow into the aquifer system and increasing the
amount of lateral groundwater flow represented in the stream
flow record.

The nature of the strong ENSO power visible in the wavelet
analyses demonstrates that in the LRW during anomalous ENSO
phases, BMP’s and crop management practices could be more
effectively applied to reduce the risk of high nutrient runoff result-
ing from the increased precipitation and stream flow. Best Man-
agement Practices in the LRW have mainly been comprised of
crop rotations designed to more effectively use available water
and prevent nutrient leaching. At this point, conservation tillage
or crop cover practices have not been implemented in sub-basin
K. Some BMP modeling work with SWAT has been done in sub-ba-
sin K, in which a simulated increase of 30% cultivated area with
better crop management showed a 17% reduction in total nitrogen
load (Cho et al., submitted for publication), suggesting that BMP’s
could in fact be quite effective in generally reducing loads.
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While sometimes it is both economically as well as environ-
mentally in a farmer’s best interest to implement BMP’s, it can
be difficult to quantify the effectiveness of the results and for farm-
ers to know when best to apply them. The strong ENSO signal in
the nitrate load and stream flow, coupled with the cross-correla-
tion analysis (Section ‘‘Cross-correlation analysis”) of SST’s sug-
gests that when an anomalous ENSO phase is predicted or is
occurring, BMP’s could be put in place to control the risk of high
nutrient runoff. The ability to make management decisions months
in advance with reduced uncertainty of the BMP’s not being
needed could save the farmer both time and money, and result
in environmental and water quality improvements. Implementing
and monitoring the effectiveness of different BMP’s in the LRW in
different seasons and ENSO phases would take additional time and
effort, but would be worth verifying if BMP application by ENSO
phases would actually save time and money for watershed manag-
ers, farmers, or other stakeholders.

In this study, more than 29–36 years of data would have been
informative as to how inter-decadal variability affects hydro-cli-
matic events. However, short-term inter-annual climate variability
is a crucial factor affecting climate in the southeast US, and there-
fore must be understood in how it ultimately relates to water qual-
ity. Additional large El Niño and La Niña anomalies within the
hydrological time series record will also help to confirm patterns
in the time and frequency domain. As a correlation has been estab-
lished linking ENSO to precipitation, stream flow, and nutrient load
in the LRW, a predictive model for nitrate load based on the NINO
3.4 sea surface temperatures could be utilized. By analogy, time
series of different pollutant loads affecting water quality could be
analyzed using these methods. Generating a forecast system for
nutrient loads or other pollutants based on ENSO phenomena will
be useful, feasible, and could avoid uncertainty associated with
possible misrepresentation of physical processes and used in con-
junction with hydrological models for the southeast coastal plain.
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