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Abstract. Hyperspectral scattering is a promising technique for noninvasive measurement of quality 
attributes of apple fruit, and extraction of the most useful information from hyperspectral scattering 
data is critical to prediction of fruit firmness and soluble solids content (SSC). A hierarchical 
evolutionary algorithm (HEA) approach coupled with subspace decomposition and partial least 
squares (PLS) regression was proposed to select the optimal wavelengths from the hyperspectral 
scattering profiles of ‘Golden Delicious’ apples for predicting fruit firmness and SSC. Seventeen 
optimal wavelengths were selected for firmness, which nearly spanned the entire spectral range of 
500 - 1,000 nm, and 16 optimal wavelengths, none of them below 600 nm, were selected in the SSC 
prediction model. The model using 17 optimal wavelengths for predicting firmness yielded better 
results (rp = 0.857, root mean square error of prediction or RMSEP = 6.2 N) than the full spectrum 
model (rp = 0.848, RMSEP = 6.4 N). For predicting SSC, the model using 16 optimal wavelengths 
model also yielded better results (rp = 0.822, RMSEP = 0.78%) than the full spectrum model (rp = 
0.802, RMSEP = 0.83%). The proposed HEA approach provided an effective means for optimal 
wavelengths selection and improved the prediction of firmness and SSC in apples compared with the 
approach of using full spectrum.  

Keywords. Hyperspectral scattering, Hierarchical evolutionary algorithm, Partial least squares, 
Subspace decomposition, Fruit, Apple, Firmness, Soluble solids content, Nondestructive sensing. 
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Introduction 
Firmness and soluble solids content (SSC) are two key parameters in evaluating and grading   
postharvest quality of apples. Current standard methods for firmness and SSC measurement 
would destroy fruit samples in the testing process (Park et al. 2003). Hence much research has 
been reported over the past decades on the development of nondestructive technologies for 
measuring firmness and SSC. Among them is near-infrared (NIR) technology that provides an 
effective means for measuring SSC (Lammertyn et al., 1998; Lu, 2001; Lu and Arinana, 2002). 
However, NIR measurement does not correlate well with the standard Magness-Taylor (MT) 
firmness measurement (McGlone and Kawano, 1998; Lu et al., 2000; Lu and Ariana, 2002).  

In recognizing the shortcomings of NIR technology in quantification of light absorption and 
scattering – the two basic phenomena when light interacts with plant materials, Lu (2003, 2004) 
proposed a spectral scattering technique to measure diffuse reflectance profiles at the surface 
of fruit resulting from the incidence of a small light beam, for assessing apple firmness and SSC. 
The technique may be implemented in multispectral imaging mode (Lu, 2004) for selected 
wavelengths or in hyperspectral imaging mode (Lu, 2003) for a broad spectral region. 
Hyperspectral scattering images provide a large amount of spatial and spectral information 
about a sample. It is thus critical that an appropriate method be used in analyzing hyperspectral 
scattering features to predict apple firmness and SSC. Qin and Lu (2008) determined absorption 
and reduced scattering coefficients from the spatial scattering profiles of apples using a 
fundamental diffusion theory model, and these coefficients were then correlated to fruit firmness 
and SSC. Lu (2007) calculated mean reflectance from the hyperspectral scattering images for a 
specific scattering distance and then developed neural network models to predict fruit firmness 
and SSC. Peng and Lu (2008) proposed a modified Lorentzian distribution function with four 
parameters to characterize spatial scattering profiles for the wavelengths of 450 -1,000 nm. 

A critical problem encountered in analyzing hyperspectral scattering images is extraction of 
meaningful information from such large quantity of data. One approach is to use conventional 
linear methods such as principal component analysis or partial least squares (PLS) to relate 
linear combinations of spectral wavelengths to independent physical variables of interest. These 
approaches are powerful, but have limitations in that they only apply linear relationships 
between spectral variables and do not identify specific wavelengths which are most important 
for assessing quality of apple such as firmness and SSC (Steward, 2005). Another approach is 
to select the optimal wavelengths using multi-linear regression (Lu and Peng, 2006). This 
wavelengths selection method is time-consuming and may not be optimal. 

Evolutionary computation is an intelligent optimization technology that has been widely used in 
various fields. It is an adaptive search method that is especially powerful for dealing with difficult 
search problems without being caught at local extremes in the search space (Goldberg, 1989). 
As a sub-class of the method, genetic algorithm (GA) applies the “survival of the fittest” 
approach to modeling data. The GA method has been used in NIR spectral analysis for 
assessing SSC of fruit coupled with PLS (Leardi and Lupiáñez González, 1998; Leardi, 2000; 
Kleynen et al., 2003; Zou et al., 2007). In these reported studies, there was only one single 
parameter for each wavelength, i.e., one spectrum for each sample. It would be difficult to 
encode in GA when multi-parameters respond to one wavelength, as in the case of the modified 
Lorentzian distribution function with four parameters (Peng and Lu, 2008) or in the diffusion 
theory model with two parameters for each wavelength (Qin and Lu, 2008). As a variant of GA, 
hierarchical evolutionary algorithm (HEA) has an intrinsic property of encoding the parameters 
of considered problem in a hierarchical manner (Tang et al, 1998). This particular property 
makes HEA potentially useful for automatic spectral wavelengths selection.  
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Hence, the objectives of this research were to: 

• Use HEA to search optimal wavelengths in the multi-parameter scattering spectra that 
would be most closely related to firmness and SSC, and  

• Develop calibration models using partial least squares method to predict the firmness 
and SSC of apples. 

Materials and Methods  

Apples Samples and Data Acquisition 

Six hundred ‘Golden Delicious’ apples, harvested from the orchards of Michigan State 
University Horticultural Teaching and Research Center in Holt, MI and Clarksville Horticultural 
Experiment Station in Clarksville, MI during the 2006 harvest season, were used in the 
experiment. The apples were kept in controlled atmosphere storage (2% O2 and 3% CO2 at 0 
oC) for about five months prior to the experiment. The equatorial diameter of each sample was 
measured using a digital caliper and this information was later used for correcting the spectral 
scattering profiles.  

Two-dimensional hyperspectral scattering images were obtained from the equator of each fruit 
using a hyperspectral imaging system (Qin and Lu, 2008) developed at the U.S. Department of 
Agriculture Agricultural Research Service (USDA/ARS) postharvest engineering laboratory in 
East Lansing, Michigan. A detailed description of the hyperspectral imaging system and 
experimental procedure is given in Qin and Lu (2008). 

After imaging, standard firmness and SSC measurements were made from the same imaging 
area of each apple using a Texture Analyzer (model TA.XT2i, Stable Micro Systems, Inc., 
Surrey, U.K) with a Magness-Taylor (MT) firmness test probe of 11 mm diameter and a digital 
refractometer (model PR-101, Atago Co., Tokyo, Japan). 

Analysis of Hyperspectral Scattering Images 
A typical raw hyperspectral scattering image for the test apples is shown in figure1 (left), where 
the horizontal axis represents a spatial dimension and the vertical axis shows spectral. The 
spatial resolution was 0.20 mm per pixel along the spatial axis and the spectral resolution was 
4.54 nm per pixel along the spectral axis. Hence, each scattering image in effect consisted of 
more than one hundred of spatial scattering profiles, each representing a specific wavelength. 
The interested region covering 500 - 1,000 nm and a total spatial distance of 20 mm were 
selected from each image.  
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Figure 1. Hyperspectral scattering image of an apple (left), and raw spatial scattering profiles at 

four wavelengths (right). 
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In comparing different empirical mathematical models, Peng and Lu (2006) reported that a 
modified Lorentzian function with four parameters provided better fit to the scattering profiles 
and Lorentzian parameters correlated well with fruit firmness. Hence, the modified Lorentzian 
function with four parameters was used to fit the spatial scattering profiles at different 
wavelengths: 
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Where R is the reflectance; x is the scattering distance; a is the asymptotic value; b is the peak 
value of estimated light intensity at the distance closest to the light incident point; c is the full 
scattering width at half maximal value (FWHM); d is the slope around the FWHM area. Since 
the spatial scattering profiles were symmetrical about the incident point (or the zero point 
position in figure 1(right)), they were first averaged over the symmetrical point. The averaged 
profiles were then fitted by equation (1) for a scattering distance of 10 mm, from which 
estimated values for the four parameters (a, b, c, and d) were obtained. The parameter 
estimation procedure was implemented using a nonlinear least-square inverse algorithm in 
Matlab (Peng and Lu, 2006). These parameters uniquely characterized the scattering features 
of each apple at a specific wavelength. Prior to the curve fitting, each scattering profile was 
corrected for nonuniform instrument response and fruit size by following the procedures 
described in Qin and Lu (2008). 

After Lorentzian parameters for the apple samples were obtained, the same procedure was 
applied to extract parameters from the scattering profiles for a reference standard (a white 
Teflon disk). Each Lorentzian parameter for the apple samples was divided by the 
corresponding Lorentzian parameter for the reference and was subsequently multiplied by a 
constant (i.e., first value of the parameter for every 10 samples) to avoid changing the physical 
meanings of the parameters (Peng and Lu, 2007). 

Optimal Wavelengths Selection  

The 600 samples were arranged in ascending order for fruit firmness (or SSC). The first apple 
was selected for validation, and the second and third apples were selected for calibration for 
every three apples. This procedure resulted in 400 apples (66.7%) for the calibration set and 
200 (33.3%) for the validation set. The calibration set was used to select the optimal 
wavelengths. 

Hyperspectral scattering images are represented by high dimensional spatial and spectral data, 
which contain redundant information between wavelengths. Hence there exists strong 
correlation between adjacent wavelengths. Figure 2 shows correlation curves of 675 nm, 720 
nm, and 970 nm with other wavelengths for the spectral region of 500 - 1,000 nm. High 
correlations between the adjacent wavelengths suggested the need of selecting the optimal 
wavelengths to reduce processing and computing time for the hyperspectral image data.  

The optimal wavelengths selection was based on these two criteria: 1) the selected wavelengths 
had the most information, and 2) the selected wavelengths had smallest relevance with other 
wavelengths. 
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Figure 2. Correlations of 675 nm, 720 nm, and 970 nm with other wavelengths. 

Subspace Decomposition 

To reduce the code length of hierarchical chromosome and simplify the complexity of 
hierarchical evolutionary algorithm, subspace decomposition and adaptive wavelength selection 
in each subspace were performed.  

Subspace decomposition mainly depends on the correlation matrix F between different 
wavelengths. Elements of the correlation matrix F are defined as: 
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for i = 1, 2, …, 101 and j = 1, 2, …, 101 for wavelength, n is the number of samples for 
calibration, xk,i is a Lorentzian function parameter (a, b, c or d) for the kth sample at ith 

wavelength, and µi and µj are the mean value of all samples at ith and jth wavelength. Note that fi,j 
= fj,i for all i = j. Four correlation matrices for the four Lorentzian parameters were obtained by 
equation (2) and the final correlation matrix F used in this study consisted of maximum 
correlation coefficients of four matrices for any two wavelengths. If the correlation between two 
wavelengths was greater than Tr, a given threshold value, the wavelengths between these two 
wavelengths would constitute one subspace. All wavelengths in this subspace would have 
similar correlations. 

Based on the correlation matrix F and the threshold value, the full spectrum space with 101 
wavelengths was adaptively decomposed into different subspaces with different numbers of 
wavelengths (figure 3.). By adjusting the threshold value, the number of wavelengths for each 
subspace and the number of subspaces were adaptively changed. The number of selected 
wavelengths in each subspace was reduced as the threshold value increased, while the number 
of subspaces increased. In this study, Tr was chosen to be 0.93 for subspace decomposition. 

 
Figure 3. Subspace decomposition. 
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Wavelengths Selection in Subspace 

To satisfy the principle of optimal wavelengths selection, wavelength index was used as the 
criterion to select appropriate wavelengths in each subspace. Wavelength index was first 
calculated in each subspace by equation (3). All wavelengths in the subspace were then sorted 
by the index on descending order to prepare for wavelengths selection. 
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where Indexi is the index value of ith wavelength and σi is the calibration correlation coefficient 
based on a single wavelength for calibration modeling. The greater the coefficient, the more 
information the wavelength provides. 

In every sorted subspace, wavelengths with higher index would be selected for constituting a 
new entire space. Several methods were researched for selecting wavelength combinations 
with higher index of each subspace. One is the same number (M) of wavelengths selected from 
each subspace. Another is based on the given index threshold Tw; a wavelength is selected if its 
index is greater than Tw. Since the number of wavelengths and wavelength index in each 
subspace are non-uniform, these two methods, depending on M and Tw, cannot guarantee 
selection of wavelengths from every subspace. To ensure a reasonable quantity of wavelength 
selections from every subspace and sufficient search space for HEA, the same selection ratio 
Rs (=0.7) for each subspace was used for firmness and SSC. Hence the number of wavelengths 
selected for the subsequent implementation of HEA was reduced from 101 to 71. 

Optimal Wavelengths Selection Using Hierarchical Evolutionary Algorithm 

After the representative wavelengths with more information and lower correlation between them 
were selected, the next step was to select the optimal wavelengths from the representative 
wavelengths in order to develop models predicting the firmness and SSC of apples. To 
overcome the disadvantages of conventional GA in encoding and mating for multi-parameters 
responding to one wavelength, a hierarchical evolutionary algorithm was proposed. 

The hierarchical chromosome consists of a control layer chromosome and a parameter 
chromosome. The selected wavelengths after subspace decomposition were encoded using the 
hierarchical chromosome shown in figure 4. The control layer was encoded for wavelengths as 
a binary string and the parameter layer was encoded for Lorentzian function parameters as a 
real number string. The bits of ‘1’ in the control layer indicate that these wavelengths were 
selected in the evolutionary process and the corresponding parameter chromosomes were 
active, and the bits of ‘0’ in the control layer indicate that these wavelengths were excluded and 
the corresponding parameter chromosomes were inhibitive. Generally, the control layer and the 
parameter layer chromosome are mating at the same evolutionary process (He et al., 2002; Lai 
and Chang, 2009) to solve different problems. In this study, the control layer was used to select 
wavelengths and the parameter layer only represented scattering features (i.e., Lorentzian 
parameters). Thus, the genes in the parameter layer weren’t mating in wavelengths selection 
process. 

L

1a 1c1b Ma Mb2a 2b L1d 2c 2d Mc Md
 

Figure 4. Hierarchical chromosome for wavelengths selection. 
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Similar to the process of implementation with GA, evaluation, crossover, mutation and selection 
operators were used based on fitness in HEA. PLS regression model and cross validation were 
adopted for evaluation. The performance of the PLS model was evaluated in terms of root mean 
square error of cross validation (RMSECV). For RMSECV, a modified contiguous blocks 
(calibration set separated by five groups) cross validation was used by HEA. Although the 
samples were still selected and left out in contiguous blocks, the starting position of the first 
block shifted randomly through the data. This helped reduce the likelihood of over-fitting. The 
HEA was completed after a finite number of iterations or after some percentage of individuals in 
the population were using identical variable subsets. 

The control parameters of HEA were population size, crossover probability and mutation 
probability and maximum iterative generation or identical variable number. After considering the 
complexity and running time of HEA, we chose a population size of 64, crossover probability of  
0.5, mutation probability of 0.005 and the maximum iterative generation of 100 or identical 
variable percentage of 50% in this study.  

After the termination of iterations, wavelengths were sorted by selected frequency on descent 
order and added to the PLS regression model one by one. Optimal wavelengths for modeling 
were determined based on the smallest RMSECV. Because HEA is a random search algorithm, 
the selection of initial population and the implementation process of genetic operators (selection, 
crossover and mutation) would be highly random. Therefore, the algorithm was run five times to 
reduce the randomness effect in the process.  

Development and Validation of Calibration Models 

Partial least squares (PLS) method was used to build calibration models using optimal 
wavelengths. PLS normally requires single spectra for all samples, while the Lorentzian function 
generated four parameter spectra for each sample, which differed greatly in their scale of values. 
An autoscaling method, a normalization procedure, was used to overcome the problem of large 
disparity in values among the four parameters. 

SD
YY

Y i
iN

−
=,                                                                                                                                (4) 

where YN,i is the rescaled parameter, Yi is the original parameter of a, b, c or d for sample i at a 
given wavelength λ, and Y  and SD denote the mean value of the calibration samples and the 
corresponding standard deviation, respectively. These rescaled parameters have zero means 
and unit variance, and each parameter would preserve its essential features but have a similar 
scale of values. 

After autoscaling, a new single spectrum was created by cascading four parameters spectra 
one after another. This procedure was applied to both calibration and validation samples to 
create new spectra. After the new spectra had been created, PLS coupled with contiguous 
blocks cross validation (calibration set separated by five groups) was then applied to develop 
calibration models with optimal wavelengths for firmness and SSC. The models were validated 
with a separate set of validation samples based on the same wavelengths. 

Results and Discussion 
The 600 ‘Golden Delicious’ apples ranged between 60 mm and 83 mm in equatorial diameter, 
between 31.2 N and 88.5 N for MT firmness, and between 8.0% and 15.7% for SSC. The mean 
values of MT firmness and SSC for the samples were 56.7 N and 10.7%, respectively, whereas 
the standard deviations were 12.1 N for firmness and 1.4% for SSC. 
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Spectra of the four Lorentzian parameters for five ‘Golden Delicious’ apples are shown in figure 
5. The patterns of the four parameters spectra were distinctively different since each had a 
different physical interpretation. Parameter a represented asymptotic values ranging between -
200 and 200 among the 600 samples. In principle, the asymptotic value should be positive. 
However, we permitted negative values for this parameter during the curve-fitting process in 
view of the empirical nature of the function. Parameter b, representing the peak value, changed 
greatly over the wavelengths of 500 - 1,000 nm. Compared with parameters a and b, 
parameters c and d were relatively consistent over the spectral region and had much lower 
values. A downward or upward peak was observed for parameters a, b, c, and d around 675 
nm, which corresponded to an absorption waveband for chlorophylls. 
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Figure 5. Spectra of Lorentzian parameters for selected ‘Golden Delicious’ apples. 

Table 1 shows values of the correlation matrix F of firmness for a few selected wavelengths, 
calculated by equation (2) from the calibration set. After subspace decomposition, the full  

Table 1. Correlation Matrix F for selected wavelengths. 
wavelength 500 nm 520 nm 540 nm 560 nm 580 nm 600 nm 620 nm 640 nm 
500 nm 1        
520 nm 0.967 1       
540 nm 0.940 0.991 1      
560 nm 0.926 0.980 0.997 1     
580 nm 0.903 0.955 0.981 0.992 1    
600 nm 0.880 0.936 0.966 0.980 0.995 1   
620 nm 0.857 0.921 0.947 0.965 0.987 0.997 1  
640 nm 0.840 0.898 0.919 0.940 0.969 0.985 0.995 1 

spectrum space was decomposed into five subspaces for firmness. The range of each 
subspace was 500 – 550 nm, 555 – 640 nm, 645 – 695 nm, 700 – 855 nm and 860 -1,000 nm, 
and the corresponding number of wavelengths in each subspace was 11,18, 11, 32 and 29, 
respectively. For SSC, the full spectrum space was decomposed into five spaces. The 
wavelength range of each subspace was 500 - 570 nm, 575 – 650 nm, 655 - 695nm, 700 – 885 
nm and 890 – 1,000 nm, and these subspaces had 15, 16, 9, 38 and 23 wavelengths, 
respectively. 



 

9 

Table 2 summarizes the results of five HEA-PLS models and the PLS model using full spectrum 
for predicting firmness and SSC of apples. Values for RMSEC (root mean square error of 
calibration) of the HEA-PLS models except the second and third HEA-PLS models for SSC 
prediction were generally higher than that for the full-spectrum model, while RMSECV and 
RMSEP (root mean square error of prediction) of the HEA-PLS models were lower than those of 
the full-spectrum model. These results indicated that although HEA did not result in better PLS 
models for calibration samples, their prediction ability was improved, as shown in Table 2. In 
terms of prediction ability for the cross validation set and validation set, the second HEA-PLS 
model with 17 wavelengths and 15 factors presented the best result for firmness (rcv = 0.868 
and RMSECV = 6.0 N, rp = 0.857 and RMSEP = 6.2 N,). The third HEA-PLS model using 16 
wavelengths and 21 factors had the best result for SSC (rcv = 0.817 and RMSECV = 0.80%, rp = 
0.822 and RMSEP = 0.78%). Compared with the full-spectrum PLS model for firmness, 
RMSECV and RMSEP values for the best model were reduced by 3.2% and 3.1% respectively,  

Table 2. Calibration and prediction results for firmness and soluble solids content (SSC) 
calculated from five HEA-PLS models and the full-spectrum PLS model.  

Output Model 
Type Nw* Nf* rc** RMSEC rcv** RMSECV rp** RMSEP 

PLS 101 14 0.890 5.5 0.858 6.2 0.848 6.4 
1 18 15 0.888 5.6 0.867 6.0 0.853 6.3 
2 17 15 0.887 5.6 0.868 6.0 0.857 6.2 
3 27 15 0.889 5.5 0.867 6.0 0.856 6.2 
4 21 14 0.887 5.6 0.868 6.0 0.853 6.3 
5 19 15 0.888 5.6 0.867 6.0 0.855 6.2 

Firmness 

Ave.   0.888 5.6 0.867 6.0 0.855 6.3 
PLS 101 19 0.855 0.72 0.758 0.92 0.802 0.83 
1 13 20 0.849 0.73 0.810 0.81 0.810 0.81 
2 18 21 0.859 0.71 0.813 0.81 0.812 0.80 
3 16 21 0.862 0.70 0.817 0.80 0.822 0.78 
4 11 21 0.850 0.73 0.815 0.81 0.818 0.80 
5 12 21 0.851 0.73 0.818 0.80 0.810 0.81 

SSC 

Ave.   0.854 0.72 0.815 0.81 0.815 0.80 

*   Nw = number of wavelengths; Nf = number of factors. 

** rc = correlation coefficient for calibration; rcv = correlation coefficient for cross validation; rp = 
correlation coefficient for validation. 

while the number of wavelengths used in the model reduced to 17 from 101. The RMSECV and 
RMSEP values of the best HEA-PLS model for SSC decreased by 13.0% and 6.0% and the 
number of wavelengths used in the model reduced to 16 from 101. The best HEA-PLS model 
for SSC also yielded better result for calibration samples than the PLS model; the RMSEC value 
was reduced by 2.8%. Compared with the PLS model, the average values of RMSECV and 
RMSEP for the five HEA-PLS models were reduced by 3.2% and 1.6% for firmness and by 
12.0% and 3.6% for SSC (Table 2). The improvement of SSC prediction ability was better than 
that for firmness. 

The 17 optimal wavelengths for firmness prediction and 16 optimal wavelengths for SSC 
prediction are shown in Table 3. Wavelengths for firmness prediction nearly spanned the entire 
spectral range of 500 -1,000 nm, while none of the wavelengths below 600 nm was selected in 
the SSC prediction model. The optimal wavelengths selected in this study are overall in 
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agreement with the reported works using NIR spectroscopy that the spectral range between 600 
nm and 1,000 nm is more appropriate for SSC prediction (McGlone et al., 2002). 

Table 3. Optimal wavelengths selected for prediction models for fruit firmness and SSC.  

Output Number of 
wavelengths Optimal wavelengths (nm) 

Firmness 17 505, 525, 540, 580, 585, 640, 645, 655, 670, 700, 720, 735, 800, 
875, 915, 985, 990 

SSC 16 600, 620, 645, 760, 790, 820, 825, 830, 835, 845, 850, 855, 900, 
935, 960, 990 

Figures 6 and 7 show firmness and SSC predictions for the validation set of 200 apples using 
PLS models with full spectrum and the PLS models with 17 and 16 optimal wavelengths. The 
PLS models with the optimal wavelengths improved the correlation between the predicted 
values and actual values of the samples. 
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Figure 6. Prediction of the firmness (left) and soluble solids content (SSC, right) of ‘Golden 

Delicious’ apples by the PLS model with full spectrum.  
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Figure 7. Prediction of the firmness (left) and soluble solids content (SSC, right) of ‘Golden 

Delicious’ apples by the PLS model with 17 and 16 optimal wavelengths respectively.  

Conclusion                                                                                                                        
Hierarchical evolutionary algorithm (HEA) was suitable for selecting optimal wavelengths from 
the hyperspectral scattering data and subspace decomposition reduced the code complexity of 
hierarchical chromosome. Seventeen and 16 optimal wavelengths were selected to achieve the 
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best prediction of apple firmness and SSC, respectively. The models using optimal wavelengths 
gave better predictions of fruit firmness with rp = 0.857 and RMSEP = 6.2 N than the full 
spectrum model (rp = 0.848, RMSEP = 6.4 N), and of SSC with rp = 0.822 and RMSEP = 0.78% 
than the full spectrum model (rp = 0.802, RMSEP = 0.83%). The HEA approach provided an 
effective means for selecting optimal wavelengths and improved prediction of firmness and SSC 
in apples compared with the approach of using full spectrum. 
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