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ABSTRACT The southern pine beetle, Dendroctonus frontalis Zimmermann (Coleoptera: Scolyti-
dae), is the most damaging forest insect pest of pines (Pinus spp.) throughout the southeastern United
States. Hazard rating schemes have been developed for D. frontalis, but for these schemes to be
accurate and effective, they require extensive on-site measurements of stand attributes such as host
density, age, and basal area. We developed a stand hazard-rating scheme for several watersheds in the
Ouachita Highlands of Arkansas based upon remotely sensed data and a geographic information
system. A hazard model was developed using stand attributes (tree species, stand age and density, pine
basal area, and landform information) and was used to establish baseline hazard maps for the
watersheds. Landsat 7 ETM+ data were used for developing new hazard maps. Two dates of Landsat
imagery were used in the analyses (August 1999 and October 1999). The highest correlations between
hazard rating scores and remotely sensed variables from either of the dates included individual Landsat
7 ETM+ bands in the near- and mid-infrared regions as well as variables derived from various bands
(i.e., Tasseled cap parameters, principal component parameters, and vegetation indices such as the
calculated simple ratio and normalized difference vegetation index). Best subset regression analyses
produced models to predict stand hazard to southern pine beetle that consisted of similar variables
that resembled but were more detailed than maps produced using inverse distance weighted tech-
niques. Although the models are specific for the study area, with modifications, they should be

transferable to geographically similar areas.
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The southern pine beetle, Dendroctonus frontalis Zim-
mermann (Coleoptera: Scolytidae), is the most dam-
aging forest insect pest of pines throughout the south-
eastern United States (Coulson et al. 1972). Southern
pine beetle infestations, or spots, typically start small,
with just a few trees being attacked and killed. How-
ever, spots may grow rapidly when environmental
conditions are favorable and there is adequate re-
source availability (Coulson et al. 1999). Infestations
of southern pine beetle can typically be found some-
where within its range every year (Payne 1980), and
populations of the beetle are capable of attacking and
killing all of the major species of southern pines (St.
George and Beal 1929). Of the four major pine species
that occur in the south, loblolly, Pinus taeda L., and
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shortleaf, Pinus echinata Mill., seem to be the most
susceptible to attack (St. George and Beal 1929).

There are several published schemes for hazard
rating forest stands for susceptibility to southern pine
beetle attack (i.e., Lorio 1980b, Nebeker et al. 1995).
For these schemes to effectively and accurately rate
large areas, they typically require extensive on-site
measurements of stand attributes such as (host den-
sity, age, and species composition of the stand). In
general, as stands of pine increase in age, host density,
and basal area, they become more susceptible to attack
by southern pine beetle (Lorio 1980a, Flamm et al.
1988, Coulson et al. 1999). Therefore, stands that are
overstocked and/ or overmature are at greatest risk for
infestations of the beetle to develop. Landform char-
acteristics such as slope also may play an important
role in determining stand susceptibility to southern
pine beetle (Hicks 1980). Better understanding and
modeling of these stand attributes can help in the
development of hazard-rating schemes to enhance the
effectiveness of ground and aerial survey data by fo-
cusing in on areas where activity is most likely to
occur.



382

Forest pest infestation and risk analysis are topic
areas in which the integration of geographic informa-
tion systems (GIS) and satellite-based remote sensing
applications could be useful for addressing forest
health issues. Remotely sensed data has been used to
examine various features of a forest, including species
composition (Martin et al. 1998), age (Kimes et al.
1996), and structural attributes (Cohen and Spies
1992, Bowers et al. 1994). Different vegetation types
have variations in their respective spectral properties
and changes in plant physiology due to increases in
age, senescence, or stress that can affect these spectral
properties (Mather 1996). Many of these attributes
such as age and stand composition are directly related
to the stand level information required for rating
stands for susceptibility to southern pine beetle attack.
Values derived from remotely sensed imagery such as
the simple ratio (SR) and the normalized difference
vegetation index (NDVI) also can provide statistically
significant results for parameters such as stand basal
area, volume, and tree diameter (Franklin and Luther
1995). Furthermore, remotely sensed data have been
used to detect and quantify bark beetle infestations
(Rencz and Nemeth 1985; Murtha and Wiart 1989;
Everitt et al. 1997a,b). By combining the relatively
quick and cost-effective data available from satellite-
based systems such as Landsat 7 with the data storage,
processing, analysis and display properties provided
by current GIS (Lang 1998), a predictive tool for
determining stand susceptibility to southern pine bee-
tle infestation should be feasible. If stands can be
accurately rated for risk to southern pine beetle by
using remotely sensed data, it should decrease both
the time and expense required to assess susceptibility
over large areas. Such a technique also could be used
to refine the area to be used for spring trapping of the
beetle, one technique currently used to predict the
short-term potential for beetle outbreaks to occur
(Billings 1988).

The objective of this project was to determine
whether a hazard-rating scheme could be developed
for southern pine beetle in the Ouachita Mountains of
Arkansas based upon remotely sensed data and a GIS.

Materials and Methods

Study Area. The study was conducted in the high-
lands of the Ouachita National Forest in west central
Arkansas. The Ouachita highlands are narrow-topped
mountains with east-to-west running ridges that range
in height from ~163 to 529 m and have slopes ranging
from 0 to 41%. The average stand within the area
contains ~798 trees per hectare, with the majority of
the conifer component being comprised of shortleaf
and loblolly pines and the deciduous component be-
ing primarily white and southern red oaks (Guldin et
al. 1994). The conifer component accounts for ~51%
of the total trees and 75% of the total basal area within
the stands.

Ground Measurements. Intensive ground surveys
were conducted on four watersheds from 1995
through 1998. The four watersheds were located in the
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Winona North Alum basin (North Alum Creek, Bread
Creek, and South Alum Creek watersheds) and the
nearby Little Glazypeau watershed. There were a total
0f 2,012 sample points from which data were collected.
The data included measurements of basal area, stem
density, and diameter classes based on 2.5-cm incre-
ments for the shortleaf pines, loblolly pines, other
conifer species, white oaks and southern red oaks,
other oaks, and other hardwood species within the
plots. The data were arranged by sample year, water-
shed, and transect line. Coordinates for each sample
plot were in the Universal Transverse Mercator pro-
jection with North American Datum 1927. The data
were imported into ArcView Environmental Systems
Research Institute (1998) and converted into a shape
file. The mean diameter of the conifer component, the
density, and basal area of host trees and the percent-
age of trees within a plot that were host species were
calculated. Slope values for each sample plot were
derived from U.S. Geological Survey (USGS) digital
elevation models (DEMs at 1:24,000 scale).

Hazard Model. There was not an existing model that
could readily incorporate our available stand charac-
teristic data. Therefore, we developed a model based
upon the criteria most frequently used in previous
studies such as tree species present, stand age and
density, basal area of the pine and hardwood compo-
nents, and landform information (Coulson 1979; Lorio
1980a,b, Hicks et al. 1987; Flamm et al. 1988). Our
model combined species composition within each
sample plot, tree diameter data, stand density mea-
surements, and slope. The density of trees within each
sample plot was obtained directly from the ground
measurements. As stand (and pine) density increased,
the hazard rating for southern pine beetle also in-
creased. Tree diameter data were used as a surrogate
for stand age. Diameters were used because we did not
have a direct measure of stand age and southern pine
beetle does prefer mature trees with thick bark, which
are characteristics consistent with large diameter trees
(for examples, see Lorio 1978, Lorio and Sommers
1981, Hicks et al. 1987). As pine diameters increased,
the hazard rating for southern pine beetle also in-
creased. The slope for each sample plot was used in the
hazard rating, because previous work has demon-
strated that southern pine beetle prefers stands in
low-lying areas and on ridge-tops but does not prefer
stands on side- or steep slopes (Hicks 1980). There-
fore, low slope measurements would correspond with
higher hazard rating for southern pine beetle.

The model we used resulted in a possible hazard
value rating of from 0 to 4.4, with 0 representing no
potential risk of southern pine beetle infestation (i.e.,
there were no host trees present within the sample
plot). The model was designed so that all input pa-
rameters had similar values, ranging from 0 to 1, with
the higher values indicating higher hazard. The math-
ematical combination of the input parameters was
constructed to ensure host presence for any hazard
>(. The model we used to rate each of the sample plots
for hazard of infestation by southern pine beetle was
follows:
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Table 1. Landsat 7 ETM+ bands used in the hazard rating
analyses for southern pine beetle in the Ouachita Mountains of
Arkansas

Landsat band Wavelength Description

1 0.45-0.52 Visible (blue)
2 0.52-0.60 Visible (green)
3 0.63-0.69 Visible (red)
4 0.76-0.90 Near-infrared
5 1.55-1.75 Mid-infrared

7 2.08-2.35 Mid-infrared
Panchromatic 0.50-0.90

Hazardrating = ConBA(ConDen + ConDiam
+ InvSlope) [1]

where ConBA is the proportion of the total stand basal
area represented by conifers; ConDen is 0, 0.33, 0.66,
or 1 for conifer densities of 0, >0 but =250, >250 but
=1,000, and >1,000 stems per hectare, respectively;
ConDiam is mean diameter at breast height of the
conifer component/10; and InvSlope is 1/ (slope + 1).

A grid representing the hazard values was then
interpolated at each sample point by applying an in-
verse distance weighted algorithm by using ArcView.
The grid was reclassified into four hazard classes rep-
resenting hazard ratings of 0 (no hazard), 0.001-1.000
(low hazard), 1.001-1.500 (moderate hazard), and
>1.500 (high hazard).

Remotely Sensed Imagery. Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) imagery was used.
Bands 1-5 and 7 from the Landsat 7 ETM+ were used
for this analysis (Table 1). Two dates of imagery (3
August 1999 and 22 October 1999) were used. Ideally,
the two dates for the imagery would have been further
apart, but due to image availability and cloud cover,
the two images used represented the best combination
available. The differences in spectral response be-
tween the two dates, based upon the changing decid-
uous tree component within the area, could thus be
compared to determine which of the imagery dates
provided the better information to be used to predict
southern pine beetle hazard.

A subset of the Landsat 7 ETM+ imagery was fit to
the boundaries of the study areas for each of the two
dates. The resulting images were then georeferenced
to the Universal Transverse Mercator (UTM) projec-
tion with North American Datum 1927 by performing
an image to image registration using 1:24,000 digital
orthophoto quadrangles (DOQ) as the reference im-
age. A nearest neighbor resampling technique was
used for the georeferencing to preserve the original
image values from the unaltered scene (Campbell
1996, Mather 1996). After the georeferencing, all of
the resulting images used for the analysis had root
mean square errors of <8 m.

Conversion of Image Data to At-Satellite Reflec-
tance. The raw data associated with the individual
Landsat bands may not be directly comparable among
scenes from different dates due to differences in such
factors as sun angle, terrain, surface cover, and sensor
calibration. Inconsistencies among images can be min-
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imized by converting the raw digital values to quan-
titative physical values such as radiance or ground
reflectance (Robinove 1982). Therefore, the imagery
used for the current analysis was converted to reflec-
tance values by using previously defined equations
(Markham and Barker 1986). The image values were
converted to radiance values using the following for-
mula:

L, = QCAL((LMAX, — LMIN, )/ QCALMAX)
+ LMin, [2]

where L, is spectral radiance in milliwatts per square
centimeter per steradian per micrometer; QCAL is
calibrated and quantized scaled radiance in digital
numbers units, QCALMAX is range of rescaled radi-
ance in digital numbers, LMin, is spectral radiance at
QCAL = 0 from image calibration parameter file, and
LMAX, is spectral radiance at QCAL = QCALMAX
from image calibration file.

The resulting parameters were then converted to
at-satellite reflectance values as follows:

p, = (m X L, X d*)/ESUN, X cosf,)  [3]

where p, is unitless effective at-satellite planetary re-
flectance, L, is spectral radiance (from equation 2), d
is Earth—-sun distance in astronomical units (from nau-
tical handbook), ESUN;, is mean solar exoatmospheric
irradiances (from image calibration parameter file),
and 6, is solar zenith angle in degrees.

The conversion of the image data to radiance and
at-satellite reflectance values was applied to the im-
agery by using the modeler function in Imagine 1999.

Image Comparison between Dates. Variations in
atmospheric characteristics also can have an impact on
the results of the digital image analysis. Therefore,
when multiple dates of imagery are used for compar-
isons, the data should be normalized so as to minimize
the atmospheric effects (Jensen 1996). No atmospheric
data were available that were temporally and spatially
acceptable to the image acquisition periods. There-
fore, we used a previously described method (Hall et
al. 1991) to determine the need to normalize the two
dates of imagery used in the analysis. At-satellite re-
flectance values for each of the bands used were re-
corded for each normalization target. Regression anal-
ysis was applied to each band in the August image to
predict the normalized reflectance values for the Oc-
tober image. There was little difference between the
actual at-satellite reflectance values and the predicted
at-satellite reflectance values (Fig. 1), indicating a
minimal change in the spectral response of the nor-
malization targets between the two images. Therefore,
no normalization was applied to the imagery for the
analysis.

Variables Used in Hazard Rating. Hazard rating
schemes were developed using two methods. The first
method used variables derived directly from the re-
motely sensed data to directly predict stand hazard to
southern pine beetle infestation. The second method
used the remotely sensed data to derive individual
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fectively normalizes the difference between the NIR
and red values and avoids the potential problems of
the index values increasing without bounds (Chen
1996). Therefore, we also included NDVI and the
difference in NDVI between the two image dates in
our analyses. The NDVI values were calculated as

NDVI = (NIR — Red)/(NIR + Red) [5]

Tasseled cap (TC) linear transformation indices also
were included in the analyses to examine brightness
(TC1 is a weighted average of all six reflective bands),
greenness (TC2 is a contrast between the visible and
NIR bands) and wetness (TC3 is a contrast between
the mid-infrared and the combined red and NIR
bands) (Crist and Cicone 1984). Similarly, principal
components analysis was used to create new compo-
nents that were linear combinations of the original
reflective bands. We used only the first three principal
components from each image date in this analysis
because the first component contains the greatest
amount of total variance and the variance decreases
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Fig. 1. Actual and predicted normalization target reflec-
tance values for Landsat 7 ETM+ bands 2, 4, and 7 for the 22
October 1999 imagery. Predicted values for each band were
derived from the regression analyses conducted for the 3
August 1999 imagery and accompanying each plot.

characteristics of the stands that were then used as
input into a hazard rating scheme.

The six reflective bands from Landsat seven ETM +
(Table 1) were examined as was the difference in
reflectance values for band 4 between the two dates of
imagery. Combinations of the individual reflective
bands were calculated and used in the analyses. One
of the indices used was the SR developed by Birth and
McVey (1968) and calculated as follows:

SR = NIR/Red [4]

where NIR is the band representing the near-infrared
portion of the electromagnetic spectrum, and Red is
the band representing the red portion of the electro-
magnetic spectrum.

Each sample date and the difference in SR between
the two sample dates were examined. The NDVI
(Rouse et al. 1974) uses the same spectral band mea-
surements and is similar to the SR values, but it ef-

with each subsequent component (Chavez and Kwarteng
1989).

Textural analysis (also referred to image textures
[Campbell 1996]) was used to measure the tonal vari-
ability within a neighborhood of pixels. An available
standard deviation texture algorithm (Imagine 1999)
was applied to band three and band four for both
image dates using a 3 by 3 pixel moving window. The
algorithm was also applied to the panchromatic band
from each date using both a 3 by 3 moving window and
a 5 by 5 moving window. The algorithm also was
applied to the linear resolution DOQ imagery using
both a 3 by 3 and a 7 by 7 moving window.

An unsupervised classification was performed using
the iterative self-organizing data analysis technique
(ISODATA) (ERDAS, Inc. 1999), which generates a
user-defined number of classes by iteratively progress-
ing through the image and identifying distinct classes.
We combined the watersheds for this step and pro-
duced an image containing five classes. The technique
has been successfully used to map insect-caused de-
foliation (Hall et al. 1991).

Three variables that described various aspects of the
terrain (elevation, slope, and aspect) were used in the
analyses. The three terrain variables were derived in
ArcView from the USGS DEMs described previously.

The images representing the remotely sensed vari-
ables used in this project were converted to grids so
that the values corresponding to each sample plot
could be extracted using the Grid format (ArcInfo,
version 7.1.2, Environmental Systems Research Insti-
tute 1997) with the bilinear interpolation resampling
technique. All of the data were matched with the
corresponding hazard value derived from equation 1
for the corresponding sample point.

Data Extraction and Statistical Analysis. Correla-
tion analysis (Ott 1993) was conducted to measure the
linear relationship between hazard values and stand
characteristics and the remotely sensed variables ex-
tracted from each date of imagery. Multiple linear
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regression techniques (Ott 1993) were used to con-
struct models to predict the hazard rating values by
using the data from the two dates of imagery as the
model parameters. Eighty-five percent of the data
from each watershed were used as the training set for
model development. Using these training sets, a best
subset regression procedure was applied. The best
subset regression (Ott 1993) was used to avoid run-
ning all possible regression combinations for predict-
ing hazard values. The R? values were specified as the
criterion for determining the best five regression mod-
els, whereas the C, statistic and the root mean square
error term were used to ensure selection of the best
possible model. The best fitting model should have a
C,, value approximately equal to the number of pa-
rameters in the model (Ott 1993). Once the best fitting
model was selected, the remaining 15% of the data
points were used to validate input for the selected
models. The variance inflation factor was used to ex-
amine each of the input parameters following model
selection to examine possible collinearity among the
parameters (Dilorio 1997). When variables with a
high degree of collinearity were detected, they were
removed from the model. Once the final model was
selected, the R? values from the original output model
and the validation set model were compared to de-
termine how well the model predicted the hazard
rating scores. If the model represents an adequate fit,
the R? value from the validation set will be similar to
the R? value of the training set. All statistical analyses
were conducted using SAS (SAS Institute 2000). For
the models used to predict hazard values, the regres-
sion coefficients associated with each parameter were
applied to their respective grids. The resulting grid
values were added together to produce hazard maps
(one map using the 3 August 1999 data, and the other
map using the 22 October 1999 data). The two hazard
maps were compared with the original hazard map
produced using the ground survey data by examining
the spatial patterns of each hazard class.

Results and Discussion

Of the variables examined using only the 3 August
Landsat data, Landsat 7 ETM+ band 4 (near-infra-
red), tasseled cap 2 (greenness index), tasseled cap 1
(wetness index), and the first two principal compo-
nents had the five highest correlation values with the
calculated hazard scores (Table 2). The analysis con-
ducted with the 22 October Landsat data included
measurements of the difference between the 22 Oc-
tober Landsat data and the 3 August Landsat data for
the vegetation indices, NDVI and SR. Along with
Landsat 7 ETM+ band five values (mid-infrared), the
first principal component values, and the tasseled cap
1 values (wetness index), both of these difference
values for the vegetation indices had the highest cor-
relation values with the calculated hazard scores (Ta-
ble 2). The major difference in the data from the two
acquisition dates seems to be contained in the mea-
surements concerned within the near-infrared range.
The areas used in this project are mixed pine-decidu-
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Table 2. The seven highest correlation coefficient values be-
tween the southern pine beetle hazard-rating scores for stands in
four watersheds in the Ouachita Mountains of Arkansas and data
derived from the remotely sensed imagery from two sample dates

Imagery Correlation
acquisition Measured coefficient P>r
date parameter )
3 Aug. 1999 Band 4 —0.61399 <0.0001
TC-2 —0.58548 <0.0001
TC-1 —0.56569 <0.0001
PC-2 —0.54319 <0.0001
PC-1 —0.53238 <0.0001
SR —0.49348 <0.0001
Band 5 —0.48652 <0.0001
22 Oct. 1999 SR-Difference —0.47574 <0.0001
Band 5 —0.45392 <0.0001
PC-1 —0.44102 <0.0001
TC-1 —0.41896 <0.0001
NDVI-Difference —0.40946 <0.0001
Band 7 —0.35099 <0.0001
PC-3 —0.34489 <0.0001

Band, Landsat 7 ETM+ band values; TC, tasseled cap values; PC,
principle component values; SR, simple ratio values; NDVI, normal-
ized difference vegetation index values.

ous hardwood forests. Although the hazard rating val-
ues were based on attributes associated with the pine
component of the stands, the deciduous hardwood
component would have affected the measured spec-
tral signatures. The Landsat data from 3 August was
acquired when the deciduous component of the
stands still contained green foliage. Therefore, the
Landsat data from the 3 August scene would include
a higher proportion of hardwood foliage in the spec-
tral measurements. Previous studies have reported
that the deciduous component of a mixed forest can
dominate measurements of spectral response when
attempting to measure the attributes of conifers in a
mixed forest (Ahern et al. 1991, Franklin and Luther
1995). As the foliage begins to dry and change color,
there is less chlorophyll contained in the inner leaf
tissue that drives the high near-infrared spectral re-
sponse of healthy, vigorous vegetation (Mather 1996,
Jensen 2000). Because these phenological changes
occur within trees/forest stands during the autumn,
the spectral signature acquired will be different from
that acquired from the same trees/ forest stands during
the summer. Furthermore, as the deciduous compo-
nent of a stand begins to drop its foliage, spectral
signatures may be influenced by soil properties that
were not evident when the foliage was still on the
trees.

The best subset regression analysis (Ott 1993) con-
ducted on the training sets (85% of the data points)
produced models containing 12 variables (using the
Landsat 7 ETM+ data from 3 August) or 19 variables
(using the Landsat 7 ETM+ data from 22 October)
(Table 3). Landsat bands, DOQ data, and physical
parameters such as slope and elevation of the stands
were common to both of the models. Based upon the
R? and residual mean square error (RMSE) values
(Table 4), the date of imagery acquisition did not seem
to significantly influence the ability of the models to
accurately predict the hazard value of a stand. Fur-



386

Table 3. Best subset regression analysis coefficient values
(models) to predict southern pine beetle hazard rating scores by
using the variables derived from imagery obtained from two sample
dates

Date Model RegreS§i0n Date Model RegreS§i0n
parameter coefficient parameter  coefficient

3 Aug. Intercept 1.39858 22 Oct. Intercept 3.77579
Band 7 6.73794 Band 1 8.69283

Band 4-Diff  —3.40231 Band 2 —2.37487

TC-2 —0.03436 Band 5 —10.05809

TC-3 0.04567 Band 4-Diff  —9.31122
PanText5 —14.44424 SR —0.16501
DOQText7 0.01019 PC-2 —0.00997

class 5 0.44948 PanText5 —27.33939

Slope —0.01293 DOQText7 0.00927
Elevation —0.00080 Slope —0.00802

Asp-2 0.07279 Elevation —0.00131

Asp-3 0.10781 Asp-1 —0.08623

Asp-3 0.07039

Asp-6 —0.07294

Asp-7 —0.14689

Asp-8 —0.15009

Model parameters are as follows: band, Landsat 7 ETM+ band
values; TC, tasseled cap values; PC, principle component values; SR,
simple ratio values; PanText5, 5 by 5 pixel panchromatic band texture
analysis results; DOQTest7, 7 by 7 pixel standard deviation texture
analysis of DOQ image; class, results of the unsupervised classification;
slope, elevation, and aspect, derived from USGS DEMs with aspect
(Asp) classified into eight directional classes.

thermore, the relatively small values for the RMSE
(~0.36 for both dates) suggest that the models are
sensitive enough to distinguish between the three
hazard classes (range 0.001-1.000 for low hazard
stands, 1.001-1.500 for moderate hazard stands, and
1.501-2.200 for high hazard stands).

The hazard rating maps derived from the regression
models for both dates of data acquisition have similar
spatial distributions to the hazard classes derived using
an inverse distance weighting technique (Fig. 2), in-
dicating that the regression method can be used to
predict hazard class for a stand. However, although
there is a general similarity in the overall spatial pat-
terns, the values for the regression model maps are
determined on a pixel-by-pixel basis without any in-
fluence from neighboring pixels. Therefore, the mod-
els can be used to assign hazard values to stands that
are spatially distant from the measured stands. The
hazard values assigned outside of the study area will
be as accurate as the values assigned to stands within the
study area as long as the stands are similar in structure
and terrain parameters. Most hazard maps will interpo-
late between measured points over a fairly large area.

Table 4. Training set and validation models along with the
relevant statistics (R2, C,,, and RMSE) derived from the best subset
regression analyses conducted on the 3 August 1999 and 22 Oc-
tober 1999 Landsat 7 ETM+ imagery

.. Validation
Training set
Date No. parameters set
R G, RMSE R® Cp
3 Aug. 12 0.55 12.8 0.36 0.55 0.36
22 Oct. 16 0.54 19.8 0.36 0.50 0.37
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Fig.2. Southern pine beetle hazard rating maps, where red
is high hazard stands, green is moderate hazard stands, blue is
low hazard stands, and gray is nonhost stands with no risk of
southern pine beetle infestation. Maps are of the three water-
sheds contained in the North Alum Basin. The maps were
constructed using the Landsat 7 ETM+ data collected on 3
August 1999 (map a), the Landsat 7 ETM+ data collected on 22
October 1999 (map b), or by interpolating the survey plot data
by using an inverse distance weighted technique (map c).

Therefore, what is typically produced are large, contig-
uous areas all within a single hazard class, and the pixel-
by-pixel differentiation of stands (Fig. 2) is not possible.
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Managing forest resources to reduce the risk of
insect outbreaks is a complex process that requires
timely and accurate information. Hazard rating forest
stands for their susceptibility to various insects could
provide forest managers with one more tool to limit
damage from these insects. Most of the currently used
hazard rating systems for southern pine beetle use
expensive and time-consuming ground surveys. New
systems that integrate remotely sensed data and GIS
techniques could be cost-effective, and they would aid
forest managers in prescribing silvicultural treatments
to be implemented to reduce losses to the beetle.

The current project examined several watersheds in
the Ouachita Mountains of Arkansas. The results sug-
gest that by combining Landsat 7 ETM+ multispectral
and panchromatic band data with DOQ and terrain
data for variables selected through best subset regres-
sion analyses, forest managers can produce maps with
reliable estimates of hazard to southern pine beetle.
After being developed, the hazard values generated
from the regression procedures should be appropriate
for use over similar areas. However, these hazard-
rating techniques should not be expected to predict
southern pine beetle activity within any given stand.
The hazard maps produced during the current study
used forest stand characteristics. Many of the param-
eters used to generate the maps are dynamic and
continuously changing. The suitable habitat available
to the insect can vary through time due to factors such
as timber harvesting, previous herbivory, or stand
growth (Coulson et al. 1999). Hazard maps therefore
need to be periodically updated. Also, there are many
factors that dictate whether an outbreak of southern
pine beetle will occur and some of these factors cannot
be detected using remotely sensed data (i.e., presence
of the beetle within a stand).
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