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Abstract The selection and breeding of crop geno-
types with root traits that improve soil resource
extraction is a promising avenue to improved nutrient
and water use efficiency in low-input farming
systems. Such genotypes may accelerate nutrient
extraction (“nutrient mining”), but may also reduce
nutrient loss via soil erosion by producing greater
shoot biomass and by direct effects of root traits on
aggregate formation and water infiltration. Little is
known about the effects of root architecture on
phosphorus (P) runoff and soil erosion, and the
relative importance of root and shoot traits on runoff
P loss has not been determined. Four genotypes of
common bean (Phaseolus vulgaris L.) and two
genotypes of soybean (Glycine max) selected for
contrasting root architecture were grown in a low P

soil (Aquic Fragiudult, <20 mg kg−1 Mehlich-3 P, 3%
slope) and subjected to rainfall-runoff experiments
with and without shoot removal. Plots with intact
shoots had significantly lower runoff volumes (1.3–
7.6 mm) and total P loads in runoff (0.005–0.32 kg
ha−1) than plots with shoots removed (7.0–16.8 mm;
0.025–1.95 kg ha−1). Dissolved reactive P leached
from plant material did not contribute significantly to
P loss in runoff. Total root length acquired from soil
cores differed significantly among genotypes. Root
length densities in the upper 15 cm of soil mid-way
between rows were less than 4.0 cm cm−3 and
variation in root length density was not correlated
with runoff or P loss. Root length density also did not
affect rainfall infiltration or surface runoff volume.
We conclude that for annual dicotyledonous crops
such as bean and soybean with relatively low root
length densities, root traits have little direct effect on
soil erosion.
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Introduction

Conservation of phosphorus (P) is a critical issue in
soils of low native fertility, particularly in the
developing world where fertilizer inputs are often
unavailable to farmers (Fairhurst et al. 1999). The loss
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of P via erosion is a primary pathway of concern
(Larson et al. 1983). Many agronomic variables affect
the potential for erosion, including tillage practices,
residue management, and inherent crop characteristics
(Renard et al. 1997). Canopy characteristics have
been widely studied and their effects on runoff and
erosion are well established (Meyer and Mannering
1971). According to Foot and Morgan (2005), plant
height and percent canopy cover are the two most
important canopy characteristics affecting erosion
potential. In contrast to shoot effects, the effects of
roots on erosion and P runoff are not well understood.

Root architecture is of increasing interest as a
selection criterion for crop adaptation to edaphic
stress in low-input agro-ecosystems (Lynch and
Brown 2001; Lynch 2007). Root architectural traits
that can improve P uptake in low-P systems include
root hair length and density (Bates and Lynch 2001),
basal root growth angle (Bonser et al. 1996, Lynch
and Brown 2001), hypocoytl-borne (adventitious)
roots (Miller et al. 2003), and lateral rooting (Zhu
et al. 2005). Several crop breeding programs seek to
improve root architectural traits for enhanced yield in
low input farming systems. These include the Root
Biology Center at the South China Agricultural
University (Guangzhou), the Programa de Investiga-
ciones en Frijol (PIF) at EAP-Zamorano University,
Honduras, the Universidad de Michoacana, Mexico,
the Institute of Agricultural Research of Mozambique
(IIAM), as well projects at the International Center for
Tropical Agriculture (CIAT; Cali, Colombia) and the
International Maize and Wheat Improvement Center
(CIMMYT; El Batan, Mexico) geared towards low
fertility and drought.

Traits that increase P acquisition from low-P soil
should increase total plant mass and canopy cover,
potentially decreasing P loss through erosion. How-
ever, the direct effects of root traits on soil processes
affecting P loss in runoff, including erosion, dissolu-
tion of soil P by root exudates, aggregate stability, and
rainfall infiltration, are unclear. Using maize roots of
increasing root length density and rainfall simulation,
Bui and Box (1993) saw no differences in runoff
between rooted and fallow soils. A comparison of the
effects of dead roots of alfalfa, soybean, maize and
bluegrass on erosion resulted in no differences in
runoff among species, but lower sediment concen-
trations and soil loss with increasing amounts of dead
roots (Ghidey and Alberts 1997). Gyssels and Poesen

(2003) concluded that the plant effect on decreasing
soil loss was explained by both shoot and root mass
since shoot and root mass are correlated.

The effects of maize and soybean roots on soil
strength, detachment rate, and rill erodibility were
observed in the field (Mamo and Bubenzer 2001a) as
well as in the laboratory using a hydraulic flume to
study effects of living roots (Mamo and Bubenzer
2001b). Detachment rate decreased with root length
density, which the authors hypothesized to be due to
soil binding by the roots as well as division of shear
stress into that acting on the soil and that acting on the
roots. Live maize roots have been observed to
decrease the permeability of a sandy loam by pore
blockage and soil compaction in the rhizosphere
(Barley 1954) and decrease stability of fresh soil
aggregates (along with tomato and wheat, whereas
alfalfa increased soil aggregates; Reid and Goss
1981). Hallet et al. (2003) used a miniaturized
infiltrometer to observe slightly increased water
repellency of rhizosphere soil compared to bulk soil.
Whalley et al. (2004) also observed less infiltration in
rhizosphere than bulk soil and proposed that increased
soil density in the rhizosphere changes the hydraulic
conductivity, but did not observe root mucilage
making the soil more repellant to water as previously
reported. These results are in agreement with reports
that root mucilage is a material that can absorb water
and stabilize soil aggregates (as reviewed in Young
1998).

Most of the research relating roots to erosion has
been conducted with computer modeling. A modeling
approach to root water uptake and effects on soil
moisture, as described by Dunbabin et al. (2002) and
Somma et al. (1998), can explain root contributions to
subsurface soil drying that subsequently affects
rainfall infiltration. A number of erosion/runoff
computer models that take root growth into account
use factors for root length density or number of roots
in their equations (i.e. Flanagan and Nearing 1995;
and Renard et al. 1997). Gyssels et al. (2005)
reviewed a number of erosion models and field
studies and summarized root effects on erosion as:

SEP ¼ e�bRP ð1Þ

where SEP is the soil erosion parameter (e.g. rill or
interrill erodibility), RP is the root parameter and b is
a constant that indicates the level to which roots
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reduce erosion. The authors concluded from their
review that plant cover is the most important factor in
splash and interrill erosion, but that roots are just as
important as shoots in the control of rill and
ephemeral gully erosion.

One potential effect of selection for plants with
different root characteristics and efficiencies in recov-
ering soil P is variation in plant tissue P, which, in
turn, could affect dissolved P in surface runoff. Root
traits can increase efficiency of phosphorus uptake in
low-P soils, which can increase P concentration and P
total content of shoot tissue. Miller et al. (2003)
reported >50% variation in shoot P content associated
with variation in hypocotyl-borne roots among com-
mon bean genotypes in a Typic Paleudult (<15 mg
kg−1 iron-oxide strip P) in Costa Rica. Root hair
length and density have been shown to improve
performance of common bean in low-P soils (Miguel
2004). Increased plant growth of genotypes with
higher root length density in upper soil levels
(shallow root architecture) have been observed in
common bean (Ho et al. 2005) and maize (Zhu et al.
2005). However, abiotic stress may result in mem-
brane leakage and loss of plant nutrients to runoff
during rainfall. Sharpley (1981) found large differ-
ences in dissolved P leached from plant canopies
when crops were stressed. After 80 d of crop growth
on soils that were not fertilized with P, dissolved P in
plant leachate averaged 30 g ha−1 for cotton, 108 g
ha−1 for sorghum, and 54 g ha−1 for soybean. When
the three crops were subjected to rainfall simulations,
dissolved P derived from plant canopies contributed
4–94% of the dissolved P measured in surface runoff
from the cotton, sorghum and soybean treatments
(Sharpley 1981).

Given the importance of programs selecting for
root traits and the inconclusive nature of existing
information on the effects of root traits on erosion and
runoff P loss, the objective of this study was to assess
erosion and runoff from low P soils planted with bean
and soybean genotypes differing in root architecture
and root length density under simulated rainfall. Low
P soils provide a unique opportunity to isolate plant
effects on runoff by eliminating confounding effects
of concentrated sources of P. Furthermore, low P soils
are characteristic of most agro-ecosystems in devel-
oping countries (and therefore the majority of the
world’s cropped soils; Lynch 2007). Specific objec-
tives of this study were to contrast the role of roots

with shoots in controlling erosion as well as to assess
the effect of contrasting root architectures on erosion
and P runoff.

Materials and methods

Experiment location and plant material

Research was conducted on a Buchanan silt loam soil
(fine-loamy, mixed, semiactive mesic, Aquic Fragiu-
dult), averaging 3% slope at the Russell E. Larsen
Research Center in Rock Springs, PA (Latitude: 40°
43.24′ N Longitude: 77°55.90′ W). The site falls in
the Appalachian Ridge and Valley province of the
eastern US (Major Land Resource Area 147, Natural
Resource Conservation Service 2006). Average annu-
al precipitation is 950 mm, and annual average
temperature is 9°C.

In 2004 the site was converted from grass fallow
by mowing and removal of cut grass, application of
glyphosate (Roundup1) to eradicate existing grass at
4.68 L ha−1, chisel plowing, rototilling, and another
rototill after application of potassium (potash; 0–0–
60) at 56 kg ha−1. The site was planted with common
bean and soybean and disked at the end of the season.
In June 2005 glyphosate (Touchdown) was sprayed at
4.68 L ha−1 to eradicate the existing weeds, followed
by chisel plowing, and finally disking after applying
potassium (potash; 0–0–60) at 33.6 kg ha−1. A mid-
season (July) application of 0.88 L ha−1 sethoxydim
(Poast) eliminated graminaceous weeds. In May 2006
plots were chisel plowed, culti-mulched, and metola-
chlor (Dual) was applied at 2.34 L ha−1. Surface rocks
were removed by hand at least once during soil
preparation in all years. Fertilizer applications were
based on results of soil analyses (Table 1), described
below, using Penn State University’s agronomic
recommendation for K addition (Beegle 2007).
Notably, P fertilizer was not applied to the site since
the aim of this study was to investigate runoff from
low P soils.

Field plots, 3×3 m in 2005 and 4×3 m in 2006,
were planted with common bean (Phaseolus vulgaris)
or soybean (Glycine max) with 50 cm inter-row and
5 cm intra-row spacing. Rhizobium inoculum for

1 Mention of trade names does not indicate endorsement by the
US Department of Agriculture.
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bean or soybean (Histick NT) was applied each year
according to manufacturer recommendations. Geno-
types were selected to achieve a range of root
distributions with depth among plots. Common bean
and soybean genotypes have been previously
screened for root architecture characteristics in field
and laboratory conditions in Pennsylvania, Honduras,
and China (Lynch and Brown 2001; Ho et al. 2005;
and Zhao et al. 2004). The genotypes planted each
year changed as on-going research revealed new
genotypes with better rooting characteristics, but a
range of deep-rooted to shallow rooted genotypes
were planted each year of the study. In 2005,
common bean recombinant inbred lines 57 (shal-
low-rooted) and 30 (deep-rooted) of the L-88
population (supplied by Dr. James Kelly, Michigan
State University) and soybean varieties Local 2
(deep rooted) and Brazil 10 (shallow-rooted) were
planted in a randomized block design. In 2006, only
common bean genotypes were planted. Recombinant
inbred lines L-88 57 and L-88 14 (shallow-rooted)
and L-88 30 and L-88 63 (deep-rooted) were planted
in a completely randomized design.

All plots were arranged among three strips of
plowed land with >5-m grassy border between
plowed strips. In 2005 plots were adjacent and in
2006 a 1-m alley was left between planted plots. Four
repetitions of each genotype and space for unplanted
control plots were allotted in both years. Rows were
oriented perpendicular to the slope. All plots were
weeded by hand throughout both seasons.

Rainfall simulations

Rainfall simulations were conducted according to the
National P Research Project methods described by

Sharpley et al. (2001). Hydrologically isolated runoff
plots (2-m long and 1-m wide) were established
within each of the treatment replicates, isolated on the
upper three sides by steel frames driven approximate-
ly 5 cm into the soil and extending roughly 5 cm
above the soil. At the lower end of each plot, a gutter
was inserted 5 cm into the soil with the upper edge
level with the soil surface. The gutter was equipped
with a canopy to exclude direct input of rainfall and a
2-cm diameter plastic hose routed runoff water from
the gutter to plastic collecting vessels.

All plant shoots were cut off at the soil surface and
removed from one of the plot halves immediately
(<30 min) before each rainfall simulation to isolate
the effects of roots alone on runoff. Cut shoots were
then dried to obtain total plot dry mass and sub-
samples saved for nutrient analysis.

Rainfall simulations were conducted 50–53 days
after planting (DAP) in 2005, and 50–51 DAP in
2006 when plants were flowering and canopies had
reached maximum size for the season. A rainfall
simulator described by Humphry et al. (2002) was
equipped with TeeJet™ 1/2 HH SS 50 WSQ nozzles2

(Spraying Systems Co., Wheaton, IL) approximately
3 m above the soil surface. Rainfall was delivered at
approximately 7.5 cm h−1 until 30 min of runoff was
collected. Phosphorus content of the source water
used for generating runoff was <150 μg L−1.
Following each simulation, runoff water was thor-
oughly stirred to re-suspend settled particles and
immediately sampled. A filtered (0.45 μm) sub-
sample was also obtained. Runoff samples were
stored at 4°C prior to laboratory analysis. In this
manuscript, use of the term ‘runoff’ refers to surface
runoff.

Soil and root sampling

Soils were sampled to obtain general fertility recom-
mendations for the field site as well to describe the
conditions of individual plots. Sampling for field
fertility recommendations was done in May before the
growing season whereas plot specific sampling was
done at the time of rainfall simulation. For field
fertility recommendations, three composite samples
were obtained, each representing approximately one
third of the field. Composite samples were comprised
of 15, 15-cm samples collected by stainless steel
probe (2-cm diameter) and thoroughly mixed. To

Table 1 Properties of field soils at time of planting for 2005
and 2006 seasons

Soil property 2005 2006

pH 6.6±0.1 6.6±0.2
P (mg kg−1) 15±0.7 19±3.4
K (mg kg−1) 117±4.8 123±9.0
Mg (mg kg−1) 102±2.6 89±4.6
Ca (mg kg−1) 2,531±41 2,430±238
CEC (meq kg−1) 155±39.0 141±52.0

Nutrient availability and CEC was determined by Mehlich-3
extraction, pH was determined in water (1:1). Values shown are
means ± standard error of the mean
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represent individual field plots, one point from the
border of each plot was selected for soil samples to be
used for both antecedent gravimetric water content
and P analysis in 2005 (2-cm diameter×15-cm depth).
In 2006, 10 samples (2-cm diameter×15-cm depth of
soil core) were collected along a diagonal transect
within each plot and thoroughly mixed. All soil
samples for chemical analysis were air dried in a
greenhouse at 40°C. In 2006 soil moisture levels were
determined before and after rainfall simulation using a
capacitance sensor (Theta probe, Delta T Devices,
Ltd., Cambridge, UK).

Additional soil samples were collected to deter-
mine root length density of individual plots at depth
increments of 0–15, 15–30 and 30–45 cm using a 4-
cm diameter soil corer (Giddings Machine Co.,
Windsor CO, USA). These samples were collected
within one week of the completion of all rainfall
simulations, with one soil core obtained per plot at
approximately the mid-point between the central
rows. Soil cores were refrigerated until analysis.

Sample analyses

Soils

Composite samples representing general field con-
ditions were extracted with Mehlich-3 solution (0.2 M
CH3COOH + 0.25 M NH4NO3 + 0.015 M NH4F +
0.013 M HNO3 + 0.001 M EDTA) by shaking 1.0 g
of soil with 10 mL of solution for 5 min (Mehlich
1984). Extract P, potassium (K), calcium (Ca), and
magnesium (Mg) were determined by inductively
coupled plasma-optical emission spectroscopy (ICP-
OES). Cation exchange capacity (CEC) was deter-
mined from Mehlich-3 analyses by sum of cations
(Ross 1995). Soil pH was determined in water (1:1)
following the recommended method of Eckert and
Sims (1995).

Soil samples representing individual plots were
analyzed for Mehlich-3 P. Soils were extracted by the
method described above, and extract P was deter-
mined colorimetrically by the method of Murphy and
Riley (1962).

Phosphorus sorption characteristics were deter-
mined in a composite of three subsamples from each
plowed strip by constructing Freundlich sorption
isotherms (Nair et al. 1984). One gram of soil was
shaken with various additions of P in 25 mL of

0.01 M CaCl2 on an end-over-end shaker at 25°C.
Phosphorus in the solutions was added as KH2PO4 to
achieve initial solution concentrations of 0 to 40 mg
L−1. After 24 h, the soil suspensions were centrifuged
and filtered (0.45 μm), and the solution P concentra-
tion (C) was determined colorimetrically as described
above. The amount of P sorbed was calculated as the
difference between the initial and final solution P
contents. Average Freundlich parameters obtained in
2005 and 2006 were 39.27 and 0.35 for K (L kg−1)
and N, respectively, with an equilibrium P concentra-
tion at zero net sorption/desorption (EPC0) of
1.19 mg L−1 by the optimizing routine developed by
Bolster (2007) with the Freundlich sorption equation.

Plants (shoots and roots)

Shoot P content was determined from dried shoot
subsamples of two plants collected from each plot and
ground with a Wiley mill (# 40 mesh). Samples were
ashed at 400°C for 16 h, dissolved in 100 mM HCl,
and P determined colorimetrically. Soil cover by plant
canopies was determined using overhead digital
photographs taken at the time of rainfall simulation
and analyzed with Photoshop (Adobe, Inc.) according
to Klassen et al. (2003).

Root length and density with depth were deter-
mined from the 45-cm soil cores by first dividing
them into 15-cm sections, then carefully washing all
bean/ soybean roots from the soil. Root samples were
stained with neutral red (0.162 g L−1), scanned and
analyzed using WinRhizo (Régent Instruments, Que-
bec, Canada) to determine total root length per core
section (cmroot cmsoil

−3) and diameter. Average diam-
eter and distribution of root length within root classes
were determined, where roots 0.05–0.25 mm were
classified as secondary lateral roots, roots 0.25–
0.6 mm were classified as primary laterals, and roots
0.6–1.5 mm were classified as basal and tap roots.

Runoff water

Total P and total dissolved P in runoff were
determined by acid potassium persulfate digestion
on filtered and unfiltered runoff samples, and P
standards according to Pote and Daniel (2000) using
sand-filled electric skillets as a heat source in order to
digest many samples at one time. Phosphorus con-
centration of digests was then determined colorimet-
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rically by the ammonium molybdate method of
Murphy and Riley (1962). Particulate P was deter-
mined as the difference between total and total
dissolved P. Total solids content of runoff water was
determined gravimetrically by drying 200 ml runoff at
60°C.

Statistical analyses

Data from each treatment were tested for normality
and homogeneity of variance. All data not passing
these tests (i.e., TP load, TP concentration) were log-
transformed to comply with the assumption of
Gaussian distribution required of parametric statistics.
Data were analyzed by Student’s t-test, one-way
ANOVA, and both single and multivariate linear
regression. All data were analyzed using SPSS v. 11
(SPSS Inc. 2005).

Results

Plant growth

Plant growth at the time of the rainfall simulations
(50–53 DAP) was similar between years. In 2005,
soybeans had three to 20 leaves and no flowers at the
time of rainfall simulations while common beans had
between 10 and 20 fully expanded trifoliate leaves,
flowers, and some small pods. In 2006, soybean was
not grown and all common bean genotypes were
flowering at the time of rainfall simulation. No
significant differences in shoot mass were observed
among genotypes of a single species, and soybean

had significantly lower shoot mass than common bean
in 2005 (Table 2). Ground cover varied little between
years (77–80%) for the common beans.

Low shoot P concentrations were observed in all
genotypes in this study (<0.35% dry wt.) due to the
low fertility of the soil, and were at the lower limit of
the 0.3–0.5% shoot P requirement for optimal plant
growth (Marschner 1995). Shoot P content and soil P
concentration of individual plots were correlated
(Fig. 1). Mehlich-3 soil P concentrations of individual
plots ranged from 9 to 36 mg kg−1 in 2005 and 3 to
40 mg kg−1 in 2006, with coefficients of variation of
0.38 and 0.78, respectively.

Total root length in the entire 45-cm soil core
averaged 308 cm for soybeans and 583 cm for
common beans, differing significantly among geno-
types in both 2005 (F=15.127, p<0.001) and 2006
(F=2.469, p=0.113; represented by the sum of the

Table 2 Shoot attributes of all genotypes in 2005 and 2006 at the time of rainfall simulation

Shoot mass (g m-2) Ground cover (%) Shoot P (% dry weight)

2005
Common bean L-88 57 225±15 77.3±7.9 0.280±0.042

L-88 30 242±16 77.2±2.3 0.291±0.028
Soybean Brazil 10 65±6 22.9±2.5 0.302±0.040

Local 2 68±13 19.5±2.9 0.289±0.024
2006
Common bean L-88 57 245±22 85.9±2.2 0.325±0.065

L-88 14 244±22 78.3±3.1 0.355±0.025
L-88 30 268±17 79.0±5.6 0.311±0.048
L-88 63 216±33 77.2±3.3 0.342±0.019

Values shown are means ± standard error of the mean.
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stacked bars in Fig. 2). Between soybean genotypes,
Brazil 10 had longer total root length than Local 2 in
the soils cores, and among bean genotypes L-88 57
had the longest total root length in 2005 whereas L-88
30 had the longest total root length in 2006. In 2005,
root length densities (cmroot cmsoil

−3) differed signif-
icantly between common bean and soybean in the 0–
15 cm soil samples (t=4.15, p=0.004). Significant
intra-specific differences in root length densities in the
upper 15 cm of soil were observed between Local 2
(mean=0.87 cm cm−3) and Brazil 10 (mean=1.57 cm

cm−3) soybeans but not among bean genotypes. In
2006 root length densities did not differ significantly
among genotypes in the top 15 cm. Root diameter did
not differ among species or genotypes in the upper
15 cm of the soil cores but was significantly higher in
2006 (p<0.001), averaging 0.28±0.008 mm in 2005
and 0.34±0.01 mm in 2006. Root length distribution
within root classes indicated that the majority of roots
in all samples were lateral roots, with an average of
92±0.5% of total root length as laterals in 2005 and
88±0.8% in 2006 (Table 3).
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Runoff

Runoff depths ranged widely among plots and treat-
ments (0.25–27 mm event−1), with significantly more
runoff in 2006 than in 2005 (Fig. 3). Cutting the
shoots significantly increased runoff compared to
plots with shoots intact (average difference=63%;
Fig. 3). Runoff also differed significantly between
common bean and soybeans, which had substantially
different levels of ground cover (averaging 77% for
common bean and 21% for soybean) but did not differ
significantly among genotypes of the same species
that had similar canopy characteristics (Table 2). The

lower runoff depths in 2005 for all treatments were
associated with dryer conditions that year compared
to 2006 (Table 4). Antecedent soil moisture averaged
0.18 m3 m−3 in 2005 and 0.21 m3 m−3 in 2006.

Erosion and particulate P in runoff

Phosphorus in runoff was predominantly in particu-
late form, with particulate P averaging 97% of total P
in 2005 and 96% of total P in 2006. Total solids
concentration in runoff was correlated with particulate
P concentration in runoff (Fig. 4), as well as to total
P concentration (2005: F=43.196, r2=0.532, p<

Table 3 Root length (cm) by root type based on diameter at a soil depth of 0–15 cm

Genotype Secondary laterals Primary laterals Basal and tap

2005 0.05–0.25 mm 0.25–0.6 mm 0.6–1.5 mm
Common bean L-88 30 229±41.2 227±29.8 26.5±6.20

L-88 57 248±31.5 274±45.5 26.8±5.70
Soybean Brazil 10 142±30.6 167±18.4 14.2±3.30

Local 2 104±19.5 90.2±10.4 8.46±2.89
2006
Common bean L-88 14 119±15.1 146±20.2 27.3±6.23

L-88 30 201±59.9 171±32.0 39.3±12.4
L-88 57 93.6±28.7 100±22.0 19.7±2.54
L-88 63 173±25.3 128±27.6 21.9±5.22

Values shown are means ± standard error of the mean
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0.001; 2006: F=29.931, r2=0.517, p<0.001). Partic-
ulate P loads in 2006 were on average 6 times higher
than in 2005, owing to greater runoff depths observed
in 2006 that averaged 70% more than in 2005.
Notably, the slope of particulate P vs. total solid
concentrations (Fig. 4) differed significantly between
the 2 years. Total solids concentrations did not differ
significantly between the 2 years for plots with shoots

intact, but were significantly higher in 2006 in plots
where shoots were cut (t=4.05, p=0.006).

In 2005, erosion from soybean plots was signifi-
cantly greater than from the common bean plots
(Table 5). Concentrations of total solids in runoff
averaged 2.4 g L−1 from the soybean plots with
shoots intact and 1.9 g L−1 from the common bean
plots. Combined with the observed differences in

Table 4 Site moisture conditions

Hydrologic property 2005 2006

Antecedent soil moisture (m3 m−3) 0.177±0.013 0.212±0.006
Rainfall infiltration
Shoots cut (cm) 70.8 31.6
Shoots intact (cm) 91.0 45.2

Runoff
Shoots cut (cm) 7.0 16.8
Shoots intact (cm) 1.3 7.5

b. 2006
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total solids and particulate P
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soil test P or from the
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runoff depths, the greater concentrations of total
solids in runoff resulted in loads from soybeans that
averaged 1.6 times total solids in runoff from
common beans. In 2006, concentrations of total solids
in runoff from common bean plots averaged 2.4 g
L−1. Concentrations of total solids in runoff from
unplanted plots averaged 3.13 g L−1 in 2006 and 7.7 g
L−1 in 2006. No significant differences among
genotypes of the same species were observed in
erosion and particulate P losses.

Cutting the shoots of common bean and soybean
plants increased sediment concentrations in runoff
compared with plots with shoots intact as well as
runoff depths (Table 5). As a result, total solids from
plots with shoots removed averaged 0.15 and 0.66 kg
ha−1 in 2005 and 2006, respectively, whereas total
solids from plots with shoots intact averaged 0.025
and 0.14 kg ha−1 in 2005 and 2006.

No differences in sediment concentrations and
erosion loads were observed among genotypes, con-
trary to the hypothesis that increases in root densities
near the soil surface may improve resistance to erosion.

Total dissolved P in runoff

Total dissolved P levels in runoff were low, ranging
from 20 to 250 μg L−1 (Fig. 5), reflecting the P status

of soils in this study and were not correlated with
any crop characteristic. Given the low soil P levels,
total dissolved P in runoff was very sensitive to
differences in soil P levels between the plots. Total
dissolved P load was linearly correlated with soil P
concentrations of individual plots (F=5.02, p=
0.033, r2=0.138). The fraction of total P in runoff
that is dissolved decreased with increasing sediment
concentrations (y=−0.0231Ln(x)+0.048, r2=0.1092
in 2005 and, y=−0.258Ln(x)+0.0619, r2=0.2229 in
2006).

Root length density and runoff

Since runoff and erosion by water are surficial
processes, and because rainfall infiltration was
expected to be most affected by the uppermost zones
of soil, root length density values from the topmost (0–
15 cm) soil core segment would be expected to have
the greatest effect on these variables compared with
root traits at a greater depth. However, root length
density was not significantly correlated with runoff
volume, total solids, TP concentration, TP load, DRP
concentration, or DRP load (Fig. 6)—including when
analyzed using a multiple regression with plot soil P as
another independent variable. Concerning the question
of deep roots affecting infiltration, no significant

Table 5 Concentration (mg L−1) and load (g) of total P and sediment in runoff from 2×1-m plots during the first 30 min of runoff
collection under simulated rainfall (7.5 cm h−1)

Species Genotype Total P concentration
(mg L−1)

Total P load
(mg)

Sediment concentration
(g L−1)

Sediment load
(g)

2005 2006 2005 2006 2005 2006 2005 2006

Shoots cut
Soybean Brazil 10 0.79±0.24 5.93±2.92 3.20±0.87 25.4±11.2

Local 2 0.36±0.07 7.51±3.60 2.41±0.76 45.6±18.2
Common bean L-88 30 0.57±0.27 15.71±10.3 5.42±1.30 293±114 2.11±0.15 2.79±0.57 31.2±10.3 81.1±31.7

L-88 57 0.33±0.10 13.46±8.6 3.00±0.71 389±216 1.76±0.12 3.78±0.80 18.3±4.9 120±17.9
L-88 14 6.02±0.49 218±54.0 4.38±0.93 174±78.2
L-88 63 18.23±13.2 658±480 4.24±0.75 149±28.0

Shoots intact
Soybean Brazil 10 0.48±0.11 2.13±0.98 2.08±0.35 10.5±5.7

Local 2 0.54±0.24 1.22±0.43 1.87±0.30 4.74±0.85
Common bean L-88 30 0.27±0.06 4.20±0.61 0.62±0.29 58.9±32.1 1.37±0.25 1.86±0.32 3.09±1.4 22.9±10.5

L-88 57 0.64±0.24 12.81±10.7 0.43±0.21 104±70.3 2.21±0.62 1.96±0.56 1.39±0.6 25.40±6.11
L-88 14 3.25±0.84 31.8±4.33 1.61±0.43 19.3±7.36
L-88 63 3.94±0.93 60.1±20.4 2.54±0.55 44.2±20.1

Unplanted control 0.65±0.23 31.02±15.1 3.90±0.96 1833±991 3.13±0.48 7.69±2.55 23.2±6.9 427±153
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interaction could be determined between root length at
deeper segments of the soil core and runoff volume.
Even the large species differences in root length
density between common bean and soybean in 2005
did not affect runoff volume or P loss when shoots
were removed.

Discussion

In this study, the plant canopy was the only plant
attribute that reduced runoff and erosion of phospho-
rus and sediment in both soybean and common bean
plots. Root traits alone, as examined in plots with the
shoots cut immediately before rainfall simulation, did
not explain variation in runoff and erosion. These
results suggest that root architecture may only
indirectly influence erosion in annual row crops by
affecting shoot growth.

The lack of a root treatment effect on runoff seen
here is most likely due to very low root length
densities observed in the study (<4.0 cm cm−3). These
low densities are comparable to values for maize
reported by Bui and Box (1993) who also simulated

rain on plots with shoots cut and did not observe
effects of root length density on runoff in a Cecil
sandy loam (clayey, kaolinitic, thermic Typic Kanha-
pludult). Mamo and Bubenzer (2001a) also examined
comparable root length densities to those in the
current study and saw significant decreases in soil
detachment rate with increasing root length density,
but used a much different method of generating runoff
without simulating rainfall, but by flooding the plot
with drip irrigation at the upper end of the plot slope.
Studies of plant species with large root length
densities report decreasing erosion rates with increas-
ing root length density. De Baets et al. (2006) studied
grass sown at different densities that yielded root
length densities of up to 600 cm cm−3 (on average
100 times greater than the root length densities of our
study) and observed large reductions in soil detach-
ment rate with a hydraulic flume at root length
densities above 40 cm cm−3, demonstrating the
superior utility of grass as a cover crop in mitigating
erosion even when shoots are removed, due to high
levels of root growth. Similarly, Zhou and Shangguan
(2007) reported that roots accounted for up to 90% of
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the reduction in erosion by 27-week old ryegrass
under rainfall simulation at 1.5 mm min−1. De Baets
et al. (2007) saw decreasing soil detachment rates with
decreasing root diameter, further suggesting that it is
the low root length densities in the present study, not
the small diameter of roots, that explains the lack of
effect of roots on runoff and erosion.

Although root architecture and root length density
did not directly affect erosion under the conditions in
this study, there may be indirect effects of root growth
on canopy growth in different low P soils. In soils
where P levels are more stratified with depth and
shallow roots result in better nutrient uptake and
increased shoot growth compared to deep-rooted
genotypes, shallow roots could increase the shoot
cover that can intercept raindrops and thereby
decrease runoff and erosion. Ho et al. (2005) observed

increased shoot mass in genotypes with higher root
length density in the top 15 cm of a low-P mollisol in
Honduras. Studies addressing rill and gully erosion,
as opposed to sheet flow which was examined in this
study, might also reveal differences in runoff and
erosion among genotypes. In soils with an increased
presence of macropores and a decreased buffering
capacity than the soil used in this study, leaching
would be a more important form of P loss, and would
be expected to be reduced in shallow-rooted geno-
types whose increased canopy cover decrease rainfall
infiltration and whose roots intercept subsurface P.
More research is needed with genotypes of contrast-
ing root architecture in very low P soils to explore
these potential effects.

The distinct effect of cutting shoots on runoff
highlights the importance of the crop canopy in
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intercepting rainfall and minimizing surface sealing
caused by direct impact (Bradford et al. 1987; Meyer
and Mannering 1971). Although we expected the
genotypes to differ in shoot mass and the extent of
their ground cover based on differences in root
architecture observed in preliminary tests, variability
in soil P levels of the individual plots appeared to
outweigh the genetic root trait differences that might
have resulted in divergent canopy growth. The
probable cause of the comparatively poor growth of
the soybeans was their selection for root architecture
rather than for adaptation to growth environment,
which was originally southern China. The relationship
between soil test P of individual plots and plant P
uptake (Fig. 1) points to the importance of edaphic
variability in crop response. Such variability in soil P
and subsequent crop response is common due to the
spatial dependency of soil P even in low P soils (e.g.
Cox et al. 2003; and Di Virgilio et al. 2006). The
absence of significant differences in shoot P concen-
trations and shoot masses among genotypes also
minimized potential differences in plant P contribu-
tions to runoff water between genotypes.

The absence of differences among genotypes
selected for root traits parallels the findings that
ground cover and shoot mass did not vary signifi-
cantly with root characteristics, and is likely due to
the soil conditions in the current study. Shallow root
growth has been shown to affect shoot growth in low
P soils (Ho et al. 2005; Zhu et al. 2005b), and
although the soils in the current study were relatively
low P and no P was applied as fertilizer, P levels
greater than 10 mg kg−1 (Mehlich-3) may not be low
enough to cause stress symptoms that would distin-
guish shallow-rooted from deep-rooted genotypes.

The significant variability of total root length in the
soil core demonstrates the contrasting root architec-
ture of the selected genotypes, and supports the
analysis of root architecture effects on runoff and
erosion. The differences in root growth trends
between the same genotypes in 2005 compared to
2006 are likely due to differing soil moisture contents
between the 2 years that affected root growth (see
Table 4). Climatic differences between the 2 years
undoubtedly contributed to discrepancies in runoff
from the unplanted plots between 2005 and 2006,
which had no plant cover at any time during the study.
In 2006, higher levels of precipitation during the
growing season likely increased destruction of exposed

surface soil aggregates, resulting in increased runoff
volume due to surface sealing (Bradford et al. 1987).

Given the low P content of soils at the experiment
site, P loss in runoff was expected to be primarily
associated with erosion. This expectation was con-
firmed by the dominance of particulate P as the
primary form of P in runoff. Higher concentrations of
particulate P in 2006 may reflect differences in
climate between the 2 years, with greater precipitation
in 2006 producing greater destruction of soil aggre-
gates prior to the rainfall simulations and therefore
greater susceptibility of surface soils to erosion. The
concentrations of total solids in runoff from unplanted
plots reported here are about 25% of those reported
by Engel et al. (2007), who conducted rainfall
simulations on soybeans under conventional tillage
at a similar crop stage as the current study, but in a
Hapludox soil on a 16.5% slope.

The relationship of total dissolved P load and soil
P concentration was consistent with apparent rela-
tionships of shoot P and root length density with soil
P—all pointing to the importance of edaphic controls
on runoff P loss, even in low P systems. Since nearly
all of the P lost from the plots was in particulate
form, it is unlikely that dissolved P in plant shoots or
root exudates substantially affected P in runoff. Total
dissolved P concentrations in planted plots remained
as low as unplanted plots (<65 μg L−1 in 2005
and <0.45 mg L−1 in 2006) and did not increase
when shoots were left intact or considering variation
in shoot mass among plots. This suggests that the
intact plant shoots, cut stems, or roots, contributed
almost no P in the runoff. These data are in contrast
to the findings of Sharpley (1981) who reported that
plant-derived P could account for the majority of
runoff P in several species, including soybean, under
rainfall simulated at a rate of 6.0 cm h−1. Other
stresses have also been reported to increase plant
contribution to runoff P, including freezing and
thawing (Bechmann et al. 2005) and freezing or
drying (Roberson et al. 2007). Reduced membrane
integrity resulting in electrolyte leakage has been
reported with freezing/thawing in wheat (Pukacki
et al. 1991) and drought in common bean (França
et al. 2000). In the current study, plants were not
exposed to stresses such as drought or freezing, only
P deficiency, and therefore likely had less P leakage
from the shoots. Sharpley (1981) reported the great-
est plant contributions to runoff P in high fertilizer
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treatments, which further suggests that the plants in
the current low P study had minimal P leakage under
rainfall simulation.

It is likely that any P leached from plant tissue was
sorbed by the intact soil or by sediment in runoff as
has been described previously (Sharpley et al. 1981).
The lower dissolved P proportions in samples with
increasing sediment load indicates high rates of
erosion. Kleinman et al. (2005) measured an expo-
nential decrease in the fraction of total P that is
dissolved with increasing suspended solid concen-
trations ranging from 0–2.5 mg L−1 from rainfall
simulations at a rate of 6.0 cm h−1 on cover-cropped
and bare Typic and Aquic Fragiudept soil. The
authors observed a threshold for DRP saturation of
suspended solids between 0.1 to 0.5 g L−1. Since the
suspended solid concentrations in the current study
are all above these values, it can be concluded that
erosion alone could sustain the low DRP concen-
trations in the runoff, including any DRP leached
from plants or desorbed from the soil.

This study shows that maintenance of the canopy is
of fundamental importance for mitigating the erosive
and nutrient-depleting effects of rainfall on soil. The
results presented here also demonstrate the vulnera-
bility of continuously bare soils to erosion, as
observed in the unplanted controls. Results from this
study indicate that breeding for root traits to improve
plant performance in low P soils is unlikely to affect
erosion due to soil factors influenced directly by the
roots, but decreases in erosion due to changes in plant
canopy growth are possible.

Conclusions

The roots in this study may be affecting soil bulk
density and water repellency (as suggested in papers
such as Barley 1954; Hallet et al. 2003; and Whalley
et al. 2004), but these effects are at the rhizosphere
level and did not result in measurable effects on
runoff and erosion for 2×1-m plots. In the low P soils
used in this study, leachate from plant biomass did not
contribute to P runoff in total or dissolved P pools.
The effects of the annual row crops on mitigating
runoff and erosion were mediated by the plant shoots.
Root length densities in the upper 15 cm of soil half-
way between rows were less than 4.0 cm cm−3 and
had no measurable effect on runoff and erosion.

Innate soil characteristics outweighed plant effects on
total dissolved P even at these low soil P values. We
conclude that for annual dicotyledonous crops such as
bean and soybean with relatively low root length
densities, root traits have little direct effect on soil
erosion. Root architecture may be important at higher
root densities such as in grass systems, soils more
stratified in P with depth where shallow roots will
increase P uptake and lead to development of bigger
canopies, or where roots are exposed and can
physically protect soil after leaf senescence.
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