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Abstract

This review summarizes independent reports of yield decreases in several agricultural systems that are associated with repeated
cropping under wet or submerged soil conditions. Crop and soil data from most of these agroecosystems have led researchers to attribute
yield decreases to a reduction in crop uptake of N mineralized from soil organic matter (SOM). These trends are most evident in several
long-term field experiments on continuous lowland rice systems in the Philippines, but similar trends are evident in a continuous rice
rotation in Arkansas, USA and with no-till cropping systems in North American regions with cool, wet climatic conditions in Spring.
Soil analyses from some of these systems have found an accumulation of phenolic lignin compounds in SOM. Phenolic compounds
covalently bind nitrogenous compounds into recalcitrant forms in laboratory conditions and occurrence of this chemical immobilization
under field conditions would be consistent with field observations of reduced soil N supply. However, technological shortcomings have
precluded its demonstration for naturally formed SOM. Through recent advances in nuclear magnetic resonance spectroscopy,
agronomically significant quantities of lignin-bound N were found in a triple-cropped rice soil in the Philippines. A major research
challenge is to demonstrate in the anaerobic agroecosystems that these lignin residues bind sufficient quantities of soil N to cause the
observed yield decreases. A key objective will be to elucidate the cycling dynamics of lignin-bound N relative to the seasonal pattern of
crop N demand. Anaerobic decomposition of crop residues may be the key feature of anaerobic cropping systems that promotes the
accumulation of phenolic lignin residues and hence the covalent binding of soil N. Potential mitigation options include improved timing
of applied N fertilizer, which has already been shown to reverse yield decreases in tropical rice, and aerobic decomposition of crop
residues, which can be accomplished through field drainage or timing of tillage operations. Future research will evaluate whether aerobic
decomposition promotes the formation of phenol-depleted SOM and greater in-season N mineralization, even when the soil is otherwise
maintained under flooded conditions during the growing season.
© 2006 Elsevier Ltd. All rights reserved.
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to determine the exact chemical nature of SOM
(MacCarthy, 2001) or even the bonding environments of

1. Introduction

Soil organic matter (SOM) contains the vast majority of
C, N, P and S that are found in soil. Its chemical nature is
thought to influence the storage and release of these
essential nutrients into plant-available forms. Yet evidence
for such an influence is sparse, largely due to the inability
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SOM-bound nutrients. Recent studies have identified the
accumulation of phenolic compounds in the SOM of
submerged soils that were intensively cropped to irrigated
lowland rice (Oryza sativa L.) in the Philippines (Olk et al.,
1996, 1998). Using newly developed analytical techniques
to identify the bonding environments of C with N, phenolic
lignin residues were shown to have bound covalently with
N in a humic acid fraction (Schmidt-Rohr et al., 2004). The


www.elsevier.com/locate/soilbio
dx.doi.org/10.1016/j.soilbio.2006.04.009
mailto:olk@nstl.gov

3304 D.C. Olk et al. | Soil Biology & Biochemistry 38 (2006) 3303-3312

resulting chemical stabilization was hypothesized to have
contributed to an observed long-term decrease in avail-
ability of soil N and an associated decline in rice grain
yield. In this review we summarize the concepts gained
from this study of continuous cultivation to irrigated
lowland rice, and we report independent observations from
other agroecosystems in which soil remains anaerobic or
partly anaerobic during the year and for which soil data
suggest the covalent binding of soil N by lignin residues.

2. Intensive lowland rice cropping in tropical Asia

2.1. Yield trends and SOM quality under intensive rice
cropping

During the Green Revolution of the 1960s, plant
breeders developed early maturing semi-dwarf varieties of
lowland rice that allow two or even three rice crops per
year on the same field. Since then, these annual double- and
triple-cropped continuous rice systems have become the
dominant agricultural land use in the tropical and
subtropical lowlands of Asia wherever irrigation water
supplies are adequate. This intensive cropping system
enabled the Asian rice supply to keep pace with burgeoning
populations, as irrigated lowland rice farmers account for
about three-quarters of Asia’s rice supply (Cassman and
Pingali, 1995).

Under intensive cropping, lowland rice soils are sub-
merged for 811 months each year. During development of
the semi-dwarf varieties in the 1960s, concerns arose over
the sustainability of the long-term submerged soil condi-
tions that would accompany continuous cropping. Long-
term field experiments were initiated to monitor soil
properties under double- and triple-cropped rice. During
the subsequent decades, yields gradually declined in some
of these long-term experiments (Cassman et al., 1995;
Dobermann et al., 2000). For example, in a triple-cropped
field trial at the International Rice Research Institute
(IRRI) in the Philippines, yields declined during 24y by
3 ton/ha in the high-yielding dry season and about 2 ton/ha
in each of the two wet seasons, or 38% and about 50%,
respectively, of the initial yields. There was no evidence for
uniform occurrence of pest damage (insects, disease, weeds,
nematodes) that would cause this gradual yield decline
(Cassman et al., 1995). Phosphorus, K and Zn fertilizers
were applied at non-limiting rates, and plant tissue nutrient
concentrations excluded any role of boron toxicity. Crop
growth characteristics and plant N status suggested that N
deficiency during mid- to late-season growth stages
contributed to the yield decline. Yet crop response to
fertilizer N applications at early crop growth stages had
changed little. Based on these trends, Cassman et al. (1995)
attributed the yield decline to decreased crop uptake of
native soil N, namely soil organic N that becomes available
through mineralization of soil organic matter. However,
the quantity of soil N in these field experiments had not
decreased and in fact had even increased since these

experiments were initiated, which focused research efforts
on possible changes in the quality of SOM under long-term
submerged conditions.

These views were based on the unique nature of N
cycling in flooded soil. Inorganic N is not stable in flooded
soils for more than a few weeks, as nitrification does not
occur and NHy is rapidly lost, primarily through NHj
volatilization when the floodwaters become alkaline. The
floodwater pH can increase by as much as two units
following urea hydrolysis or photosynthesis by floodwater
microorganisms (Keeney and Sahrawat, 1986; Reddy et al.,
1990). During the years of declining yields in the long-term
field experiments, most fertilizer N (urea) was applied in
one or two applications at early season crop growth stages.
Given a 90- to 100-day growing season, consequently, crop
N uptake at later growth stages was dependent solely on
mineralization of soil organic N, and development of a
late-season N deficiency suggests an inhibition of soil N
mineralization.

In the 1990s, grain yields of the triple-cropped field
experiment were restored to their initial levels, in part
because of greater solar radiation but also because of more
numerous applications of N fertilizer throughout the
growing season and at higher overall rates, providing
better synchrony between N supply and crop N demand
(Cassman et al., 1995; Dobermann et al., 2000). This yield
reversal provided further evidence that changes in soil N
supply had contributed to the yield decline.

Assuming a physiological efficiency of 50 kg grain/kg N
uptake (Yoshida, 1981), the yield loss in the triple-cropped
field was equivalent to a decrease in crop uptake of about
60 kg N/haseason. This quantity is a large proportion of
the fertilizer rates that tropical rice farmers typically apply
each season (generally 90-150kg/ha), but it is not a
significant proportion of total soil N in the plow layer of
the triple-cropped field (2000-3000 kg N/ha). The cause of
this substantial yield decline may therefore involve solely a
portion of the SOM.

A clear change in the chemical nature of SOM that
occurs under intensive rice cropping is the accumulation of
phenolic compounds (Olk et al., 1996, 1998, 1999, 2000).
The dominant types of phenols detected in rice soils
(cinnamyl, syringyl and vanillyl) are derived from plant
lignin, which comprises the woody tissues of crop roots and
straw. More broadly, phenols accumulate in many
anaerobic environments, including streams (Malcolm,
1990) and natural wetlands (Katase, 1993). Anaerobic
conditions slow decomposition of many organic materials,
but lignin and phenols are especially affected (Tate, 1979;
Colberg, 1988). Anaerobic bacteria do not have suitable
enzymes for rapid degradation of lignin. Their decomposi-
tion pathways of aromatic compounds involve slower and
less efficient reactions than those of aerobic microorgan-
isms (Evans, 1977). Concurrent with the slowed rate of
lignin decomposition under multiple annual cropping of
rice, the input rates of lignin are increased because crop
residues and roots are returned to the soil two to three
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times annually compared to the previous practice of one
annual crop using traditional, long-maturing rice varieties.
Although lignin does degrade in anaerobic soils at
detectable rates (Benner et al.,, 1984), the rate under
intensive rice cropping is apparently not sufficient to offset
the elevated rates of residue input.

In laboratory studies of model compounds, phenolic
compounds covalently bind nitrogenous compounds into
recalcitrant forms (Mortland and Wolcott, 1965; Flaig
et al., 1975; Haider et al., 1975). Nitrogen in the resulting
anilide-like structure (Fig. 1) would be less easily miner-
alized into an available form than is the more common N
form of amino N (Verma et al., 1975; Stevenson and Cole,
1999) especially under the anoxic conditions of submerged
soils. Although phenolic binding of N has been demon-
strated for model compounds under laboratory conditions,
some researchers have doubted the occurrence of this
covalent binding in field conditions: for years studies failed
to find evidence for anilide N or other forms of aromatic N
in SOM that formed under natural conditions, even when
using leading analyses for the chemical structure of SOM
such as cross polarization/magic angle spinning (CP/MAS)
N nuclear magnetic resonance (NMR) spectroscopy,
(Preston, 1996; Knicker and Hatcher, 1997; Knicker and
Ko6gel-Knabner, 1998).

Improved detection of lignin residue-bound N became
possible when Schmidt-Rohr and Mao (2002a) developed
saturation-pulse-induced dipolar exchange with recoupling
(SPIDER), an NMR technique involving MAS for
selective detection of carbons that are bonded to N. In
the center of a sequence of rotation-synchronized 180°
pulses on the '*C spins, which recouples the "“N-'*C
dipolar interaction that would otherwise be averaged out
by MAS, the "N coherences are saturated by a train of
small-angle "*N pulses for 1-2ms. This provides efficient
partial dipolar dephasing of '*C bonded to '*N, at MAS
frequencies that permit detection of aromatic carbon
resonances with sufficient sensitivity. The difference
between the dephased and undephased '*C NMR spectra
shows only carbons connected to nitrogen. Other NMR
spectral editing methods separate overlapping resonances
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Fig. 1. Chemical structure of anilide.
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Fig. 2. Solid-state {**N-}!3C NMR spectrum of the mobile humic acid
fraction from a triple-cropped rice soil, obtained by using the SPIDER
technique. The amide (NCO) peak is at 174 ppm, and the peak for anilide
N (N-Cjrom) is at 134 ppm. Aliphatic NCH resonances of peptides are at
S55ppm. Reprinted with permission from Schmidt-Rohr et al. (2004).

of various chemical groups (Schmidt-Rohr and Mao,
2002b). The method has been tested and calibrated on
model compounds (Schmidt-Rohr and Mao, 2002a).

Schmidt-Rohr et al. (2004) used SPIDER to identify
agronomically significant quantities of anilide N in the
mobile humic acid (MHA) fraction—a young, lignin-rich
humic fraction—that was extracted from the triple-cropped
rice soil at IRRI (Fig. 2). Anilide-N caused the N—C,.om
resonance around 134 ppm, and it also provided an equally
strong contribution to the N-C = O peak near 173 ppm.
Anilide-N accounted for 25% of total N in the MHA
fraction. The excess quantity of anilide-N (55kg N/ha) in
this fraction compared to the MHA fraction of a nearby
aerated rice soil was similar to the historical decrease in
crop uptake of soil N (60kg N/haseason) that was
associated with the yield decline. Hence the slower
mineralization of anilide N could contribute substantially
to the decreased availability of soil N. Schmidt-Rohr et al.
(2004) concluded that anilide N formed from phenolic
lignin residues, based on the chemical properties of the
aromatic portion of the anilide and because the abundance
of anilide in three SOM fractions was proportional to the
abundance of lignin residues. Their findings represent the
first direct evidence for covalent binding of N by phenolic
lignin residues in naturally formed SOM.

2.2. Anaerobic decomposition of crop residues

Additional NMR analyses suggested that the key trait of
intensive rice cropping that promotes the accumulation of
phenolic lignin residues—and consequently covalent bind-
ing of N—may be anaerobic decomposition of crop
residues (Olk et al., 1998). For a double-cropped rice
experiment that was conducted at three sites in the
Philippines, spectra of '*C CP/MAS NMR documented
the presence of phenols in the MHA fraction at all sites,
despite large differences among the sites in the degree of
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soil drying during the fallow periods. The degree of soil
drying at each site reflected local rainfall amount and
pattern. At IRRI (Fig. 3a), the soil dried to air-dryness on
the surface during the first fallow and remained wet
throughout the second fallow. At the Philippine Rice
Research Institute (PRRI), the surface soil dried to air-
dryness during both fallows and also at depth during the
second fallow at the beginning of the dry season (Fig. 3b).
Yet grain yields declined at both sites (Cassman et al.,
1995). A common practice at both sites—and in fact a
customary step in Asian rice production—was the incor-
poration of crop residues into the soil at the end of each
fallow period, when soil is flooded to facilitate its tillage by
the puddling operation, followed by transplanting of the
next crop. Thus the incorporated crop residues decompose
under anaerobic soil conditions. Because crop residues are
the primary parent material of new SOM, the anaerobic
decomposition could affect the chemical nature of young
SOM independently of the annual duration of flooding.
Despite similar amounts of crop residue returned at both
sites, SOM decomposed faster in the better aerated PRRI
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Fig. 3. Annual patterns of rainfall and pan evaporation at (a) the
International Rice Research Institute (IRRI) and (b) Philippine Rice
Research Institute (PRRI). Cumulative water deficits (CWD) are shown as
hatched areas. Reprinted from Olk et al. (1998) with permission of
Blackwell Publishing.

soil, as soil organic C was a third less than in the IRRI soil
(Olk et al., 1998). The MHA fraction of the PRRI soil had
only one-third the mass of the MHA pool extracted from
the IRRI soil, and it was composed of extremely young
compounds, including high concentrations of total N and
amide N as determined by CP/MAS "N NMR (Mahieu et
al., 2000). By comparison, the chemical nature of the MHA
from the IRRI soil suggested the presence of older, more
humified materials in addition to the young materials that
comprised the MHA fraction of the PRRI soil. Accord-
ingly, N mineralization from the PRRI MHA was 48%
greater than from the IRRI MHA when these MHA
fractions were added in equal amounts to two rice soils and
incubated for 42 days (Nguyen et al., 2004), indicating that
partial aeration of rice soils can lead to higher quality SOM
that is more readily mineralizable.

To further evaluate this hypothesis, anaerobic decom-
position of crop residues was compared with aerobic
decomposition in a field experiment at IRRI beginning in
1995. Soil phenol accumulation and in-season N miner-
alization were measured during a 4-year period of double-
cropped rice (Olk et al., 2006). At transplanting of the wet
season crop in the 3rd year, '*N-enriched urea fertilizer was
applied to microplots that were imbedded within main
plots and at the same rate that unlabeled urea fertilizer was
applied outside the microplots. One week later, the amount
of fertilizer N that had been immobilized into the MHA
fraction was similar for both anaerobic and aerobic residue
decomposition treatments. During the rest of the growing
season, 45% of this immobilized fertilizer N was reminer-
alized from the MHA of the aerobic decomposition
treatment, but none was remineralized from the MHA of
the anaerobic decomposition treatment. Mineralization of
total N ("*N and '°N) from the MHA fraction during the
growing season was 22kg N/ha more with the aerobic
residue decomposition treatment than with anaerobic
decomposition. This difference was 20-25% of the crop
N uptake that was normally achieved in this field
experiment (data not shown). It was also 11% of the total
N remaining in the MHA fraction of the anaerobic
decomposition treatment shortly before crop harvest.

During the 4-year experiment the phenolic content of the
MHA fraction gradually became enriched in the anaerobic
decomposition treatment compared to aerobic decomposi-
tion (Fig. 4). Hence anaerobic decomposition of crop
residues was associated with both inhibited mineralization
of soil N and phenol enrichment. In the same field trial, this
association was less apparent in the better-aerated condi-
tions of a rice-maize (Zea mays L.) rotation than in the
continuous rice rotation (data not shown). Nitrogen
mineralization from a humic fraction that had a lower
phenol content than the MHA fraction was less inhibited
by anaerobic decomposition than was N mineralization
from the MHA fraction (Olk et al., 2006), again illustrating
the paired nature of inhibited N mineralization and phenol
accumulation. The inhibition of N mineralization did not
affect grain yield in this field experiment because N
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fertilizer was applied multiple times during each growing
season to match the pattern of crop N demand; this
synchronization would compensate for decreased avail-
ability of soil N (Cassman et al., 1995).

3. Continuous rice rotation in Arkansas, USA

In the Grand Prairie region of eastern Arkansas, the
conventional crop rotation is an alternate year ri-
ce—soybean (Glycine max (L.) Merr.) rotation. Recent
developments in availability of irrigation water and the
appearance of soybean rust (Phakopsora pachyrhizi) in the
U.S. South might promote continuous cropping of rice, at
least in fields near water bodies. Increased SOM levels
under continuous rice cropping might also improve soil
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Fig. 4. Relative abundance of 2-methoxyphenol in the mobile humic acid
fraction for aerobic decomposition of crop residues and anaerobic
decomposition of crop residues during a four-year field experiment in
the Philippines. Percent increase in relative abundance from aerobic to
anaerobic decomposition and level of significance of this difference are
indicated. Standard errors are indicated above each bar. Both treatments
had two annual crops of lowland rice and high rates of N fertilizer
application. Phenols were measured by tetramethylammonium hydroxide
thermochemolysis, and relative abundance was calculated as the ratio of
the peak area for 2-methoxyphenol to the peak area for an internal
standard that was added to each sample. Statistical significance was
determined at each sampling date through analysis of variance using a
general linear model program that was appropriate to the split-plot field
design.

Table 1

Crop uptake (kg/ha) of fertilizer N and soil N at two crop growth stages for

physical properties, thereby mitigating long-term degrada-
tion under the rice—soybean rotation (Scott and Wood,
1989). In a 4-yr field trial, however, grain yield of a
continuous rice rotation was 19% (1.5 ton/ha) less than the
grain yield of rice following soybean (Anders et al., 2004).
Similar to the Philippines yield decline, agronomic
symptoms of the yield gap indicated an N deficiency at
later crop growth stages. Specifically, crop growth in early
growth stages was healthy and similar for both crop
rotations. After the green ring stage, however, during the
transition from vegetative growth to reproductive growth
stages, crop growth slowed for the continuous rice plants.
Leaf tissue N concentration at this time decreased faster for
continuous rice than for rice following soybean (data not
shown), and fewer grains formed on plants under
continuous rice cropping. No evidence was gained that
suggested the yield gap was caused by pests (insects or
diseases) or any other nutrient deficiency or toxicity, other
than N deficiency. Following local recommendations, all
fertilizer N was applied early in the growing season as a
single pre-flood application at the fourth leaf growth stage.

In 2002, at the customary application time (41 days after
seedling emergence) '*N-enriched fertilizer was applied to
microplots that were imbedded within crop rotation main
plots that were all planted to rice. At the green ring growth
stage, rice following soybean had taken up slightly more
fertilizer "N and also slightly more unlabeled N, pre-
sumably mineralized from SOM, than did the continuous
rice rotation (Table 1). During the remainder of the season,
when the continuous rice plants became visibly N deficient,
their uptake of fertilizer '>N continued at a slightly slowed
rate but their uptake of unlabeled N lagged considerably
further behind that of rice following soybean, suggesting
decreased soil N mineralization in the continuous rice
rotation.

In-season degradation of soil phenols also slowed under
the continuous rice rotation. The enrichment of lignin-
derived phenols in the continuous rice soil compared to rice
following soybean became more pronounced by shortly
before harvest than early in the growing season (Fig. 5).
Recent data from the 2004-growing season confirm the
2002 trends for both phenol enrichment and crop N uptake

two crop rotations in Stuttgart, Arkansas, 2002

N pool Rotation Green ring (83 DAEY) Pre-Harvest (126 DAE)
Fertilizer Rice-soybean 59 (6) 54 (4)

Rice-rice 52 (3) 40 (4)

Difference 7 (P =0.20) 14 (P =0.04)
Soil Rice-soybean 50 (2) 101 (9)

Rice-rice 38 (6) 67 (5)

Difference 12 (P=0.27) 34 (P =0.02)

Standard errors are in parentheses.

Statistical significance (P) was determined at each sampling date through analysis of variance using a general linear model program that was appropriate

to the split-plot field design.
“Days after emergence.



3308 D.C. Olk et al. | Soil Biology & Biochemistry 38 (2006) 3303-3312

O 15 _ 15

o mmmmm Rice-soybean T

% — Continuous rice

o

= +23%,
° L P=0.004
o 10 10 -
X +14%,

2 P=0.32

5

25 5

o

o

©

c

2

£ 0 0

Early season (55 DAE)

Pre-Harvest (126 DAE)

Fig. 5. Soil content of lignin-derived phenols (sum of coumaryl, syringyl and vanillyl phenols) extracted by cupric oxide analysis for rice-soybean and
continuous rice rotations at two sampling dates during the 2002 rice growing season in Stuttgart, Arkansas. DAE is days after emergence. Percent increase
from the rice—soybean rotation to continuous rice rotation and level of significance (P) of this difference are indicated. Standard errors are indicated
above each bar. Statistical significance was determined at each sampling date through analysis of variance using a general linear model program that was

appropriate to the split-plot field design.
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Fig. 6. Preliminary SPIDER {!*N-}'*C NMR spectrum (bottom) and full
reference spectra (top) of the mobile humic acid fraction that was
extracted from an Arkansas soil under a continuous rice rotation. The
amide (NCO) peak is at 174 ppm, and the peak for anilide N (N-C,om) is
at 134 ppm (marked by arrow). Aliphatic NCH resonances of peptides are
at 55ppm.

(data not shown). Analysis by SPIDER of the MHA
fraction from the continuous rice rotation demonstrated
the presence of anilide N (Fig. 6). In summary, yield
reduction in the continuous rice rotation appears to be
caused by an N deficiency, which resulted from a decrease
in mid-season uptake of soil N. The inhibition of N
mineralization, in other words a relative accumulation
of soil N, was associated with a simultaneous accumulation
of soil phenols. Hence, similar to the Philippines studies of
intensive rice cropping, the yield reduction in the Arkansas
continuous rice system was associated with accumulation
of both soil N and phenols.

4. Taro in Hawaii, USA

Taro (Colocasia esculenta L.) is commonly grown under
paddy conditions, in which floodwaters are maintained in
the field for as many as 13 consecutive months. Paddy taro
is normally grown continuously, and fallows between crops
are of short duration. Taro is harvested for starch that
accumulates in the corm, a thickened section of the root. In
Hawaii, the statewide mean taro yield declined from 24.8 to
18.4ton/ha between 1965 and 1979 (U.S. Department of
Agriculture 1975, 1980). Long-term yield trends for
individual fields have not been recorded, and it is unknown
whether the yield decline is due to nutrient disorders, pest
damage, or other causes. Anecdotal evidence suggests an N
deficiency, despite monthly applications of N fertilizer. A
small signal for anilide N was detected by SPIDER analysis
of the MHA fraction from a farmer’s taro soil in Kauai
(Fig. 7). Future work will establish the taro yield response
to more frequent application of N fertilizer. Seasonal
patterns of crop N uptake and yields for farmers’ fields that
differ in the intensity of previous taro production will be
compared to the chemical nature of SOM extracted from
soils in those fields.

5. No-tillage in temperate climates

In temperate regions, fields are commonly tilled soon
after harvest to promote decomposition of crop residues,
which probably occurs largely in the autumn. Under no-
tillage, crop residue decomposition is delayed further into
the next growing season because the crop residues remain
at or near the soil surface. In many temperate regions,
abundant springtime precipitation saturates the soil for
extended periods of time. Consequently, the soils are
anoxic, and the underlying layers of the surface crop
residue layer can decompose to some degree under
anaerobic conditions. Yield gaps are also common with
no-tillage, especially in poorly drained soils (Iragavarapu
and Randall, 1995). In several North American studies



D.C. Olk et al. | Soil Biology & Biochemistry 38 (2006) 3303-3312 3309

T T T T T
300 250 200 150 100 50 0

ppm

Fig. 7. Preliminary SPIDER {'*N-}'*C NMR spectrum (bottom) and full
reference spectra (top) of the mobile humic acid fraction that was
extracted from a Hawaii taro soil The amide (NCO) peak is at 174 ppm,
and the peak for anilide N (N-C,.on) 18 at 134 ppm (marked by arrow).
Aliphatic NCH resonances of peptides are at 55 ppm.

Table 2
Studies in temperate climates that found an inhibition of no-tillage on
availability of soil N or immobilized fertilizer '>N.

Citation Crop/location

Carefoot et al. (1990) Wheat-barley/Alberta

Clay et al. (1990) Corn/Minnesota
Kitur et al. (1984) Corn/Kentucky
Meisinger et al. (1985) Corn/Maryland
Rice et al. (1986) Corn/Kentucky

involving different no-tilled crops, '*N-enriched fertilizer
was added to distinguish fertilizer N from mineralized soil
N (Table 2). Uptake or mineralization of unlabeled N,
presumably mineralized from SOM, was less with no-
tillage than with conventional tillage, while crop uptake of
fertilizer N was less impaired by no-tillage. At some
locations, decreased availability of soil N was associated
with a loss of crop yield. In other studies lacking labeled
fertilizer, symptoms of N deficiency were more evident in
no-tilled crops than with conventional tillage (Thomas et
al., 1973; Bandel et al., 1975). To date the effects of no-
tillage on the chemical nature of SOM have received little
attention. We are planning research that will investigate
whether phenolic lignin residues accumulate under no-
tillage and whether they covalently bind soil N, causing a
decrease in N mineralization. Alternatively, the yield gap
that is associated with no-tillage might be caused partly or
entirely by lower soil temperature, temporary biological N
immobilization (Balesdent et al., 2000), or mechanical

impedance, and in poorly drained soils by inadequate
aeration for nutrient uptake, allelopathy, pathogens, or
poor seedling establishment (Cannell and Hawes, 1994;
Iragavarapu and Randall, 1995).

6. Discussion

In this review, cropping systems in which soil remains
anaerobic for substantial periods of time were found to
share a common trend of yield declines or yield gaps. The
yield problems were frequently associated with insufficient
crop uptake of mineralized soil N, even when total soil N
content remained constant or increased and crop uptake of
fertilizer N was less affected by the submerged conditions.
A fundamental distinction of anaerobic agroecosystems
from aerobic agroecosystems is the rapid loss of inorganic
N forms from the soil, due primarily to ammonia
volatilization. Consequently, provision of a steady N
supply to the crop is more difficult in anaerobic soils,
and any decrease in SOM quality that reduces soil N
mineralization is more likely to negatively affect crop
N uptake and yields than in aerated soils, where inorganic
N forms are more stable during the growing season.
Maintenance of a steady and sufficient N supply is
especially pivotal at high yield targets, when crop growth
is more likely to be limited primarily by N.

A frequent characteristic of these anaerobic agroecosys-
tems is the accumulation of phenolic lignin residues in the
SOM. Although phenols are known to covalently bind
organic N in laboratory studies, demonstrating the
occurrence of this chemical stabilization under field
conditions has been a challenging first step toward
resolving the N deficiencies and yield decreases. With
development of the SPIDER technique, it is now possible
to measure the abundance of lignin residue-bound N in
SOM that formed under field conditions. The new issue is
whether the chemical stabilization affects agronomically
significant quantities of N and is primarily responsible for
the yield decreases in the anaerobic agroecosystems.

6.1. Agronomic significance of covalently bound N

If strongly bound nutrient forms such as anilide N were
never mineralized, then total soil N would increase
indefinitely as long as conditions favor the chemical
binding of N with lignin residues. In long-term field
experiments of lowland rice in the Philippines, total soil N
increased during the initial years of intensive cropping, but
it eventually stabilized at elevated levels (De Datta et al.,
1988), suggesting the resumption of significant N miner-
alization. Future research will explore the hypothesis that
covalent binding of N into stable forms such as anilide
slows the rate of N mineralization while also extending its
duration into late season crop growth stages and the
subsequent fallow period. As long as the field remains
flooded, mineralization of covalently bound N may by
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itself be too slow to meet peak crop N demand at the onset
of crop reproductive growth in mid-season.

Whether the accumulation of phenolic lignin residues
and their binding with soil N leads to yield losses can
depend on several factors. First, the amount of bound N
must represent a sizable proportion of the labile N pool.
We hypothesize that of the organic N that is covalently
bound by lignin residues during a cropping period, much is
mineralized at late crop growth stages or during the fallow,
so that the total amount of covalently bound N increased
only gradually during consecutive seasons of continuous
cropping. After sufficient number of cropping periods it
becomes a significant proportion of total N, and only then
will its delayed mineralization significantly inhibit soil N
supply and grain yield. The length of time until the onset of
yield loss can depend on soil type, e.g. the amount of SOM
in the soil. For example, the yield decline of continuous rice
experiments in the Philippines became apparent only after
several consecutive rice crops (Cassman et al., 1995), and
the soils were rich in SOM. In the low C rice soils of
Arkansas, a yield gap was established near the outset of
continuous rice cropping (Anders et al., 2004).

A second consideration is that the chemical stabilization
causes only a partial blockage of the soil N supply. Even
after 30y of continuous double- or triple-cropping and a
sizable yield decline, the soils in the Philippine long-term
field experiments still supply appreciable quantities of N to
the crop. For yield to be affected by a partial blockage of
the soil N supply, no factor other than N can constrain
yield, including pests, low solar radiation, poor crop
establishment, drought, or deficiencies or toxicities of
other nutrients. Nitrogen fertilizer must be applied either
at inadequate rates or in a timing that is dissynchronous
with crop N demand. For several long-term field experi-
ments in tropical Asia in which the initial yields of
continuous lowland rice were well below the yield
potentials, yield declines were less striking than for
experiments in which initial yield levels approached
the yield potential (Dawe et al., 2000), suggesting that the
initially low yields may have been constrained from the
outset by factors unrelated to N supply. Farmers’ yields are
normally well below the yield potentials, due to any or all
of the constraints listed above. Therefore we cannot
estimate the impact of covalently bound N on total rice
production in Asia nor the benefit that could be gained
through improved availability of soil N.

Third, N mineralization can be affected by the general
chemical nature of SOM, not merely its enrichment with
phenols. In extremely young SOM, e.g., abundant levels of
labile N appear to enable high rates of N mineralization
despite the presence of phenolic lignin residues. The small
MHA fraction of the PRRI soil (Fig. 3) was highly
enriched in young, labile compounds such as nitrogenous
compounds (Olk et al., 1998) and was more easily
mineralized than was the MHA of the IRRI soil (Nguyen
et al., 2004). Nevertheless, CP/MAS '>C NMR spectra
showed comparable phenol peaks for the MHA from both

soils (Olk et al., 1998). In an extremely young fraction such
as the MHA of the PRRI soil, the lignin might not have yet
been degraded sufficiently to promote its chemical binding
with soil organic N.

6.2. Mitigation options

In anaerobic agroecosystems where covalent binding by
lignin residues is shown to inhibit N supply and impair
crop yield trends, an obvious option for field management
is to introduce soil aeration by growing upland crops. This
option is not economically viable, though, for all farmers.
A more widely applicable approach is to apply N fertilizer
several times during the growing season and at rates that
synchronize N supply with crop N demand. This approach
compensates for the decreased availability of soil N by
increasing the availability of fertilizer N (Cassman et al.,
1995). Yield losses can be reversed but at greater costs of
fertilizer and labor.

Another approach that may alleviate the yield constraint
is to modify key management practices of the anaerobic
cropping so that phenolic lignin residues do not accumu-
late in soil. Evidence from the Philippines study indicated
that anaerobic decomposition of crop residues is the key
feature that promotes accumulation of lignin residues in
anaerobic soils, and this is consistent with the fact that crop
residues are the main parent material of new SOM. Further
field evaluation of aerobic decomposition is needed in a
wider range of field conditions to determine whether
aerobic decomposition effectively promotes formation of
phenol-depleted SOM so that in-season mineralization of
soil N is unimpeded even during flooded conditions.

Aerobic decomposition could be accomplished by
draining the field at any of several crop growth stages.
Drainage early in the growing season would coincide with
much of the crop residue decomposition. Rice farmers in
Japan typically drain their fields during later crop growth
stages because of the visible benefits to crop N uptake.
Intermittent drainage is compatible with proposed solu-
tions for emerging concerns of water availability in tropical
Asia (Bouman et al., 2002) and Arkansas rice lands.
Alternatively, in the Philippines field evaluation of aerobic
decomposition, crop residues were incorporated at the
beginning of the fallow period, instead of at its end.

In situations where covalent binding of soil N does not
threaten yield trends, its prevention might still provide
agronomic benefits, because covalent binding would
appear to result in less efficient crop uptake of soil N.
Avoidance of covalent binding promises timelier miner-
alization of soil N, enabling a reduction in rates of N
fertilizer application while maintaining yield targets.
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