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Environmental models typically require a complete time series of meteorological inputs, thus recon-
structing missing data is a key issue in the functionality of such physical models. The objective of this
work was to develop a new technique to reconstruct missing daily precipitation data in the central part
of Chesapeake Bay Watershed using a two-step reconstruction method (RT + ANN) that employed artifi-
cial neural networks (ANN) with inputs only from stations that were found to be influential in bootstrap
applications of regression trees (RT). The predictive performance of RT + ANN was also compared with
those of stand-alone RT and ANN methods. In addition to statistical comparisons of the reconstructed
precipitation time series, these resulting data in the Soil and Water Assessment Tool (SWAT) watershed
model were used to perform an error propagation analysis in streamflow simulations. The RT provided a
transparent visual representation of the similarity between the stations in their daily precipitation time
series. Seven years of data from 39 weather stations showed that both RT and ANN provided the recon-
struction accuracy comparable to (or better than) published earlier results of precipitation reconstruc-
tion. The RT + ANN method significantly improved accuracy and was more robust when compared to
RT or ANN methods. This method also provided more accurate and robust SWAT streamflow predictions
with reconstructed precipitation.

� 2010 Elsevier B.V. All rights reserved.
1. Introduction

Environmental models typically require a complete time series
of meteorological inputs, thus reconstructing missing data is a key
issue in the functionality of such physical models. Weather sta-
tions in the watershed sometimes malfunction during the monitor-
ing period. Missing data has been a problem and therefore have to
be estimated for models to function. Estimation of missing data,
also known as infilling (Coulibaly and Evora, 2007), reconstruction
(Abebe et al., 2000), meteorological data series completion
(Ramos-Calzado et al., 2008), or imputation of meteorological data
(Schneider, 2001), has been a topic of interest in many hydrologic
and other environmental modeling studies.

The estimation of missing meteorological data is typically based
on data for the same location on days when data is available or on
data from neighboring stations for the same day. When data from
the same station is used, the reconstruction methods include a
simple interpolation between available data or their derivatives
ll rights reserved.
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(Lowry, 1972), using a mean value of the data series (Linacre,
1992), or using data from several days before and several days after
the date of missing data in a non-linear regression to fill the 1-day
data gap (Acock and Pachepsky, 2000). Observations from neigh-
boring stations are used in missing data reconstruction much more
often. It has been proposed to use geometrical distances to the sta-
tions and to employ the data from the closest station (Xia et al.,
1999), the arithmetic averaging of data from several neighboring
stations (Willmott et al., 1994), and the inverse distance weighting
method (Teegavarapua and Chandramouli, 2005). Statistical inter-
polation methods, such as kriging (Jeffrey et al., 2001) or spatio-
temporal interpolation (Franklin et al., 2008) are typically applied
in the estimation. Ramos-Calzado et al. (2008) infilled missing
monthly precipitation data by using linear regressions and esti-
mating the missing value as a median of the distribution of the
regression outputs. In addition to using statistical similarity be-
tween stations to define weights for spatial interpolation, Young
(1992) and Filippini et al. (1994) proposed to apply spatial interpo-
lation using correlations between time series of stations to assign
weights.

The accuracy of the reconstruction differs among weather vari-
ables and has been the lowest for precipitation. This is due to the
highly stochastic nature of precipitation being relatively compared
to other climatic variables such as temperature, which show a
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lower degree of spatial and temporal variability. Application of the
interpolation within time series to highly variable meteorological
data, such as precipitation, was limited (Ramos-Calzado et al.,
2008). Reconstruction of the missing climatological data using
neighboring stations has also been the least successful for precip-
itation (Xia et al., 1999). This happens probably because the
complex effects of topography and climatology on spatial distribu-
tion of precipitation are not well known and difficult to incorporate
into the precipitation imputation algorithms (Daly et al., 1994;
Thornton et al., 1997; Xia et al., 1999). Artificial neural networks
(ANNs) as the non-linear statistical data modeling tools capable
to model complex relationships between inputs and outputs have
recently been used to reconstruct missing weather data (Kuligow-
ski and Barros, 1998; Michaelides et al., 2007). Coulibaly and Evora
(2007) compared six different types of artificial neural networks by
their applicability for infilling missing daily total precipitation
values.

The trend in missing data reconstruction has been to derive the
missing data estimates from a time series that exhibit some simi-
larity with the time series in question. The preliminary grouping
with cluster analysis (Garcia et al., 2006) and the nearest neighbors
approach (Siripitayananon et al., 2003) have been employed to se-
lect the best predictors of missing rainfall and wind speed data,
respectively. Regression trees have been shown to be an efficient
technique for establishing the transparent and explicable set of
the best predictors, and as such have been widely employed in
atmospheric studies (e.g., Burrows et al., 1995). Faucher et al.
(1999) successfully used regression trees to select predictors to
estimate marine winds.

The interest in this study in missing data reconstruction
stemmed from the need of applying Soil and Water Assessment
Tool (SWAT, Santhi et al., 2006; Krysanova and Arnold, 2008) to
evaluate the effect of landuse on bacterial water quality in a small
agricultural watershed in Southern Pennsylvania (Kim et al., 2010).
SWAT, the watershed-scale physically-based model, has been
developed to simulate the fate and transport of pollutants coming
from nonpoint sources (Neitsch et al., 2005).

The objective of this work was to develop a precipitation data
reconstruction technique that would combine the advantages of
regression tree and artificial neural network. The hypothesis was
that reconstruction of missing precipitation data will be more effi-
cient if the influential input variables are determined by using the
regression tree technique and used in artificial neural networks.
The reconstruction methods were compared using bootstraps to
obtain statistical distributions of the performance statistics – the
correlation coefficient and the root mean square error. The recon-
struction methods were also evaluated by comparing results of
SWAT streamflow simulations with the reconstructed precipitation
data.
2. Materials and methods

2.1. Study area and precipitation data

The study area is located in the central part of Chesapeake Bay
Watershed between 38�530–40�410N and 76�430–79�080W. It in-
cludes the Appalachian Mountains in the western part and plain
urbanized area in the eastern part, and crossed by the Potomac
and Susquehanna Rivers. Daily precipitation data were down-
loaded from the US National Climatic Data Center’s database
(NCDC, 2008) for 39 weather stations within the study area for
7 years from January 1, 2001 to December 31, 2007. For the preli-
minary, percentages of valid daily precipitation data (%) and aver-
age annual precipitation (mm) for each station during the 7 years
were estimated. In addition, the average probability of non-zero
daily precipitation (%) was calculated by examining the number
of days of precipitation per year and taking the average of these an-
nual proportions over the study period.

All weather stations accumulated daily values over a 24-h per-
iod, but the ending integration times differed among stations (Ta-
ble 1). In order to ensure data compatibility, the daily precipitation
data of each weather station were corrected based on the ending
integration time (td, unit: hour):

P0d ¼ Pd �
td

24

� �
þ Pdþ1 � 1� tdþ1

24

� �
ð1Þ

where P0d was the corrected daily precipitation on day d, and Pd and
Pd+1 were the reported daily precipitations on days d and d + 1,
respectively. Eq. (1) showed that no correction was applied if both
td and td+1 were equal to 24 h. The correction was tested with data
from stations that reported hourly data. The hourly precipitation
data were available for only 10 weather stations (Table 1).

2.2. Data reconstruction methods

2.2.1. Outline of the reconstruction method application and
comparison

Application and comparison of the three methods in this work is
illustrated in Fig. 1. Daily precipitation data from all but target
weather stations are used as inputs in all three methods. The daily
precipitation at the target weather station is the output from all
three methods.

The application of the artificial neural network (ANN) as shown
in panel (a) in Fig. 1 is straightforward. The application of regres-
sion tree (RT) is also straightforward (panel (b) in Fig. 1). As shown
in this panel, the RT works not only as a predictive tool but also as
the classifier of inputs by their relative influence. This feature of RT
is used in the proposed method as illustrated in the panel (c) in
Fig. 1. RT is used only as the input classifier. Only data from the
most influential weather stations are used as inputs for the ANN
to generate predictions for the target station.

The bootstrap resampling method was used for (1) selection of
the most influential neighboring stations and (2) statistical evalu-
ation of the reconstruction accuracy for with all three methods. De-
tails on applied ANN, RT, their proposed combination RT + ANN,
and resampling are presented below in Sections 2.2.2-2.3.1.

2.2.2. Artificial neural network (ANN) modeling
The feed-forward backpropagation network implementation in

Matlab was used in this study (MatlabNeural Network Toolbox 6,
Demuth et al., 2008). The feed-forward network had one hidden
layer where activation function were logistic sigmoid (‘logsig’ in
Matlab), followed by an output layer where activation function
was linear (‘poslin’ in Matlab) (Demuth et al., 2008). Therefore
the equation for the threshold unit output was:

y ¼ poslinðW2 logsigðW1xþ b1Þ½ � þ b2Þ ð2Þ

where x is the input data vector, y is the target value, W1 and W2 are
the weight matrices for the hidden and the output layer, respec-
tively, and b1 and b2 are the bias vectors for the hidden and the out-
put layer, respectively. The number of neurons in the hidden layer
was defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nin � nout
p

where nin and nout are the number of input
and output variables, respectively (Maren et al., 1990). The value of
nout was one, and the value of nin was the total number of stations
less one in the case of ANN application shown in panel (a) in
Fig. 1. In the case of ANN application shown in the panel (c) in
Fig. 1, the value of nin was the number of the most influential
stations resulted from RT. The ANNs were trained using the
Levenberg–Marquardt algorithm (‘trainlm’ in Matlab) to minimize
root mean square error between the actual and simulated daily



Table 1
Selected data from the weather stations used in this study.

Station name Station
symbol

Station # Latitude
(�)

Longitude
(�)

Elevation
(m)

Percentage
of valid daily
precipitation
data (%)a

Average
annual
precipitation
(mm)

Average
probability
of non-zero daily
precipitation (%)

Ending integration
time fordaily
precipitation
record (h)

Cumberland 2 NW1 182282 39.65 �78.75 222.5 99.8 (1) 983.4 59.7 7, 18c

Frostburg 2 NW2 183415 39.67 �78.93 661.4 99.5 (5) 1126.6 60.0 7
Altoona 3W NW3 360140 40.50 �78.47 402.3 98.7 (2) 1121.3 46.3 9, 24c

Buckstown 1 SE NW4 361073 40.07 �78.85 749.8 98.7 (8) 951.6 64.8 7
Dunlo NW5 362298b 40.28 �78.72 719.3 98.5 (30) 1107.4 59.6 7
Ebensburg Sewage Plt NW6 362470 40.47 �78.73 591.3 98.6 (30) 1191.1 67.0 8, 16c

Everett NW7 362721b 40.02 �78.37 304.8 99.8 (1) 982.4 54.2 7,9c

Laurel Summit NW8 364839 40.17 �79.13 832.1 98.6 (31) 1450.8 64.6 6,7c

Meyersdale 2 SSW NW9 365686 39.78 �79.03 609.6 98.7 (31) 1027.1 61.7 7
Raystown Lake 2 NW10 367312b 40.38 �78.08 304.8 98.8 (3) 979.9 54.6 8
Saxton 1w NW11 367846 40.12 �78.15 253.0 99.8 (1) 1054.2 51.1 7
Shawnee Sp NW12 368011 40.03 �78.63 388.6 99.4 (2) 990.6 57.0 8
Somerset NW13 368244 40.00 �79.08 640.1 99.5 (4) 1199.7 68.9 8
Tyrone NW14 369022b 40.67 �78.22 271.3 98.6 (31) 1087.8 55.9 7
Williamsburg NW15 369714 40.47 �78.20 257.6 100.0 (1) 1046.9 56.6 7
Wolfsburg NW16 369823 40.05 �78.53 361.2 100.0 (1) 998.4 56.8 7
Millers 4 NE NE1 185934b 39.72 �76.80 262.1 100.0 (0) 1164.8 54.8 18
Biglerville NE2 360656 39.93 �77.25 219.5 99.7 (2) 1095.6 51.4 7
Chambersburg 1 ESE NE3 361354 39.93 �77.63 195.1 100.0 (1) 1101.6 48.9 9,21c

Dehart Dam NE4 362071 40.47 �76.87 163.7 99.6 (3) 1257.9 52.4 7
Hanover 4 SW NE5 363665 39.77 �77.03 170.1 100.0 (1) 1108.1 52.1 8
Harrisburg 1 NE NE6 363698 40.28 �76.87 128.0 99.8 (2) 1134.1 51.2 7
Lewistown NE7 364992 40.58 �77.57 140.2 99.8 (1) 1066.0 52.9 8, 20c

Middletown Harrisburg
International Airp.

NE8 365703b 40.20 �76.77 95.1 99.9 (1) 1089.7 34.3 24

Pine Grove Furnace NE9 366955 40.03 �77.30 269.7 98.3 (3) 1113.7 50.4 8
Shippensburg NE10 368073 40.05 �77.52 207.3 100.0 (1) 1054.7 33.0 24
South Mountain NE11 368308 39.85 �77.48 463.3 99.9 (1) 1165.0 52.2 7
Spring Grove NE12 368379 39.87 �76.87 137.2 99.9 (1) 1096.2 49.5 8
York 3 Ssw Pump Station NE13 369933 39.92 �76.75 118.9 100.0 (1) 1153.5 51.8 17,24c

York Haven NE14 369950 40.12 �76.72 94.5 98.3 (31) 1087.5 49.5 7
Potomac Fltr Plt S1 187272 39.03 �77.25 82.3 99.1 (2) 1108.1 48.4 8
Front Royal S2 443229 38.90 �78.18 283.5 99.0 (4) 1080.0 46.4 7, 24c

Star Tannery S3 448046b 39.08 �78.45 289.6 99.3 (7) 942.9 38.8 7
Sterling (res) S4 448084 38.98 �77.48 85.3 100.0 (0) 1155.1 50.6 7
Washington Dc Dulles Airp. S5 448903b 38.93 �77.47 88.4 99.8 (3) 1068.2 32.8 24
Winchester S6 449181 39.18 �78.15 219.5 99.8 (1) 1021.3 51.7 7
Winchester 7 SE S7 449186 39.18 �78.12 207.3 98.5 (31) 990.3 48.7 7,8c

Martinsburg E WvRgnlAirp. S8 465707b 39.40 �77.98 162.8 100.0 (1) 974.3 33.6 24
Romney 1 SW S9 467730b 39.33 �78.77 219.5 98.7 (2) 934.6 50.2 7,8c

a Number in parenthesis is the longest number of consecutive missing days.
b Hourly precipitation data are available.
c Ending integration times varied between January 1, 2001 and December31, 2007.
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precipitation at the target weather station. Initial weights matrices
and bias vectors were randomly generated from a uniform distribu-
tion (Demuth et al., 2008).

2.2.3. Regression tree (RT) modeling
The regression tree (RT) modeling can be viewed as an explor-

atory technique based on uncovering structure in data (Clark and
Pregibon, 1991). The RT model implemented in this work was
coded in Matlab and tested following Rawls and Pachepsky
(2002) work where the RT algorithm was described in detail and
a test example was given. The original data were partitioned first
into two groups, then into four groups, and so forth, providing
groups as homogeneous as possible at each level of partitioning.
The homogeneity of a dataset was measured by its deviance D, de-
scribed by the sum of squared differences between the individual
response values (yi) and average response values ð�yÞ over the
dataset:

D ¼
X

i

ðyi � �yÞ2 ð3Þ

Non-homogeneity minimization was achieved by maximizing DD:

DD ¼ D� Ds1 � Ds2 ð4Þ
where D equals the deviance of the dataset before partition, and Ds1

and Ds2 are the deviances of the two subsets formed by the parti-
tion. The subsets were further partitioned into two until further
partitioning did not provide positive values of DD or the total num-
ber of partitions became greater than 10. The average value of the
response variable for the terminal partitions served as the regres-
sion tree-predicted value. For each station, the neighboring stations
that provided the partitions were recorded as the influential neigh-
boring stations (Fig. 1, panels (b) and (c)). The neighboring station
that provided the first partition of the target station was regarded
as the most influential neighboring station.
2.2.4. Artificial neural network after regression tree (RT + ANN)
A two-step method, RT + ANN, which consisted of determining

the influential predictors with RT and reconstructing the precipita-
tion with ANN using only influential predictors as inputs was used
in this work as shown in Fig. 1, panel (c). Properties of RT and ANN
were the same as their separate applications (Fig. 1, panels (a) and
(b)). This method is conceptually similar to the approach used by
Faucher et al. (1999) to impute data on marine winds. It was
hypothesized that the RT + ANN data reconstruction would be
more robust than the ANN-only or RT-only reconstruction, and this
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hidden layer (RT + ANN).
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hypothesis was tested by evaluating the uncertainty of the data
reconstruction as described in the following section.

2.3. Evaluation of the reconstruction methods

2.3.1. Bootstrap evaluation of the reconstruction accuracy
The accuracy of the reconstruction was characterized with the

Pearson correlation coefficient (r) and root mean square error
(RMSE). The bootstrap method was applied to evaluate the uncer-
tainty in values of these accuracy measures. For the bootstrapping
(Good, 1999), the original dataset was randomly sampled with a
replacement, and 90% and 10% of the bootstrapped dataset were
used for training and testing, respectively, in the application of
reconstruction methods. Once the training was finished, the
trained model was applied to the testing dataset, and the accuracy
of the reconstruction was assessed in terms of the correlation coef-
ficient r and RMSE. The bootstrapping was repeated 1000 times in
order to estimate probability distribution functions of r and RMSE.

The probability distribution functions of r and RMSE were
compared using the Kolmogorov–Smirnov (KS) test to assess
the significance of differences in the performances of the three
reconstruction methods. The two-sample KS test subroutine
(‘kstest2.m’) of Matlab statistics toolbox (MathWorks, 2009) was
used to compute the KS statistic between the performances of data
reconstruction methods.

Bootstrap results were also used to develop the complete list of
influential stations. All stations that were recorded as influential in
any of bootstrap runs were included in the list.

2.3.2. Functional evaluation of the reconstruction methods
Since the ultimate goal of the precipitation data reconstruction

was to use the reconstructed precipitation data in the SWAT mod-
el, the reconstruction error propagation in SWAT was investigated.
The 1-year (2007) precipitation data time series were generated for
three stations with the three reconstruction methods introduced
above. SWAT simulations of streamflow were conducted using
both the generated precipitation data and the observed precipita-
tion data for the same date.

The SWAT model was used within the BASINS environmental
analysis system (USEPA, 2001). For three weather stations, the
smallest watersheds including these weather stations were delin-
eated with the ‘Automatic Watershed Delineation’ tool in BASINS
using the Digital Elevation Model (DEM). The land-use [Land Use/
Land Cover (LULC) data of United States Geological Survey (USGS)]
and soil [State Soil Geographic (STATSGO) database of United
States Department of Agriculture/Natural Resources Conservation
Service (USDA/NRCS)] maps were employed by ‘Land Use, Soil Clas-
sification and Overlay’ tool in BASINS. All hydraulic input parame-
ters, such as the main channel Manning’s roughness coefficient,
‘‘n”, rainfall/runoff/routing option, potential evapotranspiration
method, channel water routing method, surface runoff lag coeffi-
cient, reach evaporation adjustment factor, were set to default val-
ues in SWAT.

The daily streamflow values at the outlets of each subwatershed
simulated with the actual and the reconstructed precipitation were
compared in terms of the r.
3. Results and discussion

3.1. Preliminary precipitation data analysis

The 39 weather stations within the study area had mostly scat-
tered missing precipitation data for 7 years from 2001 to 2007 ex-
cept stations NW5, NW6, NW8, NW9, NW14, NE14, and S7 having
a month or more of consecutive missing daily values (Table 1).
Overall, more than 98% of valid (non-missing) daily precipitation
data was available. Over the 7-year observation period, the average
annual precipitation varied from 934 to 1450 mm across the study
area. The average annual probability of a non-zero daily precipita-
tion varied from 33% to 69% (Table 1).

The stations had different ending integration times between
2001 and 2007 (Table 1); some accumulated daily data from
7 am to the next 7 am, some from 8 am to the next 8 am, some
from 6 pm to the next 6 pm, and some from 12 am to 12 am. As ex-
pected, daily precipitation data that were accumulated by the end-
ing of the integration time other than midnight did not correlate
well with the daily precipitation computed based on the hourly
precipitation integration over 24 h counting from midnight. The
longer the time period between the ending of the integration time



Fig. 2. Correlations between reported daily precipitation (D) and integrated ‘midnight-to-midnight’ hourly precipitation (MM) ( : D – MM) and between daily precipitation
corrected by Eq. (1) (C) and MM ( : C – MM), and ending integration times of D ( ).
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and midnight, the worse was the correlation (Fig. 2). Data in Fig. 2
shows the correction according to Eq. (1) had substantially im-
proved the daily precipitation data quality. The corrected daily pre-
cipitation dataset (39 stations and 7 years) was sorted by calendar
date, and data were removed for the days when any of the stations
had a missing value to evaluate the reconstruction methods. Final-
ly, a total of 1816 days were available, and thus the randomly cho-
Fig. 3. Similarity between precipitation time series recorded at weather stations in the st
tree (RT) bootstrap when the station at the arrow nock was the most influential neighbor
correlation coefficient (r) between actual and reconstructed with RT daily precipitation.
sen 1634-days data (90%) and 182-days data (10%) were used for
training and testing, respectively, in each bootstrap run.

3.2. Influential neighbors from the regression tree analysis

Fig. 3 shows the most influential neighbors for each station
found from the RT analysis. The thickness of arrows in this figure
udy area; the thickness of arrows indicates the percentage of times in the regression
for the station at the arrow head. The fill colors in station symbols show the Pearson



NW

0 20 40 60 80

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y 
(%

)

50

70

90

99

99.9

99.99

NW1 
NW2 
NW3 
NW4 
NW5 
NW6 
NW7 
NW8 
NW9 
NW10 
NW11 
NW12 
NW13 
NW14 
NW15 
NW16 

NE

Daily precipitation (mm)
0 20 40 60 80

NE1 
NE2 
NE3 
NE4 
NE5 
NE6 
NE7 
NE8 
NE9 
NE10 
NE11 
NE12 
NE13 
NE14 

S

0 20 40 60 80 100

S1
S2
S3
S4
S5
S6
S7
S8

Fig. 4. Cumulative probability distribution functions of the corrected daily precipitation at the weather stations in the study area.

310 J.-W. Kim, Y.A. Pachepsky / Journal of Hydrology 394 (2010) 305–314
shows the percentage of bootstrap runs in which the station at the
arrow nock has been the most influential in RT for the station at
the arrow head, i.e. has provided the first split in the RT. Data in
Fig. 3 shows that precipitation time series at weather stations in
the Appalachian Mountains were dissimilar to the time series ob-
served at the coastal plain in the eastern part of the study area.
Weather stations to the south of Potomac River formed a separate
group. Accordingly, the study area was divided into three subareas
– mountainous (NW, northwest), coastal plain (NE, northeast), and
south (S). The cumulative probability distributions of daily precip-
itation in the three subareas are shown in Fig. 4. The average an-
nual precipitation in the NE subarea (1120.6 mm) was similar to
that in the NW subarea (1081.2 mm) (p > 0.2), but larger than that
in S subarea (1030.5 mm) (p < 0.009). The average probability of
non-zero daily precipitation was higher (p < 0.0003) in the moun-
tainous NW subarea than in rather plain NE and S subareas.

The most influential stations were the closest ones in 21 of 39
cases. In the mountainous NW subarea, the selection of the most
influential stations reflected the landscape position. For example,
the station NW5 was the most influential one for station NW8
which was located at a similar elevation. The station NW13 was
closer to station NW8 than the station NW5, but was located in a
valley between ridges and was not influential for the station
NW8. Likewise, the station NW4 had the most influence on the sta-
tion NW9 rather than on the station NW12; the latter was closer to
station NW4 but was located in a piedmont valley. These results
concurred with earlier observations of the effect of the landscape
position on the precipitation distributions in mountainous areas
(e.g., Daly et al., 1994; Sevruk, 1997).

In the NE subarea, the selection of the most influential station
was the result of the apparent predominant precipitation connec-
tivity in the East–West direction. For example, the most influential
neighbor of the station NE8 was the station NE10 rather than two
very close stations NE6 and NE14. The station NE2 had the station
NE11 as the most influential neighbor but not the closer station
NE9. The station NE5 rather than the station NE13 was selected
as the most influential neighbor for the station NE12.

In the S subarea, most of stations had the closest station as their
most influential neighbors, station S8 being an exemption. This
station along with station S5 had a very low number of rainy days
(Table 1) and that may explain selection of the S5 as the influential
neighbor.

Median values of r between RT predictions and measured daily
precipitation were in the range from 0.8 to 1.0 for 33 of 39 stations
(Fig. 3). Some of poorer correlations could be explained by the fine-
scale variation in the probability of non-zero daily precipitation
which was quite substantial in the study area. For example, the dis-
tance between stations NE8 and NE14 was only 10 km, and yet the
average probabilities of non-zero daily precipitation at NE8 and
NE14 were 34% and 50%, respectively (Table 1). The station NW3
had the average probability of non-zero precipitation equal to
46.3% whereas all its neighbors had probability above 55%. The
station S8 was relatively far from other weather stations except
stations S6 and S7. The average probability of non-zero precipita-
tion at the station S8 (33.6%) was significantly different from those
of stations S6 (51.7%) and S7 (48.7%), but similar to that of the sta-
tion S5 (32.8%) which, as a result, served as the most influential
neighbor of the station S8 (Fig. 3). The poor performance of the pre-
cipitation reconstruction for the station S8 was presumably due to
the generally low correlation with its closest neighbors and its
remoteness from other weather stations. In case of the station
NE7, the low r values were probably related to the large distance
to its neighbors. Overall, most weather stations with low r values
were never influential for any other weather stations, and were
influenced by more than one neighbor. One more reason for low
reconstruction accuracy could be the shape of the cumulative
probability distribution of daily precipitation. For example, the
station NW3 had substantially different cumulative probability
distribution as compared with all other stations in the subarea
(Fig. 4-NW).

3.3. Performance of reconstruction methods

The performance of the three methods, i.e. RT, ANN, and
RT + ANN, in reconstruction of missing precipitation data is
compared in terms of r and RMSE using the KS probability values
in Table 2. The median values and the 90% confidence intervals
of r and RMSE for stations grouped by subareas are shown in



Table 2
Number of influential stations, the median Pearson correlation coefficient (r), the median root mean square error (RMSE, mm), and the Kolmogorov–Smirnov (KS) test
probabilities that there is no difference between the distributions of r (KS_r) and distributions of RMSE (KS_RMSE) for three precipitation reconstruction methods – regression tree
(RT), artificial neural network (ANN), and ANN with inputs selected after RT analysis (RT + ANN). Statistics were computed from 1000 bootstrap runs for each station.

Station # of influ.
Stns.

Median r KS_r (p-value) Median RMSE (mm) KS_RMSE (p-value)

RT ANN RT + ANN RT vs.
ANN

RT vs.
RT + ANN

ANN vs.
RT + ANN

RT ANN RT + ANN RT vs.
ANN

RT vs.
RT + ANN

ANN vs.
RT + ANN

NW1 1 0.703 0.708 0.748 0.000 0.000 0.000 3.66 3.72 3.39 0.032 0.000 0.000
NW2 1 0.873 0.879 0.891 0.000 0.000 0.000 2.81 2.73 2.55 0.000 0.000 0.000
NW3 3 0.750 0.739 0.822 0.006 0.000 0.000 4.58 4.80 3.87 0.001 0.000 0.000
NW4 2 0.840 0.857 0.860 0.000 0.000 0.003 2.69 2.55 2.45 0.000 0.000 0.000
NW5 2 0.822 0.841 0.862 0.000 0.000 0.000 2.95 2.81 2.59 0.000 0.000 0.000
NW6 2 0.833 0.854 0.875 0.000 0.000 0.000 2.95 2.81 2.55 0.000 0.000 0.000
NW7 1 0.887 0.843 0.914 0.000 0.000 0.000 2.37 2.98 2.08 0.000 0.000 0.000
NW8 2 0.823 0.821 0.843 0.000 0.000 0.000 3.52 3.49 3.30 0.003 0.000 0.000
NW9 1 0.874 0.879 0.895 0.000 0.000 0.000 2.61 2.51 2.32 0.007 0.000 0.000
NW10 1 0.871 0.887 0.907 0.000 0.000 0.000 2.49 2.40 2.18 0.001 0.000 0.000
NW11 2 0.837 0.806 0.866 0.000 0.000 0.000 2.89 3.29 2.69 0.000 0.000 0.000
NW12 1 0.889 0.882 0.919 0.000 0.000 0.000 2.35 2.44 2.03 0.016 0.000 0.000
NW13 2 0.869 0.875 0.885 0.000 0.000 0.000 2.71 2.65 2.48 0.001 0.000 0.000
NW14 1 0.848 0.847 0.874 0.000 0.000 0.000 3.03 3.11 2.73 0.019 0.000 0.000
NW15 2 0.886 0.902 0.925 0.000 0.000 0.000 2.49 2.36 1.99 0.000 0.000 0.000
NW16 2 0.920 0.928 0.952 0.000 0.000 0.000 1.93 1.84 1.51 0.000 0.000 0.000
NE1 1 0.847 0.811 0.868 0.000 0.000 0.000 3.58 4.19 3.45 0.000 0.000 0.000
NE2 3 0.863 0.877 0.922 0.000 0.000 0.000 3.08 3.09 2.36 0.000 0.000 0.000
NE3 1 0.737 0.697 0.784 0.000 0.000 0.000 5.02 5.36 4.50 0.000 0.000 0.000
NE4 1 0.861 0.824 0.874 0.000 0.001 0.000 3.50 4.04 3.31 0.000 0.000 0.000
NE5 1 0.876 0.874 0.891 0.001 0.000 0.000 3.07 3.20 3.00 0.000 0.000 0.000
NE6 2 0.896 0.868 0.906 0.000 0.000 0.000 2.63 2.98 2.52 0.000 0.000 0.000
NE7 3 0.736 0.711 0.793 0.000 0.000 0.000 3.85 4.12 3.41 0.000 0.000 0.000
NE8 1 0.808 0.786 0.810 0.000 0.214 0.000 4.26 4.63 4.10 0.000 0.001 0.000
NE9 1 0.849 0.844 0.868 0.001 0.000 0.000 3.25 3.34 3.04 0.000 0.000 0.000
NE10 1 0.851 0.781 0.810 0.000 0.000 0.000 3.77 4.52 4.16 0.000 0.000 0.000
NE11 1 0.870 0.880 0.877 0.000 0.000 0.565 3.15 3.04 3.01 0.002 0.000 0.004
NE12 1 0.879 0.868 0.901 0.001 0.000 0.000 2.92 3.08 2.70 0.000 0.000 0.000
NE13 1 0.854 0.847 0.878 0.036 0.000 0.000 3.15 3.36 2.99 0.000 0.000 0.000
NE14 2 0.856 0.870 0.883 0.000 0.000 0.000 3.17 3.02 2.88 0.000 0.000 0.000
S1 1 0.644 0.572 0.670 0.000 0.000 0.000 5.19 5.60 4.89 0.000 0.000 0.000
S2 2 0.695 0.615 0.734 0.000 0.000 0.000 4.76 5.44 4.43 0.000 0.000 0.000
S3 1 0.819 0.810 0.842 0.000 0.000 0.000 3.16 3.21 2.92 0.000 0.000 0.000
S4 1 0.862 0.827 0.816 0.000 0.000 0.000 3.45 3.97 3.95 0.000 0.000 0.016
S5 1 0.801 0.776 0.811 0.000 0.019 0.000 4.80 5.09 4.50 0.000 0.000 0.000
S6 1 0.867 0.850 0.891 0.000 0.000 0.000 2.80 3.02 2.58 0.000 0.000 0.000
S7 1 0.862 0.867 0.889 0.000 0.000 0.000 2.90 2.79 2.60 0.000 0.000 0.000
S8 3 0.737 0.716 0.823 0.000 0.000 0.000 4.87 5.04 3.93 0.001 0.000 0.000
S9 1 0.817 0.810 0.777 0.005 0.000 0.000 3.08 3.12 3.33 0.014 0.000 0.000

# Numbers in bold indicate the best results among three methods.
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Fig. 5. Overall, the accuracy of RT estimates was comparable with
the accuracy of ANN. The median values of r were 0.831 and
0.819, and RMSE were 3.3 mm and 3.5 mm for RT and ANN, respec-
tively. Table 2 shows that RT provided better estimates in cases
when the predictions were generally less accurate with both meth-
ods, e.g. for stations NE3, S1, and S2 (Table 2). The confidence inter-
vals for the r values (Fig. 5) in the RT method were substantially
narrower when compared with those in the ANN method, i.e. the
RT method provided more consistent, or robust, reconstruction re-
sults than ANN method in this study.

The numbers of the most influential neighbors encountered in
the bootstrap runs for each weather station varied from 1 to 3 as
shown in Table 2. Using the data only from the RT-derived most
influential neighbors as ANN inputs led to the increase in accuracy
and robustness as compared to either RT or ANN alone. Pearson
correlation coefficients for RT + ANN method were higher and the
RMSE values were lower for all stations except the stations NE10,
S4, and S9 (Table 2). Overall, the median r and RMSE of RT + ANN
were 0.855 and 3.1 mm, respectively. The p-values with less than
0.05 in KS tests (Table 2) supported the superiority of RT + ANN
method. Interestingly, the highest accuracy was achieved in the
mountainous NW subarea where the average probability of the
non-zero daily precipitation was higher than in other subareas
(Table 1 and Fig. 5).
It was interesting for reference purposes to compare the accu-
racy of precipitation reconstruction in this work with results ob-
tained in other reconstruction research. Such comparisons
showed that comparable or even better accuracy had been attained
in this study. Kuligowski and Barros (1998) applied the backprop-
agation neural network to reconstruct the daily precipitation and
their r values were in the range from 0.458 to 0.823. Coulibaly
and Evora (2007) investigated six different types of ANN and pro-
vided r ranging from 0.575 to 0.869. The RT + ANN method in this
study resulted in values of r ranging from 0.670 to 0.952 (from
0.748 to 0.952 in NW subarea, from 0.784 to 0.922 in the NE sub-
area, and from 0.670 to 0.891 in the S subarea). The performance of
RT + ANN method in the mountainous NW region (RMSE =
2.54 mm) was comparable to the Abebe et al. (2000) results from
the application of multi-layer perceptron ANN with inputs from
two neighboring stations within 15 km in Italian mountain area
(RMSE = 2.63 mm). All three reconstruction methods in this study
resulted in better performance than the Group Method of Data
Handling with the data for the same station on the dates when
the data was available (Acock and Pachepsky, 2000; RMSE =
6.5 mm) and the ‘Closest Station’ method with cluster analysis
(Garcia et al., 2006; RSME = 9.05 mm).

The uncertainty in Fig. 5 predictions is relatively large even with
the RT + ANN method which had the smallest uncertainty among



Fig. 5. Accuracy of the daily precipitation reconstruction with regression tree (RT), artificial neural network (ANN), and ANN with inputs selected after RT analysis (RT + ANN)
in terms of the median Pearson correlation coefficient (r) and the root mean square error (RMSE, mm) with 90% confidence intervals from bootstrap runs. Results were pooled
for the whole dataset and for three subareas – northwest (NW), northeast (NE), and south (S).
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three reconstruction methods. The weather data imputation by no
means is meant to replace measurements. The most common
purpose of the imputation is to provide an uninterrupted data ser-
ies as required by simulation models. The precondition for such an
application is the small percentage of missing data. If the data
imputation is applied, an error propagation study seems to be in
order to establish the effect of the imputation errors on the output
variables of the model in question. Other imputation strategies
such as using precipitation climatology can be tested. It is quite
possible that additional environmental variables may be useful
for imputation in a specific geographical situation. Machine-
learning methods are not parameter-free and changing these
parameters, e.g. training-to-testing proportion, can affect in the
accuracy. Other machine-learning methods, e.g. distributed sup-
port vector regression (Wu et al., 2008) or model trees (Solomatine
and Xue, 2004), can be efficient in data imputation. The perfor-
mance of ANN can be further improved using ensemble techniques
with preliminary data preprocessing using canonical correlation
analysis (Shu and Burn, 2004; Shu and Ouarda, 2007). Results of
this work underscore the appropriateness of the preliminary
screening of inputs to improve the accuracy and the reliability of
data imputation. They also show that the accuracy of the data
infilling method is site-specific, and this is evidenced by the differ-
ences between the accuracy in the three subareas in this study.
3.4. Performance of reconstruction methods as assessed with SWAT
streamflow simulations

The functional evaluation of the precipitation reconstruction
was done for three watersheds (Fig. 6) that included one of weath-
er stations within each subarea. Stations NW16 (#369823), NE2
(#360656), and S6 (#449181) that had the maximum median r
in each subarea (Table 2) were selected for the SWAT streamflow
simulations for 1-year (2007). Sub-watersheds of stations NE2
(114 km2) and S6 (76 km2) had first-order streams, and the subwa-
tershed of the station NW16 (379 km2) included two orders of
streams and was relatively larger than other two as shown in
Fig. 6. The main channel lengths were 35 km, 20 km, and 21 km,
the main channel depths were 1.2 m, 0.9 m, and 0.7 m, the main
channel slopes were 0.003 m m�1, 0.005 m m�1, and 0.000 m
m�1 (all slopes under the spatial resolution of the DEM of 75 m),
and the main channel widths were 35 m, 22 m, and 17 m for the
sub-watersheds of the stations NW16, NE2, and S6, respectively.
According to the USGS classification, the predominant landuse
class in the subwatershed of station NW16 was ‘Forest – Decidu-
ous’, and those in the subwatershed of stations NE2 and S6 were
‘Agricultural Land – Generic’. Sub-watersheds of stations NW16
and S6 were dominated by loamy soils of the PA033 soil associa-
tion and by clay soils of the VA069 soil association, whereas silt



Fig. 6. Subwatersheds for weather stations NW16 (#369823), NE2 (#360656), and S6 (#449181) used in streamflow simulations with the Soil and Water Assessment Tool
(SWAT). Symbols with the cooperative station ID number of the National Weather Service show locations of weather stations.

J.-W. Kim, Y.A. Pachepsky / Journal of Hydrology 394 (2010) 305–314 313
loam soils of PA063 and PA064 soil association and sandy loam
soils of the PA066 soil association were almost equally represented
in the subwatershed of station NE2. The streamflow simulations
were conducted using the curve number runoff option and the var-
iable storage method for channel water routing. The predominant
runoff curve numbers were 91, 86 and 86 for the sub-watersheds
with stations NW16, NE2, and S6, respectively, determined based
on each predominant landuse and soil. The surface runoff lag coef-
ficient was set to 4.0 days, the Priestley–Taylor method for poten-
tial evapotranspiration was applied with the reach evaporation
adjustment factor = 1.0 and the leaf area index at which no evapo-
ration occurs from water surface equal to 3.0 m2�m�2. The main
channel Manning’s roughness coefficient, ‘‘n”, was set to 0.014.
Fig. 7. Pearson correlation coefficients (r) between reconstructed and actual precipitati
actual precipitation for three weather stations in the northwest (NW), northeast (NE), an
the artificial neural network (ANN) and ANN with inputs selected after RT analysis (RT
The accuracy of precipitation predictions and streamflow pre-
dictions was compared for stations NW16, NE2 and S6. For this
specific case of 2007, values of r for the precipitation reconstruc-
tion using RT and ANN methods were mostly smaller than their
median values in Table 2 at all three stations while the RT + ANN
method gave values of r comparable with median values.

In the subwatershed of the station NW16, the accuracy of
streamflow predictions in terms of r was substantially lower than
that of precipitation estimates with both RT and ANN stand-alone
methods (Fig. 7). In simpler and smaller sub-watersheds (stations
NE2 and S6), the accuracy of streamflow predictions was higher
than the accuracy of precipitation estimates when the ANN
was used to reconstruct the data. The accuracy of streamflow
on and between streamflow simulated with SWAT model using reconstructed and
d South (S) subareas. Precipitation was reconstructed with the regression tree (RT),

+ ANN).
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predictions was similar to the accuracy of the precipitation predic-
tion for all three sub-watersheds when the two-step RT + ANN
method was used. In this evaluation, the RT + ANN method ap-
peared to be the most robust precipitation reconstruction method
for the purposes of streamflow simulations.

4. Conclusion

Two machine-learning methods, regression trees (RT) and arti-
ficial neural networks (ANN), were used alone and then in combi-
nation (RT + ANN) to reconstruct missing precipitation data using
daily precipitation time series from 39 weather stations in the cen-
tral part of Chesapeake Bay Watershed. The ANN reconstruction
employed data from all stations as inputs whereas the RT + ANN
method built ANN with inputs only from the influential stations
found from the preliminary bootstrap RT application. The perfor-
mance of the methods was compared using the Pearson correlation
coefficients and the root mean square error. The accuracy of
streamflow simulations with the SWAT model using the recon-
structed precipitation data was also utilized to compare the perfor-
mance of the three reconstruction methods. Bootstrap was used
with all three methods to assess the uncertainty in the perfor-
mance measures.

The RT provided a transparent visual representation of the
similarity between the stations in their daily precipitation time
series. The nearest station in terms of the distance was the most
influential RT predictor only for about half of all stations. This
could be related to topography in the mountainous subarea and
to the apparent fine-scale variations in coastal plain subarea.
For each station, from one to three stations could be found that
were the most influential predictors in bootstrapped RT runs.
Both RT and ANN provided reconstruction accuracy comparable
to (or better than) other published results of ANN application to
precipitation reconstruction. The proposed RT + ANN method sig-
nificantly improved accuracy and was more robust when com-
pared with RT and ANN alone. This method was also more
accurate and robust in streamflow predictions with reconstructed
precipitation.

Although the newly suggested method in this study, RT + ANN,
showed a better performance in infilling precipitation data, the
uncertainty of results was relatively large. Using both other meth-
ods of machine learning and other set of predictors can be benefi-
cial. This study demonstrated the appropriateness of the
preliminary screening of inputs to improve the accuracy and the
reliability of data imputation, and the value of functional evalua-
tion of the data reconstruction method. It is concluded that the
type of analysis described in this work can be useful in the precip-
itation reconstruction and warrants research on its applicability to
other weather variables.
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