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Abstract.

Human-caused fragmentation of habitats is threatening an increasing number

of animal and plant species, making an understanding of the factors influencing patch
occupancy ever more important. The overall goa of the current study was to develop
probabilistic models of patch occupancy for the mountain yellow-legged frog (Rana mus-
cosa). This once-common species has declined dramatically, at least in part as a result of
habitat fragmentation resulting from the introduction of predatory fish. We first describe a
model of frog patch occupancy developed using semiparametric logistic regression that is
based on habitat characteristics, fish presence/absence, and a spatial |ocation term (the latter
to account for spatial autocorrelation in the data). This model had several limitations in-
cluding being constrained in its use to only the study area. We therefore developed a more
general model that incorporated spatial autocorrelation through the use of an autocovariate
term that describes the degree of isolation from neighboring frog populations (autologistic
model). After accounting for spatial autocorrelation in patch occupancy, both models in-
dicated that the probability of frog presence was strongly influenced by lake depth, elevation,
fish presence/absence, substrate characteristics, and the degree of lake isolation. Based on
cross-validation procedures, both models provided good fits to the data, but the autologistic
model was more useful in predicting patch occupancy by frogs. We conclude by describing
a possible application of this model in assessing the likelihood of persistence by frog

populations.
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INTRODUCTION

Human-caused fragmentation of natural habitatsis a
primary cause of species endangerment worldwide
(Wilcove et al. 1986, Turner 1996). The pace of habitat
fragmentation has resulted in considerable interest in
the spatial structure of populations, with the metapop-
ulation concept as a central focus. A metapopulation
can beloosely defined as a set of popul ations connected
to varying degrees by dispersal (Hanski and Simberloff
1997). By subdividing continuous habitat into patches
or by reducing the number of habitat patches, habitat
fragmentation reduces the total area of suitable habitat
and increases the degree of isolation experienced by
organisms inhabiting each patch. Both effects can
greatly reduce the likelihood of patch occupancy
(Hanksi 1989, 1998). In addition to patch size and iso-
lation, patch occupancy can also be affected by patch
quality (Sogren Gulve 1994, Sarre et al. 1995, Dennis
and Eales 1999) and by characteristics of habitat sur-
rounding patches (i.e., matrix habitat; Vos and Stumpel
1996, Pope et al. 2000, Joly et al. 2001). Ensuring the
persistence of animal and plant populations in frag-
mented landscapes will require athorough species-spe-
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cific understanding of the relative importance of such
factors in influencing patch occupancy.

Describing the relative importance of those factors
controlling animal and plant distributions is compli-
cated by the fact that distributional data is frequently
spatially autocorrelated, such that sites in close prox-
imity are more similar than sites separated by greater
distances (Thomson et al. 1996, Koenig 1999, Trenham
et al. 2001). Spatial autocorrelation may arise from
numerous sources, including unrecorded habitat vari-
ables, dispersal, conspecific attraction, or synchronous
population fluctuations (Augustin et al. 1998). Spatial
autocorrelation presents a problem for statistical testing
because most relevant statistical models (e.g., ordinary
or generalized linear regression) assume independence
of error terms. As a result, use of classical statistical
tests is not appropriate when analyzing spatially au-
tocorrelated data (Legendre 1993). When developing
habitat models, ignoring spatial autocorrelation could
result in some variables appearing to influence patterns
of patch occupancy when in fact the relationships are
not statistically significant (Legendre 1993, Carroll and
Pearson 2000). Few examples of habitat models exist,
however, in which spatial autocorrelation has been in-
corporated into the estimation process (for notable ex-
amples, see Hinch et al. 1994, Wu and Huffer 1997,
Carroll et al. 1999).
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The overall goal of our study was to develop a prob-
abilistic model of patch occupancy for the mountain
yellow-legged frog (Rana muscosa). In a recent paper,
Knapp and Matthews (2000) evaluated the role of non-
native fish in influencing the distribution of R. muscosa.
In the current study, we extend the findings of Knapp
and Matthews (2000) considerably by (1) quantifying
the effects of a wide variety of biotic and abiotic var-
iables (including fish presence/absence) on frog distri-
bution after accounting for spatial autocorrelation, and
(2) developing predictive patch occupancy models
based on the significant independent variables identi-
fied in (1). We conclude by describing a possible ap-
plication of these models to assess the likelihood of
persistence of frog populations.

Natural history of the mountain yellow-legged frog

Mountain yellow-legged frogs are endemic to the
Sierra Nevada of California and Nevada (USA) and to
the Transverse Ranges of southern California (USA)
(Zweifel 1955). R. muscosa in the Sierra Nevada are
genetically distinct from frogs in southern California
(Macey et al. 2001) and occupy very different habitats
(lakes, ponds, and occasionally streamsvs. exclusively
streams, respectively). This paper focuses solely on R.
muscosa in the Sierra Nevada, where historically this
species was a common inhabitant of lakes and ponds
at elevations of 1400-3600 m (Grinnell and Storer
1924, Zweifel 1955). R. muscosaishighly aquatic, with
adults overwintering underwater and rarely found more
than afew meters from water during the summer active
season (Bradford 1989, Matthews and Pope 1999). In
addition, the aquatic larvae require two or more sum-
mers to develop through metamorphosis. R. muscosa
larvae and adults are therefore restricted primarily to
distinct habitat patches (lakes and ponds) (Bradford et
al. 1993).
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Fic. 1. Typica lake in the Sierra Nevada
study area. The lake shown here is 1.4 ha in
surface area, 3.5 m deep, and is situated at an
elevation of 3440 m in the John Muir Wilder-
ness (Sierra National Forest, California). The
lake is surrounded by granitic rock, patches of
meadow vegetation, and scattered whitebark
pine (Pinus albicaulis) and lodgepole pine (Pi-
nus contorta).

In the Sierra Nevada, the majority of R. muscosa
habitat lies within designated national park and na-
tional forest wilderness areas. Despite this high level
of protection, R. muscosa is now extirpated from at
least 50% of historic localities (Bradford et al. 1994,
Drost and Fellers 1996, Jennings 1996) and is currently
being considered for listing under the U.S. Endangered
Species Act. Numerous studies indicate that predation
by nonnative fish and associated fragmentation of hab-
itatsis likely a primary cause of this decline (Bradford
1989, Bradford et al. 1993, 1998, Knapp and Matthews
2000). Nearly all lakes in the Sierra Nevada were nat-
urally fishless, but at least 70% of larger lakes now
contain trout introduced during the past 150 years to
create recreational fisheries (Knapp 1996). Additional
possible causes of decline include airborne agricultural
contaminants (Sparling et al. 2001, Davidson et al.
2002) and disease (Fellers et al. 2001).

METHODS
Study area description

The study area is located in the Sierra Nevada of
California, and encompasses portions of the John Muir
Wilderness (Sierra National Forest) and Kings Canyon
National Park (see Knapp and Matthews [2000] for a
map of the study area). The 1400-km? study area con-
tains over 1700 lakes and ponds (‘‘water bodies’”),
nearly all of which are located in the subalpine and
alpine zones (above ~3000 m). Water bodies through-
out the study area are generally small (<10 ha), oli-
gotrophic, and species poor, and are ice-free for only
four to five months per year (Fig. 1; Melack et al. 1985).
Watersheds in the study area are dominated by intrusive
igneous bedrock (California Division of Mines and Ge-
ology 1958). The entire study area was naturally fish-
less as aresult of numerous barriers to upstream move-
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ment by fishes (Knapp 1996, Knapp and Matthews
2000). Between 1900 and 1960, the majority of these
fishless lakes were stocked with one or more species
of trout (golden trout, Oncorhynchus mykiss aguabon-
ita; rainbow trout, O. mykiss; and brook trout, Salvel-
inus fontinalis, Knapp and Matthews 2000).

Amphibian, fish, and habitat surveys

Datato describe the faunal and habitat characteristics
of all 1718 lakes and ponds in the study area were
collected during single site visits from 26 July to 14
September 1995, 22 July to 13 September 1996, or 29
June to 14 September 1997. Most of the precipitation
in the study area falls as snow, and snowfall in 1995,
1996, and 1997 was 175%, 103%, and 98% of the av-
erage, respectively (California Department of Water Re-
sources, online reports DLY SWEQ.19950331, DLY-
SWEQ.19960331, DLY SWEQ.19970331; accessed on
October 24, 2001).4

The number of mountain yellow-legged frogs at each
water body was determined using visual encounter sur-
veys (Crump and Scott 1994) of the entire shoreline.
During the summer, adults and larvae occur almost
exclusively in shallow water near shore and are easily
detected even in the deepest lakes using shoreline
searches (Bradford 1989). As a result, single surveys
at sites allow accurate assessment of frog presence/
absence (Knapp and Matthews 2000). The presence or
absence of trout was determined at each water body
using visual encounter surveys or gillnets. In shallow
water bodies (<3 m deep) in which the entire bottom
could be seen, trout presence or absence was deter-
mined using visual encounter surveys conducted while
walking the entire shoreline and the first 100 m of each
inlet and outlet stream. In deeper water bodies, we
determined fish presence or absence using both visual
surveys and a single monofilament gill net set for 8-
12 h. Repeated gill net sets in six lakes indicated that
single 8-12 h gill net sets were 100% accurate in de-
termining fish presence or absence, even in lakes with
very low fish densities (<5 fish/ha; R. A. Knapp, un-
published data).

We characterized the physical attributes of each wa-
ter body using elevation, maximum depth, littoral zone
(i.e., near-shore) substrate composition, stream con-
nectivity, and isolation from other water bodies. Water
body elevation was obtained from USGS 1:24 000 to-
pographic maps. Maximum lake depth was determined
by sounding with a weighted line. We characterized
littoral zone substrate composition by visually esti-
mating the dominant substrate along approximately 50
3 mlong transects evenly spaced around the water body
perimeter and placed perpendicular to shore. Substrates
were categorized as silt (<0.5 mm), sand (0.5-2 mm),
gravel (>2-75 mm), cobble (>75-300 mm), boulder
(>300 mm), or bedrock. No measures of terrestrial

4 URL: (http://cdec.water.ca.gov/cgi-progs/Isiodir)
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habitat were made because mountain yellow-legged
frogs are only rarely found away from water (M atthews
and Pope 1999).

Two measures of stream connectivity, the number of
inlet streams and the width of outlet streams, were
recorded during shoreline surveys. Only those streams
wider than 10 cm were included. Based on habitat as-
sociations described for R. muscosa in previous studies
(Bradford 1989, Knapp and Matthews 2000), we used
a geographic information system to calculate two var-
iables that both quantified the degree of isolation be-
tween a target water body and surrounding water bod-
ies. These were (1) the number of ‘* high-quality’’ lakes
(>3 m deep, =0.5 hain area, <3500 m in elevation,
and fishless) within 1 km, and (2) the proportion of
lakes in a drainage that were ‘“high quality.” For both
variables, we counted only those lakes that are located
in the same drainage as the target water body because
the steep ridges that separate drainages likely preclude
any frog movement between drainages (Matthews and
Pope 1999, Pope and Matthews 2001). Although these
two isolation variables are similar, the first uses amea-
sure of habitat quality in theimmediate vicinity of each
water body while the second uses a measure of relative
habitat quality in the entire drainage.

Satistical analysis

Model development.—Because we expected our frog
occurrence data to be spatially autocorrelated, we used
two modeling approaches that are designed specifically
to allow spatially autocorrelated data to be analyzed
using regression. In these different approaches, we used
a generalized additive model and incorporated spatial
autocorrelation either by the inclusion of a locational
covariate (e.g., easting and northing) or an autologistic
term (‘‘autocovariate’”; Augustin et al. 1998). An au-
tocovariate describes the response at a given site as a
function of the responses at neighboring sites. Gen-
eralized additive models (GAMs) are anal ogous to gen-
eralized linear models (GLMs), but unlike GLMs,
GAMs relax the assumption that the relationships be-
tween the dependent variable (when transformed to a
logit scale) and independent variables are linear. Re-
laxation of this assumption is accomplished by esti-
mating a nonparametric smooth function to describe
the relationships between the dependent and indepen-
dent variables (Cleveland and Devlin 1988, Hastie and
Tibshirani 1991).

The dependent variable in our analyses was the pres-
ence or absence of frog larvae. We chose to use larvae
instead of adults as the dependent variable for two rea-
sons. First, adults frequently move between habitats
during the course of the summer (Matthews and Pope
1999, Pope and Matthews 2001) while larvae typically
remain in their natal water body through metamorpho-
sis. Second, the presence of larvae indicates a repro-
ducing population while the presence of adults may not
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(e.g., adult frogs may persist at a lake for many years
without breeding successfully).

In multipleregression, collinearity between predictor
variables may confound their independent effects.
Therefore, prior to regression analysis we calculated
Pearson correlation coefficients for all pairwise com-
binations of independent variables (Hair et al. 1998).
Correlation coefficients (r) ranged between —0.58 and
0.50. These values are well below the suggested cutoff
of |r] = 0.85 that would indicate collinearity for our
sample size (Berry and Felman 1985), and all inde-
pendent variables were therefore included in the re-
gression.

Preliminary regression analyses indicated that a
model could not be fit when all substrate variableswere
included. Based on correlation analysis and principal
components analysis (PCA), we determined that the
percent of transects dominated by silt was correlated
with other substrate categories and with an overall mea-
sure of substrate composition (PCA Axis1). Therefore,
in subsequent analyses substrate characteristics were
described solely by the percent of transects dominated
by silt.

In our first model, p; is the probability of finding R.
muscosa larvae at location i, and is defined as

e
1+ e

P

where the linear predictor (i.e., logit line) 6; is a func-
tion of the independent variables. The specific rela-
tionship we used for 6, was

0, = 1 + a;(Ongi1) + G(ELEV,) + g,(DEPTH,)
+ Qs(SILT,) + g4(INLET,) + g5(OUTLET,)
+ gs(HQLAKES) + g,(PHQLAKES)
+ gs(UTME, UTMN) 0

where . is the overall mean, 3 is an indicator function
that equals one when the condition is true (when fish
are present, FISH = 1) and equals zero otherwise, «;
describes the increase or decrease in p due to fish pres-
ence, and g,(-), ..., g/-) are nonparametric smooth
functionsthat characterize the effect of each continuous
independent variable on the probability of response.
Variable names are defined in Table 1. We incorporated
spatial autocorrelation into this model by including a
locational term (gg(UTME, UTMN)) that was a smooth
surface of UTM easting and northing (Hobert et al.
1997, Augustin et al. 1998). Because this model con-
tains nonparametric terms and a parametric term
(FISH), Eq. 1 represents a ‘‘semiparametric’’ regres-
sion model. We refer to this model as the ** exploratory
spatial model”’ because we used it to evaluate the rel-
ative importance of the independent variables and to
describe the shapes of the response curves for each of
the significant independent variables.
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The nonparametric functions within the generalized
additive model were estimated simultaneously using a
loess smoother (Cleveland and Devlin 1988). The best
combination of independent variables was determined
by evaluating the change in deviance resulting from
dropping each variable from the model in the presence
of all other variables. Analysis of deviance and like-
lihood ratio tests (based on the binomial distribution)
were used to test the significance of each of the in-
dependent variables on the probability of frog presence
(McCullagh and Nelder 1989). The relativeimportance
of significant variables was determined by calculating
the Akaike Information Criteria (AIC; Linhart and Zuc-
chini 1986). Larger AIC values indicate a greater rel-
ative importance.

After identifying the independent variables that had
highly significant (P < 0.01) effects on frog occur-
rence, we used these variables to develop a simplified
model that could be used to predict the probability of
frog occurrence for all water bodies in the study area.
We refer to this model as the *‘predictive spatial
model.” We based the predictive spatial model solely
on the highly significant independent variables to en-
sure that only those independent variables with sub-
stantial explanatory power were included in the model.
Nonparametric regression terms are useful for evalu-
ating the relative importance of independent variables
and for describing the shape of response curves, but
parametric terms are preferable when developing apre-
dictive model dueto their ease of use (Yeeand Mitchell
1991). For example, in the current study parametric
terms can be incorporated into an equation that allows
for easy calculation of p; while calculation of p; based
on nonparametric terms would require using a statis-
tical package and |oess smoothers. Therefore, based on
the shapes of the response curves, we developed para-
metric functions (e.g., linear, polynomial, logarithmic)
for as many of the nonparametric terms as possible.
Slope and intercept for each parametric function were
estimated using GL M. To assess whether the parametric
functional forms we used in the predictive spatial mod-
el accurately represented the response curves of the
exploratory spatial model, the total deviances of the
two models were compared. Since the fits of the two
modelswere similar, we then used the predictive spatial
model to calculate, for each waterbody, the probability
of occurrence of R. muscosa larvae.

The predictive spatial model provided a good fit to
the data (see Results), but had three shortcomings. First,
because it contained a locational covariate term (UTM
easting and northing) it is constrained to being used
only within the study area. Second, the response sur-
face that describes the effect of location on the prob-
ability of frog occupancy was complex and could not
be approximated with a parametric function. Third, the
reason for the significant effect of the locational co-
variate on frog presence/absence isdifficult to interpret.
We sought to overcome these limitations by replacing
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TasLE 1. Description of variables used in the logistic regression models.
Variable name Code Description

Fish presence/absence FISH Presence or absence of nonnative trout as determined using vi-
sual and/or gill net surveys

Water body elevation (m) ELEV Elevation of water body as determined from USGS 7.5’ topo-
graphic maps

Water body depth (m) DEPTH Maximum depth of water body as determined by sounding with
a weighted line

Littoral zone silt (%) SILT Percentage of the littoral zone dominated by silt (particles <1
mm in diameter)

Number of inlets INLET Number of streams (>10 cm in width) flowing into water body
as determined during habitat survey

Width of outlets (m) OUTLET Combined width of all streams (>10 cm in width) flowing out
of water body as measured during habitat survey

Number of high-quality lakes HQLAKES Number of water bodies located within 1 km of the water body

within 1 km shoreline that are fishless, >3 m deep, =0.5 ha in area, and

<3500 m in elevation

Percentage of high-quality PHQLAKES Percentage of water bodies in a drainage that are fishless, >3 m

lakes in drainage deep, =0.5 hain area, and <3,500 m in elevation
Water body location UTME, UTMN Smooth function of UTM easting and northing
Weighted-distance autocovar- WTDIST Distance-weighted number of frog-containing water bodies

iate

within 2 km of the target water body

thelocational covariate term with an autocovariateterm
(Augustin et al. 1998). In the resulting model, the prob-
ability of frog occupancy (p;) is conditional on whether
or not frog larvae are present in surrounding water
bodies, and the model iscalled an ** autologistic’’ model
(Besag 1972).

The autocovariate term represents the distance-
weighted number of larvae-containing water bodies in
the vicinity of the target water body. This term was
calculated as

2 WY

Jj#
where w; is the weighted distance between the target
water body i and neighboring water body j, and y; =
1 when larvae are present in water body j and y, = 0
when larvae are absent. Weighted distance was cal-
culated as

12

dj

E di]ﬂz

j#i

where d; is the distance (in meters) between the target
water body i and neighboring water body j. The weight-
ed distance is calculated only when the neighboring
water body j is within 2 km of the target water body
i and is in the same drainage. The 2-km cutoff was
chosen because frogs rarely move between water bod-
ies separated by greater than 1 km (Matthews and Pope
1999, Pope and Matthews 2001). All ‘‘neighboring”
water bodies were surveyed for amphibians (as well as
fish and habitat characteristics) as part of the overall
survey effort to create the data set used in the current
study (n = 1718).

Standard logistic regression programs can be used
to estimate the parameters of an autol ogistic model, but
standard errors calculated by these programs for the
estimated parameters are not appropriate. Instead, we

estimated standard errors using a grouped jackknife
method (Efron and Tibshirani 1993:149) in which sub-
sets of observations are removed from the data set and
parameters are estimated from the remaining obser-
vations. The standard errors of the parameter estimates
are then determined by calculating the standard devi-
ation of the pseudo-values §, = kb — (k — 1) b, where
0 is an estimate of the parameter using all the data and
B4 is an estimate with the kth subset removed (Efron
and Tibshirani 1993:145). The jackknife method is an
appropriate technique for estimating standard errorsfor
our autologistic model because the data consist of nat-
ural groupings that are independent (i.e., 28 drainages;
Efron and Tibshirani 1993). All regression-related cal-
culations were conducted using S-Plus (S-Plus 1999).
Model cross-validation.—Cross-validation allowsan
assessment of how well a model fits data not used in
model development, and is typically conducted using
one of two methods. One method entails splitting the
data set into two groups, developing a model based on
one group, and then testing model accuracy using the
other group. In the second method, a model is first
developed using the entire data set. Next, the data set
is split into several groups (often more than 10) and
the parameters in the model developed from the full
data set are reestimated using data from all groups but
one (‘‘dropped group’’). This model is then used to
estimate the probabilities of occurrence at all sites in
the dropped group. After these calculations are made,
the dropped group is returned to the data set, and the
process is repeated until all groups have been dropped
and replaced (Neter et al. 1996). We used this second
method of cross-validation because it allowed us to
estimate model parameters using the entire data set.
We used separate cross-validation procedures to
quantify how well the predictive spatial model and the
autologistic model fit data from water bodies not used
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FiGc. 2. Box plots showing differences in habitat characteristics between water bodies with and without mountain yellow-
legged frog (Rana muscosa) larvae. Variables include (A) elevation, (B) depth, (C) percentage of the littoral zone dominated
by silt, (D) number of inlets, (E) width of outlets, (F) number of high-quality lakes within 1 km, and (G) percentage of high-
quality lakes in the drainage. The solid line within each box marks the median, the dashed line marks the mean, the bottom
and top of each box indicate the 25th and 75th percentiles, and the whiskers below and above each box indicate the 10th
and 90th percentiles. Sample sizes are 237 and 1481 for water bodies with and without frog larvae, respectively. Asterisks
between each pair of bars provide the results of Wilcoxon rank-sum tests: ***P < 0.001; **P = 0.01; Ns (not significant),

P > 0.05.

in model development. Both cross-validations were
conducted by first dropping one of the 28 drainages
from the data set and reestimating model parameters
using the remaining 27 drainages. We then used the
reparameterized model to calculate the predicted prob-
ability of occurrence by frog larvae (p) for all water
bodies in the dropped drainage. This procedure was
repeated 27 times, each time dropping adifferent drain-
age from the model. Once complete, we grouped all
water bodies into 29 categories based on their p values.
We chose to use 29 categories in order to have as many
groups as possible while ensuring that each category
contained at least 10 data points. For each category,
we then averaged the p values across all water bodies
and compared this predicted probability of occurrence
to the actual proportion of occupied water bodies in
the category. If the models provide a good fit to data
not used in model development, the mean predicted
probability of occurrence for each category should
closely match the proportion of water bodies in the
category that were actually occupied by frogs. Thesim-
ilarity between the average observed and predicted
probabilities of frog occurrence for each of the 29 cat-
egories was determined by cal culating the Pearson chi-
square statistic, which was then compared to a chi-
square distribution (Hosmer and L emeshow 1989). The
degrees of freedom for the chi-square tests were cal-
culated as (number of groups)—(number of parameters
estimated in model). The number of groups for both
models was 29. The number of parameters estimated
was 14.3 for the predictive spatial model (1 intercept
+ 6 variables + 7.3 parameters needed for the loca-
tional covariate) and 7 for the autologistic model (1
intercept + 6 variables), respectively. A P value <0.05
indicates that the model does not provide a good fit to
the data.

Visualization of model fit.—To visualize model fit,
we compared the water body-specific predicted prob-

abilities of frog occurrence with the locations actually
occupied by frogs in one of the 29 study drainages.
The results of our cross-validation analyses indicated
that the predictive accuracy of the autologisitic model
was insensitive to what drainages were used in model
development (see Results). Therefore, we calculated
the predicted probabilities of frog occurrence for all
water bodies in the selected drainage using the auto-
logistic model developed based on the entire data set.
To maximize the range of model predictions, we se-
lected a drainage that included water bodies charac-
terized by a wide range of parameter values for each
of the variablesincluded in the autologistic model. The
objective of thisgraphical analysiswasto visualize (not
test) model fit, and a single drainage was sufficient to
meet this objective.

REsuLTS

R. muscosa larvae were found in 238 (14%) of the
1718 water bodies surveyed. Water bodies with and
without larvae were significantly different for all hab-
itat characteristics except water body elevation and
width of outlet streams (Fig. 2). Water bodies occupied
by larvae were deeper (Fig. 2B), had a greater per-
centage of the littoral zone dominated by silt (Fig. 2C),
had moreinlet streams (Fig. 2D), had more high-quality
(i.e., large, deep, fishless) lakes within 1 km (Fig. 2F),
and had a higher percentage of lakes in the drainage
that were high quality (Fig. 2G). In addition, fishless
water bodies were more likely to contain frog larvae
than were fish-containing water bodies (14% vs. 24%,
respectively; chi-square test: x2 = 10.6, df = 1, P =
0.001).

Exploratory spatial model

The semiparametric exploratory spatial model (Eq.
1) was highly significant (P < 1 X 10-19). Six of the
nine independent variables (water body location, depth,
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TaBLE 2. Analysis of deviance table showing the statistical significance (P value) and Akaike Information Criteria (Al1C)
of the independent variables in the exploratory spatial model.

Model Test
Model Deviance df Deviancet  dff P value AICS
Null model 1379 1717
Full model 968 1680
Full model less:
Water body location 1099 1687 131 7 <1 X 100 1160.4
Water body depth 1036 1684 68 4 <1 X 101 1103.5
Water body elevation 1003 1684 35 4 2.7 X 1077 1071.2
Fish presence/absence 991 1681 23 1 9.5 X 107 1064.8
Littoral zone silt 984 1684 16 4 2.2 X 10 1052.0
No. high-quality lakes within 1 km 982 1684 15 4 5.5 X 103 1049.9
Number of inlets 978 1684 11 4 0.033 1045.7
Percentage of high-quality lakes in drainage 977 1684 9 4 0.073 1043.7
Width of outlets 976 1685 8 5 0.15 1041.5

T Test deviance = (deviance of full model less one covariate) — (deviance of full model).

¥ Test df = (df of full model less one covariate) — (df of

full model).

8§ AIC = (deviance of full model less one covariate) + 2(1718 — df of full model less one covariate).

elevation, fish presence/absence, littoral zonesilt, num-
ber of high-quality lakes within 1 km) had highly sig-
nificant effects on the occurrence of frog larvae, while
two independent variables (number of inlets, percent-
age of high-quality lakes in drainage) had marginally
significant effects (Table 2). Width of outlet streams
did not have a significant effect on frog occurrence
(Table 2). Varying the loess ‘“ smoothness’”’ parameter
(i.e., span) from the default value of 0.5 to values be-
tween 0.35 and 0.70 had very minor effects on the
relative importance of the independent variables,
changing the order only of the four variables with the
smallest AIC values (Table 2).

After accounting for the effects of all other signifi-
cant variables, the probability of frog occurrence (p,)
was higher in the absence of fish than in the presence
of fish (Fig. 3A). For the continuous variables, the re-
|ationships between the probability of frog occurrence
(on alogit scale) and water body depth and elevation

were significantly nonlinear (P < 1 X 10-5; Fig. 3B,
3C) while the nonlinearity associated with the effect
of the number of high-quality lakes within 1 km was
marginally nonsignificant (P = 0.09; Fig. 3E). The ef-
fect of littoral zone silt was not significantly different
from linear (P > 0.2; Fig. 3D). The response curve for
water body depth indicated that p; increased steeply
between 0 and 4 m, beyond which depth had little in-
fluence on frog occurrence (Fig. 3B). The response
curve for elevation indicated that p; changed little be-
tween elevations of 2900 and 3500 m, but decreased
sharply above 3500 m (Fig. 3C). The exact shape of
the relationship between p; and the number of high-
quality lakes within 1 km was difficult to determine
because of the wide confidence interval resulting from
arelatively low number of water bodies that had greater
than five high-quality lakes nearby. However, for water
bodies with fewer than five neighboring high-quality
lakes, the probability of frog occurrence increased with
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FiG. 3. Effect of each of the highly significant independent variables (including approximate pointwise 95% confidence
intervals) on the probability of occurrence by R. muscosa larvae, as determined from the exploratory spatial model (span =

0.5). Variables are (A) fish presence/absence, (B) water body

depth, (C) water body elevation, (D) littoral zone silt, and (E)
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increasing numbers of high-quality lakes within 1 km
(Fig. 3E).

Predictive spatial model

To develop the predictive spatial model, we approx-
imated the littoral zone silt response curve with a
straight line, the water body depth and number of high-
quality lakes within 1 km response curves with two
lines, and the water body elevation response curve with
a second degree polynomial (Fig. 3). This led to the
model

0; = p + i(Brsi—1) + Beeva(ELEV)) + Beeva(ELEV))?
+ BDEPTH(DEPTHi - 3'5)8DEPTH,£3_5 + BSILT(SH—Ti)

+ BHQLAKES(HQLAKESi - 4)8HQLAKESii4

+ g(UTME, UTMN) @)

where ., «;, 8, and g are defined as in Eq. 1. The
difference in deviance between the exploratory spatial
model and the predictive spatial model was not sig-
nificant (x? = 13.0, df = 10, P = 0.24), indicating that
our choice of functional forms provided a good ap-
proximation of the actual shapes of the response
curves. The cross-validation procedure indicated that
the predicted p; values calculated using Eq. 2 matched
the observed p; values relatively closely (Fig. 4). How-
ever, three of the 29 groups fell outside of the 95%

confidence interval (Fig. 4), resulting in alarge overall
chi-square value and associated small P value (x? =
53.8, df = 14.7, P = 2.3 X 107%). Therefore, while the
predictive spatial model generally provided a good fit
to the data from drainages not used in model param-
eterization, the three groups falling outside the 95%
confidence interval were sufficient to create an overall
lack of fit. A histogram of the proportion of water bod-
ies in which larvae were present versus absent as a
function of the predicted probability of occurrence
(Fig. 4) indicates that the proportion of lakes actually
occupied by frogs increases in step with the predicted
probability of occurrence below p = 0.4, but instead
of continuing to increase as p valuesincrease from 0.41
to 0.80 the proportion of occupied lakes reaches a pla-
teau of ~50% occupancy. These results suggest that
the predictive spatial model overestimated the proba-
bility of occurrence of frog larvae.

Autologistic model

Results from the grouped jackknife procedure indi-
cated that replacing the locational covariate in the pre-
dictive spatial model with the weighted distance au-
tocovariate (WTDIST) had little effect on the relative
importance of the independent variables. The effect of
the autocovariate on the probability of site occupancy
was highly significant (Table 3). In addition, water
body depth, fish presence/absence, littoral zonesilt, and
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TaBLE 3. Coefficients, standard errors, and P values estimated for the autologistic model

using the grouped jackknife method.

Variable name Coefficient (B) 1se P value

Intercept —232.8853

Weighted-distance autocovariate 7.1141 0.5622 <1l X 1010
Water body depth 0.8095 0.1242 8.3 X 1077
Fish presence/absence —1.3017 0.2006 9.8 X 107
Littoral zone silt 0.0152 3.0107 x 103 3.1 x 10°
(Water body elevation)? —2.0305 X 105  5.9116 X 10°¢ 2.9 X 10-3
Water body elevation 0.1369 3.9976 X 1072 3.1 x 103
No. high-quality lakes within 1 km —5.8802 x 103 0.1232 0.89

water body elevation remained highly significant while
the effect of the number of high-quality lakes within
1 km was no longer significant (Table 3). The final
model produced when only the highly significant in-
dependent variables were included in the autologistic
model was

0, = —232.2 — 1.299%4,—; + 0.136(ELEV;)
— 0.00002(ELEV;)?
+ 0.809(DEPTH; — 3.5)8pepr, s,

+ 0.015(SILT,) + 7.107(WTDIST,) ©)

where ., «;, and & are defined as in Eq. 1. Dropping
the nonsignificant variable, HQLAKES, changed the
regression coefficients only slightly (compare coeffi-
cients in Table 3 vs. Eq. 3). The cross-validation pro-
cedure indicated a close association between the ob-
served and predicted probabilities of frog occurrence
(Fig. 5), and the results of the goodness-of-fit test (x?
= 28.7, df = 22, P = 0.15) suggested that the auto-
logistic model provided a close fit to the data from
drainages not used in model parameterization. There-
fore, this model may more accurately predict the oc-
currence of mountain yellow-legged frog larvae than
the exploratory spatial model. A histogram of the pro-
portion of lakes in which larvae are present vs. absent
as afunction of the predicted probability of occurrence
(Fig. 5) also indicates a closer correspondence between
the predicted and observed probabilities than was the
case for the predictive spatial model (Fig. 4). Results
from the autol ogistic model suggest that the proportion
of lakes occupied by frogs increases in step with the
predicted probability of occurrence across the entire
range of predicted values (Fig. 5).

Visualization of the predictive ability of the auto-
logistic model using one drainage in the study area
(Palisade Creek, Kings Canyon National Park) dem-
onstrates the high degree of correspondence between
the predicted probabilities of frog occurrence (p) and
the actual presence/absence of frogs at those water bod-
ies (Fig. 6). For water bodies with p < 0.5, only 18 of
92 (19.6%) actually contained frog larvae. This actual
probability of occurrence (0.196) was very similar to
the predicted probability of occurrence of 0.174 (cal-
culated as the mean p of water bodies with p < 0.5).

For water bodies with p = 0.5, 21 of 31 (67.7%) ac-
tually contained frog larvae. Again, this actual prob-
ability of occurrence (0.677) was very similar to the
predicted probability of occurrence of 0.671 (cal culated
as the mean p for water bodies with p = 0.5).

DiscussioN

Effects of habitat variables and fish
on patch occupancy

The models developed in this study provide the first
comprehensive analysis of the factors influencing the
probability of patch occupancy by R. muscosa, and
suggested important effects of several variables. Our
regression results indicated that the occurrence of lar-
vae appeared to be strongly influenced by water body
depth. Unlike other anurans (i.e., frogs and toads) in
the Sierra Nevada whose larvae inhabit shallow ponds
(typically <1 m deep: Matthews et al. 2001), R. mus-
cosa larvae were most likely to be found in water bod-
ies deeper than 3 m. Earlier studies also suggested the
importance of water body depth in influencing patch
occupancy by R. muscosa (Bradford 1989, Knapp and
Matthews 2000), but our results describe the actual
shape of the relationship between water body depth and
the probability of frog occurrence after accounting for
the effects of all other significant independent vari-
ables. The dependence of R. muscosa on deep water
bodies for successful breeding is a consequence of the
inability of larvae to complete metamorphosisin asin-
gle summer. As aresult, larvae overwinter one or more
times before reaching metamorphosis. At high eleva-
tions in the Sierra Nevada, shallow ponds often dry by
late summer or freeze solid in winter, and as a result
successful breeding is more likely in deeper, more per-
manent water bodies (R. A. Knapp and K. R. Matthews,
personal observation).

Water body elevation also appeared to have a sig-
nificant effect on patch occupancy, with the probability
of occurrence by R. muscosa larvae being relatively
high and constant from 2900 m to 3500 m but dropping
sharply in occurrence above 3500 m. This result sup-
ports earlier observations that mountain yellow-legged
frogs do not occur above 3650 m (Stebbins 1985). The
unusual ability of this species to breed successfully at
elevations exceeding 3000 m where the growing season
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Fic. 5. Results of the cross-validation procedure for the autol ogistic model showing the observed and predicted probability
of R. muscosa occurrence (+95% confidence limits) for 29 categories of the linear predictor (§). The value for one of the
categories lies outside the 95% confidence interval. The inset figure shows the same data but as a histogram of the proportion
of lakes in which larvae are present versus absent as a function of the predicted probability of occurrence (p).

for larvae is probably less than four months long (late
June to early September; Bradford 1983) appears due
to the ability by larvae to overwinter.

The regression models also indicated a highly sig-
nificant negative effect of nonnative trout presence/
absence on the probability of larval occurrence. This
is likely the result of predation by fish on frog larvae
and adults (observations of predation described in
Needham and Vestal 1938). This result lends support
to previous studies that also suggested an important
role for introduced trout in the decline of R. muscosa
(Bradford 1989, Bradford et al. 1998, Knapp and Mat-
thews 2000). Studies conducted on other amphibian
species in the Sierra Nevada and elsewhere in North
America and in Europe have also indicated that the
introduction of fish into naturally fishless mountain
lakes can limit amphibian distributions (Brafa et al.
1996, Matthews et al. 2001, Pilliod and Peterson 2001).

Patch occupancy was also significantly influenced by
the percentage of the littoral zone dominated by silt.
The importance of substrate characteristics to R. mus-
cosa was not recognized previously, and silt may be
important for at least two reasons. First, diets of R.
muscosa larvae are dominated by benthic algae and
detritus, and silt substrates of Sierra Nevada alpine
lakes are characterized by a much higher algal biomass
than is characteristic of hard substrates (R. A. Knapp,
unpublished data). Second, higher amounts of littoral

zone silt are indicative of warmer lakes with higher
productivity, habitats that may be more likely to sustain
frog populations than boulder-dominated low produc-
tivity lakes (Matthews et al. 2001).

Finally, theregression resultsindicated that the prob-
ability of patch occupancy by larvae was an increasing
function of the number of nearby fishless lakes or the
weighted distance to nearby frog populations. The iso-
lation effects represented by these variables have at
least two important implicationsfor understanding both
the historic and current distribution of R. muscosa.
First, drainages containing only afew water bodies may
never have supported frog popul ations despite the pres-
ence of otherwise suitable habitat. A possible example
isthe drainagein Fig. 6A indicated with awhite arrow.
This drainage contains only two water bodies with suit-
able R. muscosa habitat (>3 m deep, <3500 m in el-
evation). Despite the fact that the drainage has never
been stocked with trout, there are no records of historic
or current presence by R. muscosa. Second, given that
the presence of trout generally results in the exclusion
of R. muscosa (Bradford 1989, Knapp and Matthews
2000), the introduction of trout into the majority of
Sierra Nevada lakes appears to have dramatically in-
creased the degree of isolation between remaining frog
populations (Bradford et al. 1993). Based on our results
indicating the important influence of water body iso-
lation on patch occupancy, we concur with Bradford
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et al. (1993) that the documented disappearance of R.
muscosa even from fishless water bodies (Bradford
1991, Bradford et al. 1994) may be a consequence of
this reduced connectivity. Lower connectivity is the
result of several inter-related factors, including (1) the
elimination of many frog populations by fish predation,
and (2) reduced rates of successful frog dispersal be-
cause of greater distances between frog populations and
the presence of predatory fish along dispersal corridors
(lakes and streams). As a result, R. muscosa may be
much less likely to recolonize sites following natural
extinction events than was the case prior to fish intro-

ductions. Based on these observations, long-term per-
sistence of particularly isolated R. muscosa populations
will be unlikely unless population connectivity is re-
stored. This could be accomplished by removing fish
(Knapp and Matthews 1998) from water bodies near
the isolated populations and reestablishing R. muscosa.
The feasibility of this approach is supported by three
recent studies. Knapp et al. (2001) showed that R. mus-
cosa was able to recolonize the majority of lakes in
which the termination of trout stocking resulted in dis-
appearance of fish populations. In addition, recent ex-
periments in which the entire trout population was re-
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moved from several lakes showed that fish removals
allowed rapid recolonization by R. muscosa (Vreden-
burg 2002, R. A. Knapp, unpublished data).

Spatial autocorrelation

Of the six independent variables included in the pre-
dictive spatial model, the locational covariate was the
most important predictor of patch occupancy by R.
muscosa larvae (based on AIC values). When the lo-
cational covariate was replaced with a weighted dis-
tance autocovariate in the autologistic model, the au-
tocovariate was the most important predictor of patch
occupancy. Therefore, patch occupancy datawere char-
acterized by strong spatial autocorrelation even after
accounting for several significant habitat effects.

Several authors have warned that failure to account
for spatial autocorrelation may invalidate results from
classical statistical tests (Legendre 1993, Carroll and
Pearson 2000). Indeed, removal of the locational co-
variate or autocovariate terms from our models inap-
propriately inflated the statistical importance of some
variables. For example, removal of the locational co-
variate term from the exploratory spatial model (Eq. 1)
increased the P value associated with the PHQLAKES
variable from 0.073 (Table 2) to 3.3 X 10-°. This ex-
ample supports the argument that the development of
useful predictive models of animal or plant distribu-
tions will often require that spatial autocorrelation be
incorporated into modeling efforts (Augustin et al.
1998).

Spatial autocorrelation in the distribution of occu-
pied patches may result from several factors. Dispersal
and synchronous population fluctuations are likely con-
tributors to the high degree of spatial autocorrelation
we observed in the distribution of R. muscosa larvae.
Although movement by R. muscosa larvae among sites
appears to be relatively uncommon, inter-patch move-
ments by adults are frequently observed (Matthews and
Pope 1999, Pope and Matthews 2001). Adult dispersal
may create spatial autocorrelation in the distribution of
larvae if, for example, the presence of a breeding pop-
ulation of frogs in a high-quality lake increases the
chances that some adults will move to and breed in
adjacent lower-quality sites (e.g., source-sink dynam-
ics; Dias 1996). Dispersal could also cause spatial au-
tocorrelation if R. muscosa populations are subject to
extinction—-recolonization dynamics. If R. muscosa
populations frequently go extinct, the probability of
site occupancy may decrease with increasing isolation
from other R. muscosa populations, as alack of nearby
occupied sites may preclude recolonization. In addition
to dispersal, synchronous population fluctuations could
also contribute to the observed spatial autocorrelation
in the distribution of R. muscosa. Populations in close
proximity will often experience more similar environ-
ments (e.g., weather patterns) than will populations
separated by greater distances, and this may result in
a positive correlation in population dynamics (Moran
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effect; Ranta et al. 1997, Koenig 2002). For example,
Bradford (1983) reported a concurrent die-off of nearly
all R. muscosa adultsin 21 lakes within asingle drain-
age, apparently as a result of an unusually long winter
that resulted in oxygen depletion. Similar correlated
fluctuations in R. muscosa populations as a result of
disease outbreaks have also been observed (Bradford
1991; R. A. Knapp, unpublished data). Together, these
observations suggest that population dynamics in R.
muscosa may frequently be synchronous across entire
drainages, resulting in spatial autocorrelation of oc-
cupied sites.

Relevance to conservation planning

An intriguing application of our predictive spatial
model and autologistic model isto identify R. muscosa
populations that are vulnerable to extinction. While
habitat models are frequently used to identify siteslike-
ly to harbor a particular animal or plant species (Scott
et al. 2002) some authors have argued that because
habitat is the ultimate determinant of population via-
bility, habitat models could be used to predict popu-
lation persistence (Roloff and Haufler 2002). For ex-
ample, the lake in Fig. 6A indicated by a black arrow
contains frogs, but the predicted probability of occur-
rence calculated using Eq. 3 is relatively low (p =
0.21). If the variables in Eq. 3 affect the viability of
frog populations, then p, may be directly proportional
to the likelihood of population persistence. Under this
scenario, this site may have arelatively low probability
of retaining R. muscosa over the long-term. Although
this application of our models remains speculative, re-
sults from resurveys of frog populations within our
study area provide preliminary support. In 2001, one
of us (R. A. Knapp) resurveyed frog populationsin 33
of the 238 study lakes that contained R. muscosa larvae
when initially surveyed in 1995-1997 (initial surveys
conducted as part of the current study). During the 4—
6-yr period between surveys, three of the 33 lakes lost
their frog populations. These three sites had signifi-
cantly lower p; values (calculated using Eq. 3) than the
30 sites in which frog populations persisted (Xeqinee =
0.04, X oqae = 0.36; two-sample t test [one-sided]: t =
—2.3, P = 0.01). If these preliminary results are sup-
ported by the more extensive resurveys currently un-
derway, our predictive model could provide a useful
tool for evaluating population viability that requires far
less species-specific life history information and makes
fewer assumptions than more traditional population vi-
ability analyses that use stochastic simulation models
(Boyce 1992).

In conclusion, although ecological data are often
characterized by spatial autocorrelation, a feature that
can invalidate results obtained from classical regres-
sion models, the techniques we used in the current
study allowed us to explicitly incorporate spatial au-
tocorrelation into the modeling process. Although still
rarely used by ecologists, these modeling techniques
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have wide applicability to efforts aimed at understand-
ing the factors that influence patch occupancy and at
predicting animal and plant distributions.
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