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IMPACT OF PARAMETER UNCERTAINTY ON

CRITICAL SWAT OUTPUT SIMULATIONS

A. M. Sexton,  A. Shirmohammadi,  A. M. Sadeghi,  H. J. Montas

ABSTRACT. Watershed models are increasingly being utilized to evaluate alternate management scenarios for improving water
quality. The concern for using these tools in extensive programs such as the national Total Maximum Daily Load (TMDL)
program is that the certainty of model results and efficacy of management scenarios are not often measured and therefore are
not well known. In this study, we used the mean value first‐order reliability method (MFORM), a computationally efficient
uncertainty analysis method, to determine the contribution of parameter uncertainty to total model uncertainty in streamflow,
sediment, and nutrient outputs in a small Maryland watershed. Examination of sensitive and uncertain parameters revealed
that parameters not considered highly sensitive contributed to model output uncertainty to a large extent. Therefore, highly
sensitive parameters should not be the only parameters considered in uncertainty or calibration analyses. Measures of output
uncertainty showed that sediment had the largest amount of variance from its mean value (CV = 28%), while nitrate,
phosphate, and streamflow had considerably less variance, with annual average CVs of 19%, 17%, and 15%, respectively.
The largest amounts of model uncertainty occurred during wet periods. This study concluded that with improved knowledge
of the true value and associated uncertainty of input parameters, and improved algorithms to capture the variability of rainfall
and associated flow, watershed water quality models will be of much greater use to TMDL studies and studies alike.
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ater is one of the most essential, life‐
sustaining substances on earth. Unfortunately,
the quantity and quality of water is constantly
being threatened by both natural and anthro‐

pogenic sources. Hydrologic and water quality models are
tools used to identify and strategize mitigation of such threats
by estimating the past, present, and future status of our water
resources under different scenarios (e.g., changing climate,
land uses, and land management practices). Information
gathered from model estimates is normally used to decide the
course of action to improve water conditions. Model‐
simulated data are often used to supplement monitored data;
however, in the absence of monitored data, e.g., in un‐gauged
or partially gauged basins, model‐simulated data are the only
viable data available.

Given the utility of models to help manage water re‐
sources, the U.S. EPA's Total Maximum Daily Load (TMDL)
program (U.S. Congress, 1972) leans heavily on models to
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assist in setting limitations on the amount of impairing pollu‐
tants that can be released into waterbodies. This program has
the potential to bring impaired U.S. waters to a level of well‐
ness that has not been achieved for the last several decades.
However, the program has been met with several challenges,
including the need to improve watershed and water quality
modeling efforts and uncertainty analysis techniques (USE‐
PA, 2002).

The Soil and Water Assessment Tool (SWAT; Arnold et al.
1998) is a well‐known watershed-scale water quality model
included in the slate of TMDL modeling tools. It has been
widely used and tested in different regions of the world (Ar‐
nold et al., 1999; Boorman, 2003; Sohrabi et al., 2003; Srini‐
vasan, et al., 1998; Vandenberghe et al., 2001). Calibration
and validation studies on SWAT have revealed a great deal of
information about its performance and appropriate uses (Chu
and Shirmohammadi, 2004; Benaman et al., 2005; Behera
and Panda, 2006; Reungsang et al., 2007; Sexton et al., 2010;
Tolson and Shoemaker, 2007). However, further exploration
of SWAT's applicability is needed, especially because the
performance of TMDL modeling tools, including SWAT,
seems to be inconsistent and in need of advancement (Ben‐
ham et al., 2006; Borah et al., 2006; Muñoz‐Carpena et al.,
2006; Shirmohammadi et al., 2006; Wagner et al., 2007).

Output uncertainty of models used for TMDL analysis is
a major concern, especially because of the legal, financial,
and environmental ramifications of making decisions based
on model results. In an article published recently as a result
of the collective effort of a multi‐disciplinary panel of experts
to evaluate the current status of TMDL modeling technology
(Shirmohammadi  et al., 2006), it was suggested that the ex‐
plicit quantification of model uncertainty be an integral part
of the TMDL process. In watershed-scale water quality mod‐
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eling, this is largely accomplished by examining uncertainty
in model parameters (Tung, 1996).

Several methods are available to tabulate model uncer‐
tainty based on parameter uncertainty, including Monte Car‐
lo based approaches (Sohrabi et al., 2002; Dubus et al., 2003;
Sohrabi et al., 2003), first‐order error analysis (Melching and
Yoon, 1996; Zhang and Yu, 2004; Shen et al. 2008), and
Bayesian methods (Gallagher and Doherty, 2007; Li et al.,
2009; Yang et al., 2008). Model uncertainty has been shown
to be watershed condition specific (Eckhardt et al., 2003;
Wagner et al., 2007). In other words, parameters have differ‐
ent levels of importance in model uncertainty depending on,
e.g., land cover/land use, management scenarios, and other
characteristic  watershed properties. In watershed assess‐
ments in which numerous management scenarios are tested
(e.g., TMDLs), computationally efficient uncertainty meth‐
ods would be quite beneficial. Thus, first‐order error analysis
has this advantage over probabilistic methods (Monte Carlo
and Bayesian), which require hundreds or thousands of mod‐
el runs before a solution will converge.

The mean value first‐order reliability method (MFORM;
Melching and Bauwens, 2001) is an uncertainty analysis ap‐
proach that allows the user to determine the uncertainty of the
dependent variable as well as the uncertainty contributed by
each model input parameter. Determination of parameter un‐
certainty is useful to identify parameters that require special
attention during field measurement and model calibration,
which would reduce their contribution to model output un‐
certainty. MFORM has the advantage of being very efficient
because it only requires calculation of the first two statistical
moments (mean and variance) of the model parameters. It
does not require parameter probability density functions
(PDFs), which are quite difficult to determine and often re‐
quire making a number of assumptions. Parameter covarian‐
ce can be considered in MFORM. However, the relationship
between parameters is often unknown; thus, the parameters
are often assumed to have no correlation. Therefore, the
covariance component of MFORM (see eq. 3 in the Uncer‐
tainty Analysis Method section) is often not accounted for.

The main shortcoming of MFORM is its linear approxi‐
mation of the model. The method assumes that a single linea‐
rization of the model output function at the mean parameter
values represents the statistical properties of model output
over the complete range of parameter values (Melching and
Yoon, 1996). The more nonlinear the model, the less accurate
the method become, as parameters depart from their mean
values. Approximating to higher‐order derivatives may in‐
crease the accuracy of this method (Bobba et al., 1996); how‐
ever the level of complexity also increases, especially for
complex, black‐box models such as SWAT. Several studies of
nonlinear water quality models (Bobba et al., 1996; Zhang
and Haan, 1996; Brown, 2001; Melching and Bauwens,
2001) have compared uncertainty methods that assume lin‐
earity (such as MFORM) to those that do not (such as Monte
Carlo) and have obtained the same or similar results. These
studies give credence to the accuracy of MFORM in light of
its simplistic assumption.

MFORM and other first‐order error analysis methods have
been effectively used in numerous hydrologic/water quality
modeling studies, but not extensively in SWAT. Melching
and Bauwens (2001) evaluated uncertainty in coupled
nonpoint‐source and stream water quality models applied to
a suburban watershed. They used the Latin hypercube sam‐

pling (LHS) and mean value first‐order reliability method
(MFORM) to determine prediction uncertainty of dissolved
oxygen (DO) concentrations. The two uncertainty methods,
LHS and MFORM, agreed well in determining key sources
of uncertainty. Zhang and Haan (1996) conducted a study on
the effect of uncertainty in input parameters on output param‐
eter uncertainty using the Field Hydrologic and Nutrient
Transport Model (FHANTM). Both the first‐order analysis
(FOA) and Monte Carlo simulation (MCS) methods were
used to quantify model parameter uncertainties. The two dif‐
ferent approaches produced reasonably close results in indi‐
cating which parameters contributed the most uncertainty to
the output values. FOA estimates of standard deviation for
runoff (RO), subsurface lateral flow (LF), P concentration in
runoff (Pcon_RO), and P concentration in lateral flow
(Pcon_LF) were 8.17, 1.72, 0.085, and 0.063, respectively.
While the corresponding standard deviations for MCS were
7.03, 1.80, 0.085, and 0.188, respectively. Zhang and Yu
(2004) applied first‐order error analysis (FOEA) to a com‐
plex model (HSPF) to determine margin of safety (MOS) val‐
ues for TMDL analysis. Precipitation was found to be the
major source of uncertainty.

The majority of studies that have evaluated uncertainty in
SWAT have used methods that require a considerable amount
of computational time (Sohrabi, et al., 2003; Bubb and Meix‐
ner, 2005; Arabi et al., 2007; Shen et al., 2008; Yang et al.,
2008; Karamouz et al., 2009; Li et al., 2009). Yang et al.
(2008) evaluated several uncertainty analysis techniques us‐
ing SWAT. In that study, the sequential uncertainty fitting al‐
gorithm (SUFI‐2), parameter solution (Parasol), generalized
likelihood uncertainty estimation (GLUE), and a Bayesian
inference framework required 3000, 7000, 10,000, and
45,000+ model runs, respectively, in order to obtain results.
Those numbers of runs are not very efficient, especially if
output uncertainty must be determined for multiple wa‐
tershed management scenarios, as suggested by Wagner et al.
(2007), due to watershed‐dependent uncertainty. Li et al.
(2009) employed the Bayesian approach to estimate parame‐
ter uncertainty and its contribution to SWAT model simula‐
tion uncertainty. They found parameter uncertainties as well
as their contribution to model simulation uncertainty to be
relatively small. Arabi et al. (2007) used a three‐step proce‐
dure including one‐factor‐at‐a‐time (OAT) sensitivity analy‐
sis and GLUE to analyze the uncertainty in SWAT model
estimates of water quality benefits of best management prac‐
tices (BMPs). BMP effectiveness varied by less than 10%,
making the model suitable for use in watershed management
plans such as TMDLs. However, uncertainties associated
with sediment and nutrient outputs of the model were too
large, potentially limiting its application for point estimates
of design quantities.

Of the SWAT uncertainty studies listed above, only one
(Shen et al., 2008) explicitly identified the uncertainty con‐
tributed by each parameter and discussed the effect on model
uncertainty and outputs. Shen et al. (2008) used first‐order er‐
ror and Monte Carlo analyses to analyze the effect of parame‐
ter uncertainty on model outputs. They found that the curve
number parameter contributed the largest amount of uncer‐
tainty to runoff, sediment, organic N, nitrate, and TP uncer‐
tainty. Since the runoff parameters were the main source of
uncertainty, the runoff process was mainly responsible for the
uncertainty of nonpoint‐source pollution load. Based on our
literature review, this was the only SWAT uncertainty study
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that used first‐order error analysis to characterize parameter
and model output uncertainty; however, it was conducted on
a watershed located in a mountainous region of China.
Hence, there is a need to apply first‐order methods such as
MFORM to SWAT in U.S. watersheds of various physio‐
graphic and characteristic regions to determine watershed‐
specific parameters needing more careful evaluation or
measurement to reduce uncertainty and to quantify model
output uncertainty. Such methods can potentially be used to
quantify uncertainty in the TMDL framework.

The objective of this study was to (1) identify both sensi‐
tive and uncertain parameters in SWAT using MFORM,
(2)�quantify uncertainties in streamflow, sediment, and nutri‐
ent outputs of the SWAT model, and (3) compare the sensitiv‐
ity and uncertainty results obtained by MFORM in this study
with other similar studies of SWAT cited in the literature.
This will substantiate the potential use of MFORM in TMDL
uncertainty assessments.

MATERIALS AND METHODS
SITE DESCRIPTION

Warner Creek watershed is located in Frederick County,
Maryland, within the piedmont physiographic region. The
watershed area is approximately 340 ha (840 acres) and
drains into Little Pipe Creek, a tributary of the Monocacy
River (fig. 1). The Monocacy river basin is known to contrib‐
ute high levels of nutrients to the larger Chesapeake Bay wa‐
tershed (Blankenship, 2007; USDA‐SCS, 1990). Several of
its water bodies are listed in Maryland's 303(d) list of im‐
paired waters (MDE, 2008). Nutrient loads in the study wa‐
tershed can mostly be attributed to nonpoint‐sources,
including grazing cattle and excess nutrients from croplands.

There are two dominant soil types in Warner Creek wa‐
tershed, Manor‐Edgemont‐Brandywine soils (~1/3 of the wa‐
tershed) and Penn‐Reading‐Croton soils (~2/3 of the
watershed). All are well drained soils except for Croton,
which is poorly drained. Most of the upland agricultural soils
belong to the Penn silt loam series, with slopes ranging from

Figure 1. Location of Warner Creek watershed in Maryland.

3% to 8%. The land uses consist of mixed agriculture (~76%),
urban (~13%), forest (~11%), and water (<1%).

MODEL DESCRIPTION AND DATA ACQUISITION
SWAT (Arnold et al., 1998) is a process‐based, semi‐

distributed model that operates in continuous time on a daily
time step. The main components of SWAT include: climate,
hydrology, land cover/plant growth, erosion, nutrients, pesti‐
cides, land management, channel routing, and reservoir rout‐
ing. The version of SWAT used in this study was
AVSWATX‐2003, which operates in the ArcView GIS inter‐
face (DiLuzio et al., 2004).

Daily climatic data measured in subbasin 2 (fig. 2) were
used during the simulation period. Missing rainfall and tem‐
perature data were filled in using daily measurements from
a nearby monitoring station approximately 19 km (12 mi.)
distant in Emmitsburg, Maryland (fig. 1). Daily solar radi‐
ation, wind speed, and relative humidity data were generated
using SWAT's weather generator. Observed flow and chemi‐
cal loading data were obtained from field measurements;
however, supplementary data were obtained from Chu and
Shirmohammadi (2004) and Chu et al. (2004). Streamflow
was separated into surface flow and baseflow using the
streamflow partitioning method of Linsley et al. (1982).

The three basic GIS maps required to run SWAT include
digital elevation model (DEM), land cover/land use, and soils
data. A U.S. Geological Survey (USGS) National Elevation
Dataset (NED) with 30 m resolution was obtained from GI‐
SHydro2000 software (Moglen, 2004). Land uses for each
field were identified by aerial photos obtained from the
USDA Agricultural Stabilization and Conservation Service
(USDA‐ASCS). The land use map was created in the ERDAS
IMAGINE GIS system (Searing and Shirmohammadi, 1994).
A SSURGO soil map of Frederick County, Maryland, was
downloaded from the USDA‐NRCS Soil Data Mart server.

Based on the configuration of stream segments, the wa‐
tershed was delineated into eight subbasins (fig. 2). Within
each subbasin, the superimposing of similar landuses and soil
types created 53 hydrologic response units (HRUs). A thresh‐
old value of 15% was chosen for both soil and land use types.
Therefore, similar soils and land uses that made up less than
15% of a subbasin area were not assigned to an HRU. The wa‐
tershed is fairly small (340 ha), and the variation in land use

Figure 2. Location of subbasins and land use configuration.
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Table 1. Description of SWAT input parameters
evaluated in uncertainty analysis.

Parameter Description

Streamflow
CNOPwgs SCS runoff curve number during winter 

growing season
CNOPskp SCS runoff curve number during spring 

kill/planting season
CNOPsgs SCS runoff curve number during spring 

growing season
ESCO Soil evaporation compensation factor
GW_REVAP Groundwater “revap” coefficient
HRUSLP Average slope steepness (m m‐1)
RCHRG_DP Deep aquifer percolation factor
SMFMN Melt factor for snow on December 21 

(mm H2O °C‐1 d‐1)
SOL_AWC1 Available water capacity of soil layer 1 

(mm H2O mm‐1 soil)
SOL_AWC2 Available water capacity of soil layer 2 

(mm H2O mm‐1 soil)
SOL_K1 Saturated hydraulic conductivity of soil layer 1 

(mm h‐1)
SOL_K2 Saturated hydraulic conductivity of soil layer 2 

(mm h‐1)

Sediment
ADJ_PKR Peak rate adjustment factor for sediment routing 

in the subbasin
BIOMIX Biological mixing efficiency
CH_COV Channel cover factor
CH_EROD Channel erodibility factor
SLSUBBSN Average slope length (m)
SPCON Linear parameter to calculate maximum 

sediment re‐entrained
SPEXP Exponent parameter to calculate maximum 

sediment re‐entrained
USLE_P USLE equation support practice factor

Nitrate
ANION_EXCL Fraction of porosity from which anions are 

excluded
CMN Rate factor for humus mineralization of active 

organic nutrients (N and P)
FRT_SURF Fraction of fertilizer applied to the top 10 mm 

of soil
SOL_NO3_1 Initial NO3 concentration in soil layer 1 (mg

kg‐1)
SOL_NO3_2 Initial NO3 concentration in soil layer 2 (mg

kg‐1)
NPERCO Nitrate percolation coefficient

Phosphate
PPERCO Phosphorus percolation coefficient (10 m3 Mg‐1)
SOL_LABP1 Initial soluble P concentration in soil layer 1 

(mg kg‐1)

and soil types is not very extensive. Therefore, this level of
detail was considered to be suitable for the project. The
SWAT user's manual suggests that thresholds between 10%
and 20% are adequate in most cases (Winchell et al., 2007).

UNCERTAINTY ANALYSIS METHOD
The mean value first‐order reliability method (MFORM)

was chosen to quantify uncertainties in the model prediction
of streamflow, sediment, nitrate, and phosphate loads. This
approach allows the user to determine the variance in the out‐
put variable as well as the variance contributed by each im‐
portant input parameter, otherwise known as basic variable.

Basic variables were determined to be important based on
sensitivity analyses found in the literature (Sohrabi et al.,
2003; White and Chaubey, 2005), the physical meaning of
variables as they relate to output variables, and the level of
parameter importance during preliminary model calibration
(Sexton, 2007). Depth into the soil layer and seasonal varia‐
tion of curve number were also considered in the examined
parameters. A description of each basic variable considered
in this study is listed in table 1.

MFORM is derived by performing a Taylor series expan‐
sion of the model output function as follows:
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where Y is the dependent variable or model output of interest,
g(Xe) is the function representing the simulation process to
obtain Y, Xe is the vector of basic variables at the expansion
point, n is the number of basic variables xi, and )/( ixg ∂∂  rep‐
resents the rate of change of the model output with respect to
a unit change in each basic variable, usually referred to as the
sensitivity coefficient. In MFORM, the expansion point is at
the mean value of the basic variable. Therefore, the mean and
variance of the dependent variable can be approximated as:
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where E(Y) is the expected value (mean) of random variable
Y, Xm is the vector of basic variables at the mean values, ��i�2
is the variance of basic variable i, Cv(xi, xj) is the covariance
of basic variables i and j, and all other variables are previous‐
ly defined. The first term represents the variance of statisti‐
cally independent parameters, while the second term is used
to tabulate the variance of correlated parameters. If basic
variables are not correlated, then Cv(xi, xj) is equal to zero. In
this case, the variance of the output can be written as:
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This term represents the fraction of model output variance
(FOV) contributed by each basic variable (xi). In this equa‐
tion, the squared sensitivity coefficient )/( ixg ∂∂ serves as a
way to assign a measure of importance to the variance of each
basic variable. When using complex models, the best way to
solve for )/( ixg ∂∂  is by using numerical methods.

Tomovic (1963) defined the sensitivity coefficient in its
simplest form using one basic variable as:
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where x0 is the initial value of the basic variable, � x is the
change in the basic variable, and all other symbols are de‐
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fined above. Melching and Bauwens (2001) used the same
forward difference scheme to tabulate )/( ixg ∂∂  in an
MFORM analysis with change in xi equal to 1%. They origi‐
nally increased xi by 10%, but that was too large for pollutant
removal efficiency parameters. Melching and Yoon (1996)
increased parameter values in the QUAL2E model by 5%
based on Brown and Barnwell's (1987) recommendation
when calculating uncertainty in QUAL2E‐UNCAS. That
percentage of increase was effectively used.

The unit change of xi depends on the sensitivity of the
model to change in parameters. Numerous studies using the
forward difference scheme have changed parameters be‐
tween 1% and 10% (Melching and Yoon, 1996; Melching and
Bauwens, 2001; Zhang and Yu, 2004; Zhang and Haan,
1996). Changes beyond 10% would likely cause improbable
estimates of sensitivity due to model nonlinearity. We know
that models such as SWAT are not linear, but for small per‐
turbations they can be assumed linear. In modeling, there is
always a balancing act between efficiency and accuracy. In
this study, the forward difference numerical method with 5%
parameter increase was chosen to tabulate the sensitivity co‐
efficient because it is a suitable method that gives valid re‐
sults and it requires fewer model runs than, for example, a
central difference scheme. This efficiency is very beneficial,
especially for studies requiring a large number of repeated
simulations to test and compare different scenarios (e.g., in
TMDL analysis).

The sensitivity coefficient is often normalized to get a di‐
mensionless index that provides a more unbiased ranking of
basic parameters for sensitivity analysis (Lenhart et al., 2002;
Melching and Yoon, 1996; Shirmohammadi et al., 2006). Du‐
bus and Brown (2002) refer to the absolute value of the
normalized sensitivity as the maximum absolute ratio of vari‐
ation (MAROV) index. The absolute value allows for better
comparison between parameters. Using only one parameter
(x) for simplification purposes, the normalized sensitivity
can be expressed as:
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where all symbols are defined above. As S increases, the out‐
put variable has an increasing sensitivity to changes in the
given input parameter. Sensitivity analysis was conducted on
all output variables (streamflow, sediment, nitrate, and phos‐
phate) over annual and monthly timeframes using the associ‐
ated important input parameters.

MFORM is an attractive method to use over other uncertain‐
ty techniques because of its simplicity. It only requires the mean
and variance of basic variables. These descriptive statistics can
be determined in a number of different ways, the simplest and
most efficient method being to survey the literature and use en‐
gineering judgment (Zhang and Yu, 2004). When there is not
enough information in the literature about parameter statistics,
a more detailed numerical method can be used.

In this study, descriptive statistics were determined for
each basic variable (table 2) by assigning a range and proba-
bility distribution to each parameter and using the appropri‐
ate equations for mean and standard deviation. The assigned
range of each variable was determined based on the sug‐
gested range in the SWAT user's manual (Neitsch et al.,
2001), the range of realistic perturbation values observed
during preliminary calibration, and the ranges specified in

the literature (Sohrabi et al., 2003). It should be noted that the
model was run with HRU‐specific (spatially variable) param‐
eter values as needed (e.g., different mean curve numbers for
different land uses). However, table 2 shows watershed‐scale
parameter statistics.

Probability distributions were chosen for each parameter
based on information synthesized from the literature. In all
cases, a bounded distribution was necessary because each pa‐
rameter has an upper and lower limit. McCuen (2002) found
the gamma distribution to be representative for curve num‐
bers used in designs built for annual maximum design storms
in watersheds composed mostly of rural lands. A gamma dis‐
tribution requires scale and shape factors to identify its mo‐
ments. The range is from zero to infinity (unbounded), and
sample mean and standard deviation are needed to quantify
the scale and shape factors (Brighton Webs, 2007). That in‐
formation was not readily available for this study. Soil hy‐
draulic conductivity was shown to be log‐normally
distributed (Coelho, 1974; Jensen and Refsgaard, 1991);
however, the log‐normal distribution is unbounded, and esti‐
mates of mean and standard deviation are necessary to deter‐
mine its distribution. That information again, was not readily
available.

The beta distribution is often used when there is not
enough information about the distribution (Wyss and Jorgen‐
sen, 1998) and for events that take place between a maximum
and minimum value (Brighton Webs, 2007). It is based on
two shape factors, which are assigned according to the likely
shape of the distribution. Therefore, a beta distribution was
used for those variables, such as curve number and soil hy‐
draulic conductivity, for which a range was determined and
there was some information about the shape of their distribu‐
tions. Variables in this study assigned to the beta distribution
were considered to have a shape similar to that of the log‐
normal distribution. The uniform distribution was assigned to
those variables for which a range was determined, but not
enough information about the behavior or shape of the dis‐
tribution was available. A log‐uniform distribution was as‐
signed to such variables if the range was within a factor of 10
or greater. The equations used to tabulate the means and stan‐
dard deviations of the beta, uniform, and log‐uniform dis‐
tributions are listed in table 3.

A Latin hypercube sampling (LHS) scheme (McKay et al.,
1979) was used to confirm the descriptive statistics of each
variable. Using the range and distribution of each variable,
250 samples of each variable were produced. Descriptive sta‐
tistic results using LHS verified those obtained using the
equations for the distributions (beta, uniform, and log‐
uniform) listed in table 3. Mean values of all variables were
then used as input to SWAT to perform model runs (1 run us‐
ing all mean values and 28 runs for 5% change of each input
parameter).  Means and standard deviations for all parameters
were used as input for MFORM tabulation of model output
uncertainty.

In this study, we conducted a thorough examination of
SWAT input parameters to determine their descriptive statis‐
tics for use in MFORM. This was necessary, since previous
literature did not provide this information. However, the val‐
ues derived in this section can now be referenced in future
studies that require this information. In addition, the methods
used here for tabulating parameter descriptive statistics can
be utilized in other modeling studies including SWAT where
watershed‐specific  parameter statistics must be obtained.
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Table 2. Watershed averaged minimum, maximum, range, mean, median,
standard deviation (SD), and coefficient of variation (CV) of basic variables.

No. Parameter Units
File

Location Distribution
Assigned

Range Min. Max. Range Mean Median SD CV

1 ADJ_PKR ‐‐ bsn Uniform 0.0‐1.0 0.0011 0.999 0.9979 0.5001 0.5 0.2893 0.5785
2 ANION_EXCL ‐‐ sol Uniform 0.0‐1.0 0.0032 0.997 0.9938 0.4999 0.4995 0.2892 0.5784
3 BIOMIX ‐‐ mgt1 Uniform 0.0‐1.0 0.0006 0.998 0.9974 0.5001 0.5 0.2893 0.5784
4 CH_COV ‐‐ rte Uniform 0.0‐1.0 0.0024 0.997 0.9946 0.4998 0.5 0.2892 0.5787
5 CH_EROD ‐‐ rte Uniform 0.0‐1.0 0.0004 0.998 0.9976 0.5000 0.5 0.2892 0.5784
6 CMN ‐‐ bsn Uniform 0.00015‐

0.00045
0.0002 0.00045 0.0003 0.0003 0.0003 0.0001 0.2893

7 CNOPwgs ‐‐ mgt2 Beta 67‐85 68 83 15 76 76 3.01087 0.03962
8 CNOPskp ‐‐ mgt2 Beta 56‐71 58 70 12 63 64 2.49791 0.03934
9 CNOPsgs ‐‐ mgt2 Beta 61‐71 62 70 8 66 66 1.67050 0.02531

10 ESCO ‐‐ hru Log‐uniform 0.01‐1.0 0.0100 0.986 0.9760 0.2151 0.0993 0.2505 1.1645
11 FRT_SURF ‐‐ mgt2 Log‐uniform 0.01‐1.0 0.0102 0.986 0.9759 0.2149 0.1002 0.2501 1.1637
12 GW_REVAP ‐‐ gw Uniform 0.02‐0.2 0.0200 0.2 0.1800 0.1100 0.11 0.0521 0.4735
13 HRUSLP m m‐1 hru Uniform 0.0‐0.08 0.0003 0.07963 0.0794 0.0392 0.0401 0.0230 0.5867
14 NPERCO ‐‐ bsn Log‐uniform 0.01‐1.0 0.0100 0.99 0.9800 0.2151 0.10047 0.2503 1.1635
15 PPERCO ‐‐ bsn Uniform 10.0‐17.5 10 17.5 7.5 13.7464 13.75 2.1687 0.1578
16 RCHRG_DP ‐‐ gw Uniform 0.0‐1.0 0.0014 0.9990 0.9976 0.5000 0.4980 0.2893 0.5785
17 SLSUBBSN m hru Beta 0.0‐30.0 2.55 27.5 24.95 14.9992 15 5.0103 0.3340
18 SMFMN mm H2O 

°C‐1 d‐1
bsn Uniform 1.4‐8.5 1.43 8.49 7.06 4.94924 4.945 2.0541 0.4150

19 SOL_AWC1 mm H2O 
mm‐1 soil

sol Uniform 0.09‐0.27 0.09043 0.269 0.17857 0.1800 0.18 0.05205 0.28920

20 SOL_AWC2 mm H2O 
mm‐1 soil

sol Uniform 0.06‐0.18 0.06005 0.18 0.11995 0.1200 0.12 0.03470 0.28918

21 SOL_K1 mm h‐1 sol Beta 22.18‐80.64 23 77.9 54.9 41.6868 40.55 10.51184 0.25216
22 SOL_K2 mm h‐1 sol Beta 9.64‐100.0 11.1 85.5 74.4 39.7616 38.05 16.08984 0.40466
23 SOL_LABP1 mg kg‐1 chm Uniform 100‐250 111 241 130 175 175 25.1376 0.1436
24 SOL_NO3_1 mg kg‐1 chm Uniform 0.0‐3.0 0.0027 2.99 2.9873 1.5006 1.495 0.8678 0.5783
25 SOL_NO3_2 mg kg‐1 chm Uniform 0.0‐5.0 0.0162 4.98 4.9638 2.5004 2.5 1.4459 0.5783
26 SPCON ‐‐ bsn Log‐uniform 0.0001‐0.01 0.0001 0.0099 0.0098 0.0021 0.0010 0.0025 1.1635
27 SPEXP ‐‐ bsn Uniform 1.0‐2.0 1 2 1 1.4999 1.5000 0.2890 0.1927
28 USLE_P ‐‐ mgt1 Uniform 0.25‐0.75 0.251 0.75 0.499 0.5001 0.5005 0.1445 0.2891

Table 3. Equations used to tabulate means and standard deviations of parameter distribution types.[a]
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[a] A and B are lower and upper limits of the parameter range; p and q are shape factors assigned to 2 and 4, respectively, based on Wyss and Jorgensen
(1998); and μX and σX are the mean and standard deviation, respectively, of the random variable.

RESULTS AND DISCUSSION
SENSITIVITY ANALYSIS

Input parameters were ranked by comparing the magni‐
tude of sensitivity displayed in output parameters using the
normalized sensitivity coefficient (S in eq. 6). Based on aver‐
age annual S values, table 4 lists the rank of important param‐
eters associated with each output variable. Streamflow was
most sensitive to CNOPwgs, the parameter representing
curve number for moisture condition II during the winter
growing season. Curve number determines the volume of sur‐
face runoff contributing to total streamflow. The impact of
changing this value, especially during the wettest part of the
year (winter growing season), should largely affect stream‐

flow volume. However, the reason that streamflow is not as
strongly affected by the other two seasonal curve numbers,
CNOPskp (ranked #7) and CNOPsgs (ranked #9), is likely be‐
cause of their occurrence during the drier and warmer part of
the year. Curve number during the spring kill/planting season
takes place over a shorter duration of time, which may also
have led to changes in that parameter having less effect on
changes in streamflow output. Several studies have found the
SCS curve number to be one of the most sensitive input pa‐
rameters for streamflow prediction (Chu and Shirmoham-
madi, 2004; White and Chaubey, 2005). Compared to
CNOPwgs, recharge to the deep aquifer (RCHRG_DP),
available water capacity of soil layers 1 and 2 (SOL_AWC1
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Table 4. Rank of important input parameters for sensitivity of average annual streamflow, sediment, nitrate, and phosphate output variables.[a]

Rank

Streamflow Sediment Nitrate Phosphate

Input
Parameter S

%
S

Input
Parameter S

%
S

Input
Parameter S

%
S

Input
Parameter S

%
S

1 CNOPwgs 1.40 68 SPEXP 0.58 38 ANION_EXCL 0.32 75 SOL_LABP1 0.93 84
2 RCHG_DP 0.20 10 CH_COV 0.29 19 BIOMIX 0.09 21 BIOMIX 0.18 16
3 SOL_AWC2 0.15 7 CH_EROD 0.29 19 SOL_NO3_2 0.01 2 PPERCO 0.00 0
4 SOL_AWC1 0.08 4 HRUSLP 0.14 9 FRT_SURF 0.01 1
5 HRU_SLP 0.07 3 USLE_P 0.08 6 SOL_NO3_1 0.00 0
6 SOL_K1 0.06 3 ADJ_PKR 0.04 3 CMN 0.00 0
7 CNOPskp 0.05 2 SLSUBBSN 0.04 3 NPERCO 0.00 0
8 ESCO 0.02 1 BIOMIX 0.04 3
9 CNOPsgs 0.02 1 SPCON 0.00 0

10 GW_REVAP 0.01 1
11 SOL_K2 0.01 0
12 SMFMN 0.00 0

[a] S = normalized sensitivity coefficient (eq. 6), and %S = percentage of total S.

and SOL_AWC2), average slope steepness (HRU_SLP), and
saturated hydraulic conductivity of soil layer 1 (SOL_K1)
were moderately sensitive. Snow melt factor (SMFMN) had
the least effect on changes in streamflow. In a watershed or
region where significant snowfall and accumulation are prev‐
alent, this parameter would likely be more sensitive.

The most sensitive parameter for sediment prediction was
SPEXP, a parameter representing an exponent in calculating
the maximum amount of sediment that can be re‐entrained
during channel sediment routing (table 4). Channel cover
(CH_COV) and erodibility (CH_EROD) had the same mod‐
erate to high level of sensitivity, while average slope steep‐
ness (HRU_SLP) and support practice factor (USLE_P) were
next in importance to sensitivity of sediment prediction. Sed‐
iment output was least sensitive to ADJ_PKR, SLSUBBSN,
and BIOMIX. Shen et al. (2008) found HRU_SLP, USLE_P,
and BIOMIX to be sensitive parameters in sediment simula‐
tion as well. In comparing our sensitive and uncertain param‐
eters to those of other studies, it is important to note that most
major input parameters in this study were adjusted for only
one output variable (e.g., curve number was only adjusted for
streamflow calibration, and not for sediment and nutrient cal‐
ibrations) to avoid model overfitting and diminishing of pre‐
viously calibrated components (e.g., hydrology). Therefore,
previously adjusted parameters that were highly sensitive or
uncertain in one component were not considered in the re‐
maining output calibrations.

Nitrate prediction was most sensitive to the fraction of po‐
rosity from which anions are excluded (ANION_EXCL)
(table 4). This parameter determines the portion of anions,
such as nitrate, that is transported away from the surface of
soil particles. The percolation coefficient for nitrate (NPER‐
CO) had no effect on nitrate sensitivity. Biological mixing ef‐
ficiency (BIOMIX) was a moderately sensitive parameter for
both nitrate and phosphate prediction. As BIOMIX increases,
nitrate and phosphate loads decrease due to redistribution of
nutrients by biological mixing (Neitsch et al., 2001). Initial
soluble phosphorus concentration in soil layer 1 (SOL_
LABP1) was the most sensitive parameter in phosphate pre‐
diction (table 4). In a study examining total phosphorus sensi‐
tivity using one‐at‐a‐time (OAT) sensitivity analysis,
SOL_LABP was ranked #2 out of the phosphorus‐related pa‐
rameters (Arabi et al., 2007). Percolation coefficients for
phosphate (PPERCO) had no effect on phosphate sensitivity.

FRACTION OF VARIANCE
The fraction of variance (FOV) was tabulated for input pa‐

rameters important to streamflow, sediment, nitrate, and
phosphate output loads on an annual and monthly basis.
Table�5 shows the ranking of important input parameters for
each output variable using annual loads. Recharge to the deep
aquifer (RCHRG_DP) contributed 76% of the total variance
in streamflow output. This parameter represents the fraction
of water that percolates from the root zone to the deep aquifer.
Water traveling to the deep aquifer is not redistributed into
the system but is removed from the system. Hence, this pa‐
rameter is important to the total volume of streamflow mod‐
eled in the hydrologic cycle. Note that RCHRG_DP was not
a highly sensitive parameter, contributing to only 10% of
streamflow sensitivity (table 4). The variance in this parame‐
ter makes a difference in its ranking.

CH_COV and CH_EROD were the leading contributors to
uncertainty in sediment output, with annual percentage totals of
40% (table 5). Their contribution to sediment sensitivity, how‐
ever, was significantly less, 19% (table 4). SPEXP did not con‐
tribute as much to sediment FOV (15%, ranked #3) as it did to
sediment sensitivity (38%, ranked #1). Shen et al. (2008) found
SPEXP to contribute 8.36% (ranked #4) of the variance in sedi‐
ment output; however, it was not ranked within their top ten pa‐
rameters contributing to sediment sensitivity. This, again,
illustrates the significant difference in the contribution of one
parameter to sensitivity compared to uncertainty. Input parame‐
ters that had significance in the uncertainty of nitrate and phos‐
phate simulation had the same rank in sensitivity results (tables
4 and 5). ANION_EXCL and BIOMIX where ranked #1 and #2,
respectively, for nitrate sensitivity and uncertainty contribution,
and SOL_LABP1 and BIOMIX where ranked #1 and #2, re‐
spectively, for phosphorus.

Researchers often consider sensitive parameters (input
parameters that cause a large change in output with respect
to changes in input) to be the most important parameters con‐
tributing to model output uncertainty. This study shows that
parameters not deemed as highly sensitive (e.g., RCHRG_
DP, CH_COV, and CH_EROD) are important contributors to
model output uncertainty. The reason that such parameters
can surpass highly sensitive parameters in their level of im‐
portance to uncertainty is explained by their variance. When
the value of a parameter is known with little certainty, its po‐
tential to cause variability in output simulation is larger than
if the true value is known.
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Table 5. Ranking of important input parameters to streamflow, sediment, and nutrient prediction
uncertainty based on average annual fraction of variance (FOV) contribution (eq. 4).[a]

Rank

Streamflow Sediment Nitrate Phosphate
Input

Parameter
FOV

(mm)2
%

TV
Input

Parameter
FOV

(kg ha‐1)2
%

TV
Input

Parameter
FOV

(kg ha‐1)2
%

TV
Input

Parameter
FOV

(kg ha‐1)2
%

TV
1 RCHRG_DP 2252.79 76 CH_COV 220616.13 40 ANION_EXCL 1.37 96 SOL_LABP1 0.16 60
2 CNOPwgs 314.22 11 CH_EROD 220616.13 40 BIOMIX 0.05 3 BIOMIX 0.11 40
3 SOL_AWC2 130.93 4 SPEXP 83172.86 15 FRT_SURF 0.00 0 PPERCO 0.00 0
4 HRUSLP 92.34 3 HRUSLP 18864.99 3 SOL_NO3_2 0.00 0
5 ESCO 78.15 3 ADJ_PKR 4604.70 1 SOL_NO3_1 0.00 0
6 SOL_AWC1 57.27 2 BIOMIX 1681.70 0 CMN 0.00 0
7 SOL_K1 13.43 0 USLE_P 1322.35 0 NPERCO 0.00 0
8 GW_REVAP 5.07 0 SLSUBBSN 753.55 0
9 SOL_K2 1.78 0 SPCON 0.00 0

10 CNOPskp 0.48 0
11 SMFMN 0.27 0
12 CNOPsgs 0.06 0

[a] FOV = average annual FOV, and %TV = percentage of total variance.

Table 6. Predicted annual loads simulated using mean values (MV) of input parameters, standard deviations (SD), and
variances tabulated using MFORM, and coefficient of variation (CV) of streamflow, sediment, nitrate, and phosphate.

Output Variable 1994 (Jan.‐Dec.) 1995 1996 1997 1998 1999 2000 2001 Average

Streamflow
MV pred. annual (mm) 311.0 277.0 817.0 218.0 360.0 308.0 227.0 98.0 327.0
SD (mm) 37.0 40.0 92.0 33.0 84.0 53.0 31.0 14.0 48.0
Variance (mm2) 1377.0 1581.0 8510.0 1117.0 7059.0 2762.0 969.0 199.0 2947.0
CV (%) 11.9 14.4 11.3 15.4 23.3 17.0 13.7 14.4 15.2

Sediment
MV pred. annual (kg ha‐1) 2158.0 1815.0 5997.0 1204.0 2187.0 1931.0 1485.0 558.0 2167.0
SD (kg ha‐1) 743.0 526.0 1688.0 392.0 493.0 452.0 312.0 197.0 600.0
Variance (kg ha‐1)2 551350.0 277050.0 2847800.0 153810.0 242790.0 203990.0 97469.0 38909.0 551646.0
CV (%) 34.4 29.0 28.1 32.6 22.5 23.4 21.0 35.3 28.3

Nitrate
MV pred. annual (kg ha‐1) 4.9 5.1 11.4 3.3 11.2 5.3 3.4 1.3 5.7
SD (kg ha‐1) 0.8 1.3 2.3 0.3 0.9 1.6 0.6 0.4 1.0
Variance (kg ha‐1)2 0.6 1.8 5.1 0.1 0.8 2.4 0.3 0.2 1.4
CV (%) 16.1 26.2 19.8 9.3 8.0 29.6 16.7 29.7 19.4

Phosphate
MV pred. annual (kg ha‐1) 3.2 2.4 6.3 1.3 1.8 2.2 1.7 0.6 2.4
SD (kg ha‐1) 0.5 0.4 1.1 0.2 0.3 0.5 0.3 0.1 0.4
Variance (kg ha‐1)2 0.2 0.2 1.2 0.0 0.1 0.2 0.1 0.0 0.3
CV (%) 14.1 18.1 17.8 15.3 15.0 21.0 19.6 18.6 17.4

Figure 3. Annual precipitation and line of annual average precipitation in
Warner Creek watershed.

OUTPUT VARIANCE

Table 6 shows predicted annual loads simulated using
mean values (MV) of input parameters, standard deviations
(SD) and variances (tabulated using MFORM), and coeffi‐
cients of variation (CV) of streamflow, sediment, nitrate, and
phosphate. For all four output variables, the largest amount
of variance occurred in 1996. Variances were 8510 mm2,
2847800, 5.1, and 1.2 (kg ha‐1)2 for streamflow, sediment, ni‐

trate, and phosphate, respectively, in 1996 (table 6). For sedi‐
ment and phosphate, variance was an order of magnitude
larger in 1996 than in all other years. Record amounts of rain‐
fall fell in 1996, as shown in figure 3. The second largest
amount of variance in streamflow output took place in 1998,
the second wettest year of simulation. The lowest amounts of
variance in output were observed in 2001, which was the dri‐
est year in the study period (fig. 3). These results show that
larger amounts of model uncertainty occur during extremely
wet years.

Sexton (2007) highlighted the use of the SCS curve num‐
ber method to calculate surface runoff as one of the main rea‐
sons for poor model performance during wet periods. The
SCS curve number method uses empirical data composed in
a chart to determine surface runoff volume. As a result, ex‐
treme variabilities in nature are not properly accounted for in
the distribution of rainfall. This issue points to the need to re‐
duce uncertainties associated with rainfall input as well as
runoff parameters. In addition, the algorithms used to equate
runoff may require further development or replacement by
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another method. For example, an infiltration‐based method,
such as the Green and Ampt modified by Mein and Larson
(Mein and Larson, 1973) excess rainfall method, may prove
to be a better approach to account for surface runoff. As a re‐
sult of high parameter uncertainty values, Shen et al. (2008)
also discussed the need to properly identify SWAT parame‐
ters relevant to the runoff process. Identifying the parameters
contributing to the largest amount of uncertainty helps to pin‐
point the model processes that need further development.

Comparison of average coefficients of variation in table�6
showed that sediment output had the largest amount of vari‐
ability around its mean value (CV = 28%). Nitrate and phos‐
phate had the next largest total amount of variability, with
average CVs of 19% and 17%, respectively. Streamflow out‐
put had the least amount of variability around its mean value
(CV = 15%). Other studies have also found more uncertainty
in SWAT sediment and nutrient outputs than in streamflow
outputs (Arabi et al., 2007; Shen et al., 2008). One likely rea‐
son for this effect is the fact that the simulation of sediments
and nutrients is dependent upon flow processes. Therefore,
uncertainties  in those output variables will be associated with
parameters and algorithms dependent and independent of
flow processes. Hence, uncertainty is compounded for con‐
stituent pollutant outputs.

SUMMARY AND CONCLUSIONS
This article addresses the need to improve watershed wa‐

ter quality modeling efforts including the quantification of
parameter and model uncertainties. The uncertainty method
MFORM was used to tabulate the uncertainty contribution of
individual input parameters as well as the uncertainty of
model outputs including streamflow, sediments, and nutri‐
ents. This method is attractive because of its computational
efficiency. In this study, only 29 model runs (1 + the number
of parameters) were needed to tabulate model uncertainty.
Other methods would require hundreds or even thousands of
model runs. Results of this study using MFORM were com‐
parable to results of other studies cited in the literature that
used other methods of uncertainty with SWAT. This qualifies
its potential use as a reliable and computationally efficient
method to account for uncertainties in TMDL studies.

The sensitivity coefficient and fraction of variance, two
component equations of MFORM, were used to evaluate sen‐
sitive and uncertain parameters, respectively. Results re‐
vealed that sensitive parameters should not be the only
parameters considered for model calibration and contribu‐
tion to model uncertainty. Parameters that were not highly
sensitive contributed to model uncertainty to a larger extent.
These parameters should therefore be determined more pre‐
cisely and also considered during model calibration to im‐
prove model performance and reduce model uncertainty. In
assessing the variance in the output variables, the largest
amount of output variance occurred during wet periods. This
is likely due to the limitation of the model to properly account
for extreme flow events by the use of the empirically based
SCS curve number method (Chu and Shirmohammadi, 2004;
Sexton, 2007). The infiltration‐based Green and Ampt modi‐
fied by Mein and Larson excess rainfall method may prove
to be a better approach to account for surface runoff in SWAT;
however, that method requires more detailed precipitation

and soils data. Further evaluation of model algorithms and
parameters representing runoff processes is needed.

These findings point to the need for more studies to deter‐
mine the true value of input parameters for models used in
TMDL studies, whether by field measurements or other
means of derivation. Although these models tend to be physi‐
cally based, many parameters are difficult to determine due
to natural variability or incomplete knowledge about the
physical meaning. This further establishes the need to quanti‐
fy the uncertainty associated with those parameters as it 
relates to output uncertainty. Lastly, the existence of
watershed‐dependent  uncertainty calls for the application of
uncertainty methods to SWAT simulations in other character‐
istic regions, e.g., karst areas, or the various physiographic
regions where different parameters will likely be more uncer‐
tain and require further attention.
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