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TREATMENTS OF PRECIPITATION INPUTS TO 
HYDROLOGIC MODELS

P. C. Beeson,  P. C. Doraiswamy,  A. M. Sadeghi,
M. Di Luzio,  M. D. Tomer,  J. G. Arnold,  C. S. T. Daughtry

ABSTRACT. Hydrologic models are used to assess many water resource problems, from agricultural use and water quality to
engineering issues. This study shows how the combination of rain gauges (accurate at a point) and NEXRAD precipitation
data (covering a wide area) can provide accurate, timely rainfall data that can drive the Soil and Water Assessment Tool
(SWAT) model, which provides a more reliable tool for producers and policy‐makers alike. The treatment of rainfall data was
tested in the South Fork of the Iowa River, which covers about 788 km2 (194,720 ac) and is one of 15 benchmark watersheds
of the USDA Conservation Effects Assessment Project (CEAP). The results show significant improvement in model predictions
in which rainfall data were correctly modified. Gauge records with values for trace events performed better as data sources
than records in which trace events were given zero value, even though the mean annual rainfall differed by <25 mm. The
combination of rain gauge and NEXRAD data provided superior results even when the watershed included a sufficient spatial
distribution of rain gauges. Of the six methods used to adjust gauge and NEXRAD data, inverse distance weighting or kriging
with external drift predicted streamflow among the four gauges was the best among those tested. In the absence of rain gauge
data, the simple adjustment of the NEXRAD estimates to match total rainfall amounts in the region resulted in adequate
streamflow estimates. This finding is important because uncorrected NEXRAD precipitation values, although only 15% below
annual precipitation values, resulted in a greater than 50% difference in streamflow estimates. The choice of rainfall treatment
should be considered carefully to provide accurate model predictions.
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ydrologic models are used to assess many water
resource problems, from agricultural use and wa‐
ter quality to engineering issues, including flood
or drought prediction potential, erosion rate esti‐

mates, contaminant transport, and available water quantity.
Specifically, these models are used to estimate the spatial and
temporal variability of water resources in addition to sedi‐
ment and nutrient budgets. The accuracy of these model esti‐
mates is dependent on the quality of the input data, particu-
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larly that of precipitation. The development of a hydrogeo‐
logic conceptual model is a critical step in physical model de‐
velopment because it serves as the basis for hydrologic
representation within the domain. Modeling decisions in the
development of physical models should reflect the normal
behavior expected by the hydrogeologic conceptual model
(including geometry and timing). An extensive effort toward
the development of a reasonably accurate conceptualization
that fits the available information is thus worthwhile. The
available information includes continually updated mea‐
sured data and data derived from the literature. Together, the
measured and the available values define what is expected for
each part of the water budget. This expectation is obtained by
considering all of the data compiled within the region and by
determining how each physical characteristic plays a role in
the surface‐groundwater system.

Rainfall quantities have long been recorded with land‐
based gauges by the National Weather Service, in some cases
for over a century. Most of these records include an indicator
for trace events that were not given a value during measure‐
ment. A trace event is defined as one in which precipitation
is too small to be resolved by the collecting gauges, typically
0.2 mm (Mekis and Hogg, 1997) or less. The National Clima‐
tic Data Center (NCDC, 2009) defines trace events as those
that are 0.127 mm (0.005 in.) or less. In colder climates, the
amount of rain in trace events can approach 10% of the annu‐
al precipitation (Bradley and England, 1978; Woo and Steer,
1979; Mekis and Hogg, 1997; Yang, 1999). These trace
events are often deleted or given a nominal value in their in‐
put into a hydrologic model. In the hydrogeologic conceptual
model, it has been shown that the influence of the rainfall
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from these trace events is sufficient to affect the streamflow
estimates.

In most locations, the density of rainfall gauges is suffi‐
cient for capturing statewide trends in rainfall but insufficient
for capturing local heterogeneity in the generation of surface
runoff and in the subsequent losses of sediment and nutrients.
For example, Iowa currently has nearly 350 rain gauges (one
gauge per 420 km2) and approximately 130 streamflow
gauges (with an average drainage area of roughly 3,200 km2,
often overlapping).

Other sources of precipitation data include land‐based ra‐
dar and space‐borne satellite estimates that are beginning to
produce frequent, fine‐resolution spatial data with only limit‐
ed accuracy for precipitation quantities. In some cases, over
a decade of continuous data are now available. The Next‐
Generation Radar (NEXRAD) Stage III, Stage IV, and Multi‐
sensor Precipitation Estimation (MPE) datasets are available
for most of the continental U.S. In Stage IV, each Stage III da‐
taset for the 13 River Forecast Centers is pieced together to
form a mosaic that covers the continental U.S. The MPE al‐
gorithm improves the effectiveness of the Stage III data by
delineating the effective radar coverage area and introducing
a new local bias correction procedure, which reduces biases
inherent in the radar rainfall estimates (Nelson et al., 2006).
Significant differences in the rain gauge and radar estimates
of rainfall have been observed. The radar systematically
overestimates small rain amounts and underestimates large
rain amounts (Smith et al., 1996; Young et al., 2000; Neary
et al., 2004; Over et al., 2007; Skinner et al., 2009). Jayakrish‐
nan et al. (2004) showed that NEXRAD Stage III data under‐
estimated rainfall amounts by about 42% at most gauge
locations in the Texas Gulf basin and concluded that it was
necessary for NEXRAD precipitation estimates of rainfall to
be corrected before their use in hydrologic studies.

Correction methods for NEXRAD rainfall data vary, but
all of them transform radar‐based values to expected values.
Steiner et al. (1999) developed a simple bias adjustment
method to correct NEXRAD data in northern Mississippi.
The application of threshold limits to bias‐adjusted
NEXRAD data has also been demonstrated by Tuppad et al.
(2010). Li et al. (2008) used geostatistical interpolation (krig‐
ing) to correct daily NEXRAD data using gauge data to create
spatial estimates of daily precipitation in Texas. Because NEX‐
RAD rainfall products have a tendency to overestimate small
rain events and underestimate large events, Skinner et al. (2009)
suggested that a power relationship might be an appropriate
approach. Other geostatistical methods have estimated daily
and hourly precipitation in concert with rain gauge records,
including inverse distance weighting and kriging (Haber‐
landt, 2007; Zhang and Srinivasan, 2009, 2010).

The implications of selecting a rainfall time series for
hydrologic modeling are profound and often determine the
modeling success and utility of the model. Di Luzio et al.
(2005) emphasized the importance of high‐quality input data
to the Soil and Water Assessment Tool (SWAT; Arnold et al.
1998), including the spatial benefits of NEXRAD as an input
time series (Di Luzio and Arnold, 2004). Runoff components
in the Sacramento Soil Moisture Accounting Model were
sensitive to both the spatial and temporal scales of the Stage
III precipitation inputs (Finnerty et al., 1997). The differ‐
ences in time series input resulted in significant variation in
runoff volumes and peak streamflows (Johnson et al., 1999).
Streamflow volume predictions from radar‐based input to the

U.S. Army Corps of Engineers, Hydrologic Engineering
Center—Hydrologic  Modeling System (HEC‐HMS) were
less accurate than gauge‐based simulations (Neary et al.,
2004). For a small coastal plain catchment, SWAT produced
better streamflow estimates using adjusted NEXRAD precip‐
itation data than with rain gauge data (Sexton et al., 2010).

The Soil and Water Assessment Tool (SWAT) is a wa‐
tershed model for water quantity and water quality (Arnold
et al., 1998) that has been developed over the last three de‐
cades as open‐source and available for public use. Model us‐
ers have helped develop and improve the model by assisting
with useful modifications that have been incorporated into
successive release versions. This process has resulted in a
more flexible tool that can be implemented in many different
hydrologic regimes. A detailed review of research on the
SWAT model is available (Gassman et al., 2007; Douglas‐
Mankin et al., 2010).

Good SWAT results are dependent on accurate precipita‐
tion data and the abundance of observation data to calibrate
the water budget. Runoff and evapotranspiration are sensitive
to temporal differences in precipitation data (Guo et al.,
2004); however, similar results can be obtained from many
combinations of parameter interactions (Duan et al., 1992;
Fernandez et al., 2000).

Because precipitation is a major component of water bal‐
ance, the objectives of this study were to evaluate several
methods of handling trace events for gauge‐ and radar‐based
precipitation and to determine the effect of these treatments
on SWAT estimates of streamflow.

METHODS
WATERSHED DESCRIPTION

The South Fork of the Iowa River covers about 788 km2

(194,720 ac) and is one of the 15 benchmark watersheds of
the USDA Conservation Effects Assessment Project (CEAP)
(Richardson et al., 2008). The watershed includes parts of
four counties in north‐central Iowa (Franklin, Hamilton, Har‐
din, and Wright), with the majority of the watershed located
in Hardin County (fig. 1). The drainage network has three
main tributaries: the South Fork River (580 km2), Tipton
Creek (198 km2), and Beaver Creek (182 km2). The wa‐
tershed is located on the Des Moines Lobe and is composed
of three dominant hydrologic landscape regions based on
similarities in land‐surface form, geologic texture, and cli‐
mate characteristics (Winter, 2001; Wolock et al., 2004). The
South Fork River and Tipton Creek both fall within Region�7
(humid plains with permeable soils and impermeable bed‐
rock), which occurs widely on the Lobe, while Beaver Creek
is classified as having humid plateaus with impermeable soils
and bedrock (Region 11), features that only occur in one other
location on the Lobe. Hydrologic landscape regions provide
the basis for the hydrogeologic conceptual model by indicat‐
ing whether the study area is heterogeneous enough, which
determines whether it should be modeled as separate simula‐
tions so that basin‐wide parameters can vary.

The watershed is dominated by the pothole depressions
and artificial subsurface tile drainage, needed to drain the
hydric soils, that cover nearly 54% of the watershed (Tomer
and James, 2004). The watershed is 84% cropland, and the
rest is mostly pasture or forest with very limited urban areas.
Corn and soybeans are grown on 99% of the cropland areas.
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Figure 1. Location of the South Fork River watershed showing the tributaries, four stream gauges, nine precipitation gauges, and statewide Iowa State
University AgClimate potential ET estimates.

CLIMATE DATA
Potential evapotranspiration was calculated daily and

hourly at Kanawha (30 miles north) from the Iowa State Uni‐
versity AgClimate automated weather station and averaged
1184 mm year‐1. The National Weather Service (NWS) man‐
ages nine Cooperative Observer Program (COOP) rain
gauges in and around the South Fork watershed. Two COOP
stations recorded temperature as well; Eldora and Iowa Falls
both had similar mean maximum temperatures of 14°C and
mean minimum temperatures of 2°C. Both potential evapo‐
transpiration and temperature were read into SWAT instead
of estimates from the weather generator to provide consistent
values between model scenarios. The nine stations received
an average of 900 mm of rain annually from 2000 to 2009.
The NEXRAD Stage IV totals averaged 768 mm year‐1, and
the Multisensor Precipitation Estimation (MPE) averaged
813 mm year‐1 for the same period. This rather large discrep‐
ancy in rainfall amounts between the COOP stations and
NEXRAD data must be resolved for the SWAT model to be
properly driven by its data. NEXRAD precipitation data pro‐
vide biased volume estimates of rainfall at a fine spatial dis‐
tribution (4 km cells), while rain gauge data provide accurate
volume estimates at a coarse spatial resolution. Therefore, a
combination of these sources should provide accurate rainfall
data at a fine spatial resolution. In addition to the COOP rain
gauges, there were ten tipping‐bucket rain gauges (TE525,
Texas Electronics, Inc., Dallas, Tex.) within the South Fork
watershed. These gauges had values that were between 4%
and 20% below the COOP rain gauge values and were not
used to adjust the NEXRAD data because it is likely that they
required adjustment.

The data in table 1 summarize the suite of 14 precipitation
time series used in the SWAT simulations. First, the rain
gauge data were evaluated to measure the effects of the dif‐
ferent treatments of trace events. Trace events were either set
to zero (COOP‐T0), given two nominal values (0.1 mm
[COOP‐T1] and 0.5 mm [COOP‐T5]), or given a value the
day before a measured rain event (0.1 mm [COOP‐T1b4] and
0.5 mm [COOP‐T5b4]). The value of 0.1 mm was selected
because it roughly represents the cutoff value established in
the COOP data for trace events (0.005 in.). The value of
0.5�mm was chosen to purposely overestimate trace events to
test how the treatment of trace events affects simulation re‐
sults.

The NEXRAD Stage IV data from the Iowa Environmen‐
tal Mesonet (Iowa State University, Department of Agrono‐
my) were processed for each subbasin with non‐corrected
area‐weighted values from the Hydrologic Rainfall Analysis
Project (HRAP) polygons (ST4‐NC). When the NEXRAD
precipitation value was above 0.2 mm, it was multiplied by
115% (ST4‐15) to adjust the overall rain amount to match the
average precipitation for the simulation period as determined
by the conceptual model. The NEXRAD Stage IV precipita‐
tion was also adjusted with a power relationship because
NEXRAD typically underestimates large events and overes‐
timates small events; 0.9 times the area‐weighted value was
raised to 1.1 (ST4‐POW). These values were selected by try‐
ing different values until the average and maxima were in‐
creased to roughly match the conceptual model, but they
were not identical to the values that Skinner et al. (2009) used
to account for NEXRAD's variation throughout the U.S.
ST4‐POW behaves similarly to ST4‐15 but has the added
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Table 1. Suite of 14 precipitation inputs from gauges and NEXRAD.
Input Description

NWS Land Surface COOP
1 COOP‐T0 Trace events set to zero
2 COOP‐T1 Trace given value of 0.1 mm
3 COOP‐T5 Trace given value of 0.5 mm
4 COOP‐T1b4 Trace = 0.1 mm the day before measured event
5 COOP‐T5b4 Trace = 0.5 mm the day before measured event

NEXRAD Stage IV
6 ST4‐NC Area‐weighted with no correction
7 ST4‐15 Area‐weighted multiplied 1.15 when above 0.2 mm
8 ST4‐POW Power relationship (0.9*ST4‐NC^1.1)

NEXRAD MPE
9 MPE‐NC No correction

10 MPE‐BA Bias correction
11 MPE‐15 Multiplied by 1.15 when above 0.2 mm
12 MPE‐IDW Linear regression and inverse distance weighted
13 MPE‐SKlm Simple kriging with varying local means
14 MPE‐KED Kriging with external drift

benefit of reducing the smaller events that NEXRAD overes‐
timates.

The NEXRAD MPE was obtained from the North Central
River Forecast Center in XMRG format and was processed
using an ArcMap tool by Zhang and Srinivasan (2010). The
methods tested using NEXRAD MPE precipitation data were
as follows: no correction (MPE‐NC), bias correction (MPE‐
BA), linear regression and inverse distance weighted (MPE‐
IDW), simple kriging with varying local means (MPE‐
SKlm), and kriging with external drift (MPE‐KED). A de‐
tailed description of the geostatistical method used can be
found in Zhang and Srinivasan (2010). The non‐corrected
MPE were also multiplied by 115% when the original value
was greater than 0.2 mm (MPE‐15) to increase the rainfall to‐
tals to values similar to the measured amounts and to match
the adjustments of ST4‐15.

HYDROLOGIC DATA AND WATERSHED DELINEATION

The study area consisted of three tributaries (South Fork
River, Tipton Creek, and Beaver Creek) and four stream
gauges. One steam gauge is a U.S. Geologic Survey gauge
(USGS 05451210, here named SF450). The other three
gauges are maintained by the USDA‐ARS National Labora‐
tory for Agriculture and the Environment (NLAE) (fig. 1).
The main branch of the South Fork River included two
gauges. The one nearest the watershed outlet had a drainage
area of 580 km2. A second gauge was located in the headwa‐
ters (SF400) and drained 256 km2. Gauge TC325 was located
at the outlet of the Tipton Creek tributary (TC325) and
drained 198 km2 into the South Fork River upstream of gauge
SF450. The drainage area for SF400 and TC325 were in‐
cluded in the total drainage area for gauge SF450. The fourth
stream gauge was on Beaver Creek (BC350), which entered
the South Fork main branch about 3 km downstream of the
USGS gauge (SF450) and drained 182 km2.

Runoff from the whole study area, represented by the sum
of stream gauges SF450 and BC350, varied from 145 to 605
mm year‐1 for the study period (2000‐2009). The USGS run‐
off contour map from 1987 (with data from the 1960s through
the 1980s) placed the South Fork watershed between the 150
and 178 mm annual runoff contour lines (Gebert et al., 1987).
However, because the years 2007‐2009 were wetter than nor‐
mal (1200, 1252, and 984 mm year‐1, respectively) with 400

to 600 mm runoff, the average runoff was slightly higher (200
to 300 mm year‐1) than the historic values. An average value
of 250 mm year‐1 was used for the total water yield in our
model.

Groundwater baseflow separations were computed for all
four gauges to establish the baseflow alpha factor (AL‐
PHA_BF) and groundwater delay time (GW_DELAY) (Ar‐
nold and Allen, 1999). These values varied from 0.042 to
0.059 and from 39 to 53 days, respectively, and were not
changed during calibration because they were established
from the data, and their change might result in overcalibrat‐
ing the model.

The 10 m digital elevation model (DEM) (Gesch, 2007;
Gesch et al., 2002) was used to delineate the stream and sub‐
basins, which were manually selected to ensure an even dis‐
tribution and smaller subbasins in areas that needed higher
resolution. The Soil Survey Geographic (SSURGO) database
(USDA‐NRCS, 2009) was prepared for the ArcSWAT format
using an ArcMap tool (ESRI, Inc., Redlands, Cal.) (Sheshu‐
kov et al. 2009). Hydrologic response units (HRUs) were de‐
lineated using an area threshold of 20 ha for land use, 50 ha
for soils, and 50 ha for the two slope classes (0% to 2%, and
>2%). There were 86 subbasins and 1017 HRUs.

FIELD OPERATION AND MANAGEMENT DATA
A full 10‐year management sequence was created for each

HRU, including crop, tillage, and fertilizer. The USDA Farm
Service Agency (FSA) common land unit (CLU) data layer
was used as the base polygon map (polygons were split manu‐
ally if producers had more than one crop in a parcel). Unique
cropping sequences were assigned from the yearly cropland
data layer (CDL) for 2000‐2009 (Johnson and Mueller,
2010), and the top 50 crop rotations were selected (fig. 1).
Most parcels deviated from these crop rotations less than
twice over the 10‐year period. The tillage was either conven‐
tional or conservation and was assigned based on the 2005
field‐by‐field survey (Tomer et al., 2008). The fertilizer was
assigned as either commercial or swine manure, based on
Tomer et al. (2008). The dates for all operations were esti‐
mated from the NASS Crop Progress and Condition report
supplied biweekly for nine Iowa regions since 2006. The
north central district was used to establish the dates of the op‐
erations, and each operation (tillage, fertilizer, planting, and
harvest) was initiated when the reports exceeded 70%
completion.  Tillage and fertilizer application were estab‐
lished by those dates as well because producers till and fertil‐
ize before planting corn and after harvest, if corn is to follow
(USDA‐NASS, 2010). These dates were then checked with
precipitation data to ensure that they were appropriate repre‐
sentations because producers do not harvest during or imme‐
diately after rain events due to tractor access and usually
avoid applying fertilizer if rain is forecasted for several days
after application (due to the potential of immediate loss).

TILE DRAINS AND POTHOLES
The drain tiles were assigned to HRUs based on limited

tile maps hand‐drawn on historic aerial photos and on hydric
soil areas, croplands, and the location on the landscape. This
process generated 759 tiled HRUs out of 1017 HRUs
(588�km2 or 75% of the watershed). Green et al. (2006) re‐
ported that 80% of the watershed was tiled and that tile dis‐
charge consisted of 75% of the total streamflow. The version
of SWAT used for this study (SWAT2009.481) lumps all pot-
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Table 2. Performance rating standards for streamflow (Moriasi et al., 2007).

Performance Rating
Root Mean Squared Error /
Standard Deviation Ratio Nash‐Sutcliffe Efficiency Percent Bias

Very good 0.00 < RSR < 0.50 0.75 < NSE < 1.00 PBIAS < ±10
Good 0.50 < RSR < 0.60 0.65 < NSE < 0.75 ±10 < PBIAS < ±15

Satisfactory 0.60 < RSR < 0.70 0.50 < NSE < 0.65 ±15 < PBIAS < ±25
Unsatisfactory RSR > 0.70 NSE < 0.50 PBIAS > ±25

hole areas within a subbasin into a representative pothole
with similar soil and management. The spatial distribution of
potholes is simplified by only assigning one HRU per subba‐
sin as a pothole, resulting in an area of 6% of the total wa‐
tershed. This percentage is specific only to this watershed and
is expected to be different in other hydrologic landscape re‐
gions.

SWAT MODEL DESCRIPTION

For this study, SWAT2009.481, which incorporates tile
flow and pothole modification, was used. The model was ini‐
tially calibrated using gauged rain data, with trace events
treated as a nominal value (COOP‐T1). In subsequent simu‐
lations, the calibrated values of model inputs were held
constant except for the rainfall input. The total simulation pe‐
riod was 1998‐2009; SWAT works best, however, when there
is a spin‐up period in which the first two years are devoted to
model initiation. Using the four stream gauges within the wa‐
tershed, the results were tested on a daily, monthly, and yearly
basis with their associated percent bias (PBIAS), ratio of the
root‐mean‐squared error and the standard deviation (RSR),
and Nash‐Sutcliffe efficiency (NSE) coefficients (Nash and
Sutcliffe, 1970). The guidelines for monthly streamflow per‐
formance ratings were taken from Moriasi et al. (2007)
(table�2).

RESULTS
PRECIPITATION INPUT

The 10‐year mean precipitation for the study site was
900�mm year‐1, with 650 mm year‐1 of actual evapotranspira‐
tion and 250 mm year‐1 streamflow expected by the hy‐
drogeology conceptual model. The nine closest rain gauges
around the South Fork watershed were used to correct the
NEXRAD precipitation data. The yearly amounts and daily
maxima of radar‐based input were compared to the rain
gauge data to check their similarity and ultimate appropriate‐
ness for use as model inputs (fig. 2). In general, this appropri‐
ateness was determined by the shape of the box plots and
whether the radar data matched the rain gauge data (COOP).
The calculated annual precipitation volumes were 10% to
15% lower than the COOP values for ST4‐NC, MPE‐NC, and
MPE‐BA. The average daily maxima were lower than ex‐
pected for all of the treatments except for MPE‐BA, which
also had the fewest outliers. For annual rainfall and daily
maxima, MPE‐IDW and MEP‐KED matched the rain gauge
data the best. ST4‐15 and MPE‐15 might also be appropriate,
given that their annual volumes and daily maximums were
similar to the rain gauge values.

CALIBRATION AND VALIDATION

The calibration and validation periods were chosen to in‐
clude representative storm distributions in both records. The

chosen calibration periods were 2001‐2004 and 2008‐2009,
and the chosen validation period was 2005‐2007. This selec‐
tion ensured that both periods included both high and low
stream discharge. The model was manually calibrated at the
four stream gauge locations using the rain gauge data in
which trace events were set to a value of 0.1 mm (COOP‐T1).
A sensitivity analysis was performed to establish which pa‐
rameter to calibrate. The resulting parameters are listed in or‐
der of sensitivity with the initial range and calibrated values
(table 3). The overall water budget was calibrated by adjust‐
ing the ESCO, EPCO, SURLAG, and CN2 input parameters.
The hydrograph timing was then calibrated by changing the
CH_N2, OV_N, CH_K2, SOL_K, and SOL_AWC input val‐
ues (table 3).

The initial values for the tiles and potholes were not given
by the data, so these values were used as calibration points not
addressed by the other parameters. The amount of water pro-

Figure 2. Annual precipitation range (left) and daily maximum range
(right). Gauged sources have seven time series, while the radar‐based time
series have 86, one for each subbasin. The boxes represent the upper and
lower quartiles, the lines within the boxes represent the 50th percentiles,
the whiskers represent the 1.5 interquartile range, and the points indicate
the outliers.
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Table 3. Parameter description, initial range and calibrated values.
Parameter Description Initial Range Calibrated Value

Esco Soil evaporation factor 0.2 to 1.0 1.0
Cn2 Initial SCS runoff curve number to moisture condition II 30 to 100 39 to 58
Epco Plant water uptake compensation factor 0.2 to 1.0 1.0

Ch_N2 Manning's “n” value for main channel 0.14 0.12 to 0.14
OV_N Manning's “n” value for overland flow 0.1 to 0.15 0.08 to 0.12
Ch_K2 Channel effective hydraulic conductivity (mm h‐1) 0.0 5.0 to 20
Surlag Surface runoff lag coefficient 1.0 to 4.0 1.1
Sol_K Saturated hydraulic conductivity (mm h‐1) 10 to 32 19 to 57

Sol_Awc Available water capacity (mm H20 mm‐1 soil) 0.2 to 0.21 0.22 to 0.23

Table 4. Summary of water budgets for the 14 simulations compared to the expected values of the hydrogeologic conceptual model.

Input

Precipitation Actual ET Total Water Yield Surface Runoff Tile Flow

900 mm[a] Δ% 650 mm[a] Δ% 250 mm[a] Δ% 60 mm[a] Δ% 150 mm[a] Δ%

COOP‐T0 871 ‐3 616 ‐5 232 ‐7 56 ‐6 146 ‐3
COOP‐T1 889 ‐1 620 ‐5 245 ‐2 60 0 155 4
COOP‐T5 896 ‐1 622 ‐4 249 ‐1 61 1 158 5

COOP‐T1b4 889 ‐1 619 ‐5 246 ‐2 60 0 156 4
COOP‐T5b4 890 ‐1 620 ‐5 246 ‐1 60 0 156 4

ST4‐NC 768 ‐15 625 ‐4 122 ‐51 30 ‐51 71 ‐53
ST4‐15 880 ‐2 644 ‐1 211 ‐16 47 ‐22 135 ‐10

ST4‐POW 880 ‐2 646 ‐1 209 ‐17 46 ‐24 135 ‐10
MPE‐NC 813 ‐10 630 ‐3 159 ‐36 38 ‐37 98 ‐35
MPE‐BA 768 ‐15 604 ‐7 139 ‐44 41 ‐31 77 ‐49
MPE‐15 926 3 644 ‐1 253 1 59 ‐2 163 9

MPE‐IDW 912 1 641 ‐1 245 ‐2 58 ‐3 157 4
MPE‐SKlm 909 1 641 ‐1 242 ‐3 58 ‐4 155 3
MPE‐KED 910 1 639 ‐2 245 ‐2 59 ‐2 157 5

[a] Expected value.

vided by the tiles to the streamflow was estimated to be 75%
of the total discharge (Green et al., 2006). The tile compo‐
nents were adjusted and established as follows: the depth to
the subsurface drain was 20 mm higher than the soil depth
(1500 to 2010 mm) (DDRAIN), the time to drain the soil to
field capacity was 24 h (TDRAIN), and the drain tile lag time
was 96 h (GDRAIN). When tiles were present in the HRU, the
depth to the impervious layer in soil profile (DEP_IMP) was
set at 40 mm greater than the soil depth (1560 to 2070 mm).

Manual calibration of the South Fork watershed using
COOP‐T1 was carried out on the four gauges and ranged from
R2 = 0.63 to 0.80 (NSE = 0.52 to 0.78) for daily streamflow
and R2 = 0.68 to 0.89 (NSE = 0.61 to 0.89) for monthly
streamflow. Validation ranged from R2 = 0.54 to 0.73 (NSE�=
0.52 to 0.71) for daily flow and R2 = 0.83 to 0.91 (NSE = 0.78
to 0.87) for monthly flow. Generally, this result rated satisfac‐
tory to very good according to the monthly performance
guidelines for NSE, percent bias, and RSR established by
Moriasi et al. (2007).

The expected water budget for this watershed and the wa‐
ter budgets of the 14 simulations are summarized in table 4
along with the percent differences between the simulations
and the expected values (Tomer et al., 2008; Green et al.,
2006). Evapotranspiration was the water budget component
least affected (‐7% to ‐1%) by the variation in average annual
rainfall (‐15% to 3%). Evapotranspiration apparently re‐
moved the available water in the soil at a constant rate, inter‐
cepting water that would either infiltrate and be drained by
the tiles or remain as high soil moisture for the next precipita‐
tion event, potentially and eventually resulting in surface
runoff.

Assigning values to the trace precipitation events resulted
in small differences in the annual precipitation amount (‐1%
to ‐3%), but the surface runoff value for COOP‐T0 was 6%
less than the expected value of the surface runoff. One pos‐
sible or likely reason is that the rainfall is first used to satisfy
the soil moisture deficit before generating runoff. The other
COOP data sets include trace events represented as a value.
Trace events that occur before a measured rain event help
raise the soil moisture so that runoff occurs more quickly
when the next rainfall occurs. Although COOP‐T0 and
COOP‐T5 differ by only 2% in rainfall amount, they differ by
7% in surface runoff due to the effect of trace rainfall values.

Figure 3. Performance rating summary for the 14 simulations as de‐
scribed in table 5. The number of occurrences represents how frequently
the NSE, PBIAS, and RSR are classified by the rating guidelines in Moria‐
si et al. (2007).
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Table 5. Monthly summary statistics for NSE, PBIAS, and RSR values as described by Moriasi et al. (2007).[a]

Input Gauge

NSE PBIAS RSR

Calibration Validation Calibration Validation Calibration Validation

COOP‐T0 BC350 0.77 (V) 0.88 (V) ‐3 (V) 5 (V) 0.39 (V) 0.31 (V)
SF400 0.77 (V) 0.73 (G) 23 (S) 31 (U) 0.44 (V) 0.58 (G)
SF450 0.87 (V) 0.73 (G) 17 (S) 29 (U) 0.34 (V) 0.60 (S)
TC325 0.66 (G) 0.79 (V) 14 (G) 23 (S) 0.48 (V) 0.46 (V)

COOP‐T1 BC350 0.75 (G) 0.89 (V) ‐6 (V) 3 (V) 0.40 (V) 0.31 (V)
SF400 0.75 (V) 0.78 (V) 18 (S) 21 (S) 0.44 (V) 0.50 (V)
SF450 0.87 (V) 0.78 (V) 12 (G) 21 (S) 0.34 (V) 0.53 (G)
TC325 0.61 (S) 0.85 (V) 10 (V) 14 (G) 0.49 (V) 0.39 (V)

COOP‐T1b4 BC350 0.75 (V) 0.89 (V) ‐7 (V) 3 (V) 0.39 (V) 0.31 (V)
SF400 0.76 (V) 0.78 (V) 18 (S) 20 (S) 0.43 (V) 0.50 (V)
SF450 0.87 (V) 0.78 (V) 12 (G) 21 (S) 0.34 (V) 0.53 (G)
TC325 0.61 (S) 0.85 (V) 10 (V) 14 (G) 0.49 (V) 0.39 (V)

COOP‐T5 BC350 0.75 (V) 0.89 (V) ‐8 (V) 1 (V) 0.39 (V) 0.30 (V)
SF400 0.76 (V) 0.78 (V) 17 (S) 20 (S) 0.43 (V) 0.49 (V)
SF450 0.87 (V) 0.79 (V) 11 (G) 20 (S) 0.33 (V) 0.52 (G)
TC325 0.62 (S) 0.85 (V) 8 (V) 13 (G) 0.48 (V) 0.38 (V)

COOP‐T5b4 BC350 0.75 (V) 0.89 (V) ‐7 (V) 2 (V) 0.39 (V) 0.31 (V)
SF400 0.76 (V) 0.78 (V) 17 (S) 20 (S) 0.43 (V) 0.49 (V)
SF450 0.87 (V) 0.78 (V) 12 (G) 21 (S) 0.33 (V) 0.53 (G)
TC325 0.61 (S) 0.85 (V) 9 (V) 14 (G) 0.48 (V) 0.39 (V)

ST4‐NC BC350 0.66 (G) 0.29 (U) 45 (U) 61 (U) 0.63 (S) 1.49 (U)
SF400 0.49 (U) 0.15 (U) 60 (U) 63 (U) 0.84 (U) 1.65 (U)
SF450 0.68 (G) 0.18 (U) 54 (U) 65 (U) 0.73 (U) 1.86 (U)
TC325 0.61 (S) 0.18 (U) 48 (U) 65 (U) 0.71 (U) 1.78 (U)

ST4‐15 BC350 0.78 (V) 0.76 (V) 7 (V) 23 (S) 0.39 (V) 0.55 (G)
SF400 0.72 (G) 0.68 (G) 29 (U) 27 (U) 0.48 (V) 0.64 (S)
SF450 0.86 (V) 0.68 (G) 24 (S) 32 (U) 0.38 (V) 0.73 (U)
TC325 0.75 (G) 0.69 (G) 19 (S) 30 (U) 0.45 (V) 0.66 (S)

ST4‐POW BC350 0.79 (V) 0.77 (V) 8 (V) 24 (S) 0.38 (V) 0.55 (G)
SF400 0.73 (G) 0.68 (G) 29 (U) 28 (U) 0.48 (V) 0.64 (S)
SF450 0.86 (V) 0.68 (G) 24 (S) 32 (U) 0.39 (V) 0.74 (U)
TC325 0.76 (V) 0.69 (G) 20 (S) 31 (U) 0.44 (V) 0.67 (S)

MPE‐NC BC350 0.71 (G) 0.70 (G) 38 (U) 32 (U) 0.55 (G) 0.69 (S)
SF400 0.59 (S) 0.56 (S) 51 (U) 37 (U) 0.68 (S) 0.78 (U)
SF450 0.73 (G) 0.62 (S) 47 (U) 39 (U) 0.63 (S) 0.84 (U)
TC325 0.62 (S) 0.66 (G) 45 (U) 38 (U) 0.65 (S) 0.75 (U)

MPE‐BA BC350 0.67 (G) 0.34 (U) 36 (U) 59 (U) 0.54 (G) 1.18 (U)
SF400 0.40 (U) 0.20 (U) 44 (U) 60 (U) 0.61 (S) 1.05 (U)
SF450 0.72 (G) 0.29 (U) 44 (U) 62 (U) 0.53 (G) 1.38 (U)
TC325 0.57 (S) 0.26 (U) 42 (U) 63 (U) 0.61 (S) 1.59 (U)

MPE‐15 BC350 0.75 (G) 0.87 (V) 4 (V) ‐9 (V) 0.40 (V) 0.34 (V)
SF400 0.72 (G) 0.77 (V) 22 (S) ‐4 (V) 0.44 (V) 0.43 (V)
SF450 0.84 (V) 0.85 (V) 17 (S) ‐2 (V) 0.37 (V) 0.39 (V)
TC325 0.71 (G) 0.86 (V) 16 (S) ‐8 (V) 0.45 (V) 0.35 (V)

MPE‐IDW BC350 0.78 (V) 0.86 (V) ‐1 (V) 8 (V) 0.37 (V) 0.34 (V)
SF400 0.76 (V) 0.85 (V) 13 (G) 18 (S) 0.39 (V) 0.37 (V)
SF450 0.89 (V) 0.81 (V) 11 (G) 18 (S) 0.30 (V) 0.45 (V)
TC325 0.66 (G) 0.84 (V) 8 (V) 11 (G) 0.45 (V) 0.37 (V)

MPE‐SKlm BC350 0.79 (V) 0.84 (V) 3 (V) 14 (G) 0.37 (V) 0.38 (V)
SF400 0.59 (S) 0.83 (V) ‐13 (G) 20 (S) 0.52 (G) 0.41 (V)
SF450 0.89 (V) 0.80 (V) 10 (V) 19 (S) 0.30 (V) 0.47 (V)
TC325 0.65 (G) 0.84 (V) 7 (V) 9 (V) 0.45 (V) 0.37 (V)

MPE‐KED BC350 0.77 (V) 0.84 (V) 2 (V) 13 (G) 0.38 (V) 0.38 (V)
SF400 0.77 (V) 0.81 (V) 9 (V) 24 (S) 0.38 (V) 0.44 (V)
SF450 0.88 (V) 0.80 (V) 7 (V) 20 (S) 0.30 (V) 0.47 (V)
TC325 0.64 (S) 0.81 (V) 4 (V) 8 (V) 0.45 (V) 0.39 (V)

[a] NSE = Nash‐Sutcliffe efficiency, PBIAS = percent bias, RSR = ratio of RMSE and observations standard deviation, 
V = very good, G = good, S = satisfactory, and U = unsatisfactory
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Figure 4. Difference between accumulated annual streamflow for various precipitation input treatments and the cumulative streamflow gauge (SF450
plus BC350) (top) and the annual rainfall total (COOP‐T1) (bottom).

The uncorrected Stage IV and MPE (ST4‐NC and MPE‐
NC) values diverged the most from the hydrogeologic con‐
ceptual model, something that was anticipated because
rainfall distributions did not match the COOP‐T1 (fig. 2).
These values showed 35% to 53% reduction in stream and tile
flow, with only 10% to 15% difference resulting from the ex‐
pected rainfall value. For these large‐deviation simulations to
match the expected values in other categories of the water
budget, the ET would need to be calibrated to an unrealistic
value that would not coincide with the values from the hy‐
drogeologic conceptual model. With the exception of the
bias‐adjusted MPE (MPE‐BA), the adjusted NEXRAD pre‐
cipitation time series were generally able to produce water
budgets close to the expected value (1% to 3%) without recal‐
ibration.

The monthly performance ratings of all 14 simulations are
summarized in figure 3. The monthly values in figure 3 are
fully reported in table 5. The guidelines for determining the
rating categories were the same as those described by Moriasi
et al. (2007). The simulations that were closer to the expected
water budget (table 4) had higher ratings, with the best and
worst simulations being MPE‐KED and ST4‐NC, respective‐
ly. All COOP data with trace events that were given a value
outperformed COOP‐T0. Surprisingly, MPE‐15, ST4‐15 and
ST4‐POW also performed well, including several “very
good” ratings.

The differences in simulated accumulated annual stream‐
flow from the actual stream gauge data are an important as‐
pect of model behavior because the water budget that they
help to define will affect sediment and nutrient transport cal‐
ibration (fig. 4). Generally, those data points that are parallel
to the x‐axis (zero percent difference to the stream gauge) are
correct, and those that deviate should be examined further.
The gauge‐based results were consistent with each other and
represented minor improvements from the various treat‐
ments of trace events. MPE‐15 underestimated dry years but
had the highest cumulative value. While the annual budgets
appear adequate and the performance ratings were higher

than for ST4‐15, MPE‐15 does not remain parallel to the x‐
axis and would involve difficult sediment and nutrient cal‐
ibration because its behavior is variable from year to year and
not an overall parameter adjustment. The simulation ST4‐15
stays closer to parallel to the x‐axis and may result in easier
sediment and nutrient calibration. The geostatistically ad‐
justed NEXRAD (MPE‐IDW, MPE‐SKlm, and MPE‐KED)
again performed well; the overall water budget produced was
near the hydrogeologic conceptual model's estimates.

CONCLUSIONS
Most hydrologic modeling ventures involve the collec‐

tion, correction, analysis, and dissemination of spatial and
temporal input data needed for proper model testing and val‐
idation. This process is laborious and variable, depending on
the availability of the data and the experience of the modeler;
however, steps can be taken to ensure the correct representa‐
tion of the most sensitive input (precipitation), regardless of
variations in quality and the abundance of data.

As a first step, it is important to match the rainfall totals
and event distribution to that expected from a well‐assembled
hydrogeologic conceptual model if hydrologic models are to
accurately predict streamflow. In this process within our
study, actual evapotranspiration remained fairly consistent
among all 14 of the time series inputs despite differences in
total rainfall. In most cases, it appears that rain is used first
to satisfy the soil moisture deficit before resulting in runoff.
Therefore, if the rainfall estimate is too low, there will be less
soil moisture after the plants use the available water, reducing
both infiltration and antecedent soil moisture before the next
rain event.

In situations where only rain gauge data are used, the best
results occurred when trace events were given nominal val‐
ues. The total amounts were not sufficient to change the over‐
all water budget, but they did help to maintain soil moisture
so that infiltration and runoff occurred realistically. This
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study shows that ignoring trace events (COOP‐T0) was the
worst‐performing choice of the gauge‐based input data.

The unadjusted NEXRAD and bias‐adjusted simulations
were also the worst performing of the 14 tested both in their
inability to capture the overall water budget and to maintain
high performance ratings throughout monthly intervals. The
‐15% error in precipitation amount resulted in nearly a 50%
reduction in surface water flow and tile flow.

The combination of rain gauge data and NEXRAD data
provided superior results, even when the watershed included
good spatial distribution of rain gauges. The best geostatisti‐
cally based radar input results both came from MPE, adjusted
with inverse distance weighting and kriging with external
drift. The kriging methods are, however, limited by the num‐
ber of rain gauges near the watershed because more than ten
gauges are often required for good results. Because both
methods produce similar results, inverse distance weighting
is recommended because it is easier to implement.

In the absence of any rain gauge data to correct the NEX‐
RAD data, multiplying the Stage IV data by the amount un‐
derestimated by the water budget of the conceptual model
offers reasonable results (in this case, 15%). In our study, nine
gauges near the South Fork watershed adequately repre‐
sented the spatial distribution of daily rain, and only a limited
benefit resulted from using the NEXRAD precipitation data.
However, hourly data were recorded only at two gauges, and
NEXRAD data should be used if subdaily rainfall input data
are required in future model applications.
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