Randomization-assisted model-based survey sampling

Phillip S. Kott*

National Agricultural Statistics Service, Chief Research Statistician 1, 3251 Old Lee Highway, Fairfax, VA 22030, USA

Available online 21 August 2004

Abstract

The model-assisted paradigm presently dominates survey sampling. Under it, randomization-based theory is treated as the only true approach to inference. Models are helpful only when choosing between randomization-based methods. We propose an alternative theoretical paradigm. Model-based inference, which conditions on the realized sample, is the focus of this approach. Randomization-based methods, which focus on the set of hypothetical samples that could have been drawn, are employed primarily to provide protection against model failure. Although the choices made under the randomization-assisted model-based paradigm are often little different from those recommended by Särndal et al. (Model Assisted Survey Sampling, Springer, New York, 1992), the motivation is clearer. Moreover, the approach proposed here for variance estimation leads to a logically coherent treatment of finite-population and small-sample adjustments when they are needed.

Keywords: Asymptotic; Calibration; Estimation strategy; Anticipated variance; Simultaneous variance estimator

1. Introduction

Särndal et al. (1992) did not coin the term “model-assisted survey sampling,” but their impressive text-book has brought that approach to sample-survey inference into the forefront of modern theory and practice. The approach treats randomization-based (usually called “design-based”) inference as the real goal of survey sampling, but employs models to help choose between valid randomization-based alternatives. Typically, one chooses a

* Tel.: +703-235-5218x102.
E-mail address: phil_kott@nass.usda.gov (P.S. Kott).

0378-3758/$ - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jspi.2004.06.052
randomization-consistent regression estimation strategy that is model unbiased and has the smallest model-expected randomization mean squared error.

To estimate the variance of the chosen strategy, Särndal et al. recommend the weighted residual variance estimator. Oddly, the real theoretical advantage of this variance estimator over the more traditional randomization-based variance estimator is that it better estimates the *model variance* of the regression estimator (Särndal et al., 1989; Kott, 1990a), while still estimating the randomization mean squared error adequately. The use of this variance estimator suggests a different conceptual approach to survey sampling inference: randomization-assisted model-based. In that approach, the subject of this discussion, one treats model-based inference as the goal of survey sampling, but employs randomization methods to protect against inevitable model failure. The choices for the estimation strategy and variance estimator do not change in the typical large-sample-much-larger-population environment, but the motivation behind the choices becomes clearer. Moreover, principled finite-population and small-sample adjustments present themselves when necessary.

We will focus at first on a particular estimation strategy: the randomization consistent regression estimator (often called the “generalized regression estimator” or “GREG”) under Poisson sampling. This estimator is, as the name implies, randomization consistent. More to the point, it is model unbiased. Randomization unbiasedness is a fairly useless property since it tells us what happens when we average over all possible samples. In practice, we know which sample we have drawn, so averaging over samples we did not draw makes little sense. That is why the randomization-assisted model-based paradigm is principally concerned with the model unbiasedness of a parameter estimator rather than its randomization bias. By restricting attention to randomization-consistent estimation strategies, we are simply assuring ourselves that even when the model fails the estimator will likely not be too far from what it is estimating.

Section 2 describes the randomization-consistent-regression-estimator-under-Poisson-sampling strategy, while Section 3 analyzes its randomization and model-based properties, most of which are well known. We revisit them here to lay the foundation for variance estimation. In this, we follow Valliant (2002), but do not arrive at exactly the sample place. We also revisit the Isaki-Fuller (1982) notion of the anticipated variance of an estimation strategy, but reverse its definition. Rather than choosing a strategy that has a small model-expected (anticipated) randomization (true) variance, we advocate choosing one with a small randomization-expected (anticipated before sampling) model (conditional on the realized sample) variance.

Section 4 addresses variance estimation. The emphasis in the *simultaneous variance estimator* is on estimating the model variance of the estimation strategy. The literature suggests this emphasis can result in better coverage estimates. As protection against model failure however, the same estimator provides a nearly randomization-unbiased estimator of randomization mean squared error.

Section 5 discusses how to modify the simultaneous variance estimator when \(n \) is not that large. In this, the section borrows many ideas from the strictly model-based literature. See, for example, Valliant et al. (2000, Chapter 5). What is new here, is the willingness to accept the asymptotic validity of randomization-based properties in a model-based context while eschewing the relevance of averaging over all possible samples.
Section 6 addresses alternative sampling designs. Of particular interest, is the question of when the regression estimator is randomization consistent and what happens when cross terms are added to the simultaneous variance estimator. Section 7 provides some concluding remarks.

2. The regression consistent estimator under Poisson sampling

Suppose we want to estimate a population \((U) \) total, \(T = \sum_U y_k \) based on a sample \((S) \) of \(y \)-values. If the probability that population unit \(k \) is in the sample is \(\pi_k \), then the simple expansion estimator for \(T \) is \(\hat{t} = \sum_S y_k / \pi_k \). Another useful way to render \(\hat{t} \) is as
\[
\hat{t} = \sum_U y_k I_k / \pi_k,
\]
where \(I_k \) is a random variable equal to 1 when \(k \in S \) and 0 otherwise. This means \(E(I_k) = \pi_k \). Under randomization-based inference the \(y_k \) are fixed constants, while the \(I_k \) are random variables. It is easy to see that \(\hat{t} \) is a randomization-unbiased estimator of \(T \); that is, \(E_p(\hat{t}) = T \), where the subscript \(p \) denotes the expectation with respect to the \(I_k \) (this is a convention; the \(p \) derives from “probability sampling”).

The randomization variance of \(\hat{t} \) is \(\text{Var}_p(\hat{t}) = E_p[(\hat{t} - T)^2] = \sum_U (y_k / \pi_k)(y_i / \pi_i)(\pi_{ki} - \pi_k \pi_i) \), where \(\sum_U \) denotes \(\sum_{k \in U} \sum_{i \in U} \) in this context, and \(\pi_{ki} = E(I_k I_i) \) is the joint selection probability of units \(k \) and \(i \). When \(k = i \), \(\pi_{ki} = \pi_k \). The randomization variance of \(\hat{t} \) depends on how exactly the sample is drawn, and in particular of the joint selection probabilities.

Under Poisson sampling, each unit \(k \) is sampled independently of every other unit in the population. Consequently, \(\pi_{ki} = \pi_k \pi_i \) when \(k \neq i \). This simplifies the randomization variance of \(\hat{t} \) immensely: \(\text{Var}_p(\hat{t}) = \sum_U (y_k / \pi_k)^2(\pi_k - \pi_k^2) = \sum_U (y_k^2 / \pi_k)(1 - \pi_k) \), which leads to the simple unbiased randomization variance estimator:
\[
\text{var}_p(\hat{t}) = \sum_S (y_k / \pi_k)^2(1 - \pi_k).
\]

We will be principally concerned here with the estimation strategy that combines Poisson sampling with the following regression estimator:

\[
t_R = t + \left(\sum_U x_k - \sum_S \pi_k^{-1} x_k \right) \left(\sum_S c_k \pi_k^{-1} x_k' x_k \right)^{-1} \sum_S c_k \pi_k^{-1} x_k' y_k, \quad (1)
\]

where \(x_k = (x_{k1}, \ldots, x_{kQ}) \) is a row vector of values known for all \(S \), \(c_k \) is a non-negative constant, \(\sum_U x_k \) is known, and \(\sum_S c_k \pi_k^{-1} x_k' x_k \) is invertible.

The regression estimator in Eq. (1) is a very slight variation of the general regression estimator (GREG) in Särndal et al. (1992). A good review of regression estimators in the survey sampling context is Brewer (1994). The GREG is poorly named because it does not include purely model-based regression estimators.
The regression estimator in Eq. (1) can be rewritten as \(t_R = \sum_S a_k y_k \), where \(a_k \) is the regression weight of \(k \):

\[
a_k = \pi_k^{-1} + \left(\sum_{i \in U} x_i - \sum_{i \in S} \pi_i^{-1} x_i \right) \left(\sum_{i \in S} c_i \pi_i^{-1} x_i' x_i \right)^{-1} c_k \pi_k^{-1} x_k'.
\]

(2)

It is well known (and easy to see) that the \(a_k \) satisfy the calibration equation: \(\sum_S a_k x_k = \sum_U x_k \) (see Deville and Särndal, 1992).

3. Properties of the estimation strategy

The regression estimator, \(t_R \), under Poisson sampling has both desirable randomization-based and model-based properties under mild conditions, as we shall see.

The randomization-based properties of \(t_R \) are asymptotic (we use the more accurate modifier “randomization” in place of the often-used “design” throughout the text). That is to say, they depend on the expected sample size, \(n^* \), being large. A sufficient condition for an estimation strategy (an estimator coupled with a sampling design) to be randomization consistent is that its relative mean squared error should approach 0 as \(n^* \) grows arbitrarily large.

Let \(N \) be the population size of \(U \). We want to entertain the possibility that \(O(n^*) \) is less than \(O(N) \). Consequently, paralleling a number of authors, we assume the following as \(N \) and \(n \) grow arbitrarily large and \(Q \) remains fixed:

\[
0 < L_\theta \leq \sum_{i \in U} |\theta_k|^{\delta}/N < B_\theta < \infty, \quad \delta = 1, \ldots, 8,
\]

(3)

where Eq. (3) applies when \(\theta_k \) equal \(y_k \), any component of \(x_k \), \(c_k \), and \(n^*/(N \pi_k) \) (the last controls the size of \(\pi_k \), while allowing \(n^* \) and \(N \) to grow at different rates).

The relative randomization mean squared error of the expansion estimator, \(t \), under Poisson sampling is

\[
\sum_U (y_k^2/\pi_k)(1 - \pi_k)/(\sum_U y_k)^2 < \sum_U (y_k^2/\pi_k)/(\sum_U y_k)^2.
\]

Eq. (3) and Schwarz’s inequality assure that the numerator of this last expression is \(O(N^2/n^*) \), while its denominator is \(O(N^2) \). Thus, the relative randomization mean squared error of \(t \) under Poisson sampling is \(O(1/n^*) \), and the estimation strategy is randomization consistent. Furthermore, since \(E_p[(t - T)^2]/T^2 = O(1/n^*) \), \((t - T)/T = O_p(1/\sqrt{n^*}) \), and \(t - T = O_p(N/\sqrt{n^*}) \), which we will often write as \(NO_p(1/\sqrt{n^*}) \) for convenience. Formally, this means \((t - T)/N = O_p(1/\sqrt{n^*}) \).

It is now not hard to show that the regression estimator, \(t_R \), from Eq. (1) under Poisson sampling and the assumptions in Eq. (3) is equal to \(t + NO_p(1/\sqrt{n^*}) \). Thus, like \(t \), \(t_R \) is randomization consistent. Furthermore, \((t_R - T)/T = O_p(1/\sqrt{n^*}) \), and the relative mean squared error of \(t_R \) is \(O(1/n^*) \). Assuming, as we will from now on, that \(N^{-1}(\sum_U c_k x_k' x_k) \) is invertible, let \(B = (\sum_U c_k x_k' x_k)^{-1} \sum_U c_k x_k' y_k \), and \(e_k = y_k - x_k B \), so that \(\sum_U c_i x_i' e_i = 0 \).
and \(\sum_{i} c_i \pi_i^{-1} x_i e_i = N O P(1/\sqrt{n^*}) \). We can now express the error of \(t_R \) as

\[
t_R - T = \sum_{i \in S} a_i y_i - \sum_{i \in U} y_i = \sum_{i \in S} a_i e_i - \sum_{i \in U} e_i
\]

\[
= \sum_{i \in S} e_i / \pi_i + \left(\sum_{i \in U} x_k - \sum_{i \in S} \pi_i^{-1} x_k \right) \left(\sum_{i \in S} c_k \pi_k^{-1} x_k^i x_k \right)^{-1}
\]

\[
\times \sum_{i \in S} c_i \pi_i^{-1} x_i e_i - \sum_{i \in U} e_i
\]

\[
= \sum_{i \in S} e_i / \pi_i - \sum_{i \in U} e_i + NOP(1/n^*).
\]

This tells us that the randomization mean squared error of \(t_R \) under Poisson sampling is dominated by \(\text{Var}\, P(\sum_{i} e_k / \pi_k) = \sum_U (e_k^2 / \pi_k)(1 - \pi_k) \). This is identical to the variance of the expansion estimator under Poisson sampling except that \(e_k \) has replaced \(y_k \).

Suppose the \(y_k \) were random variables that satisfied the following model:

\[y_k = x_k \beta + \epsilon_k, \quad (4) \]

where \(\beta \) is an unknown column vector, \(E(\epsilon_k|x_k, I_k) = E(\epsilon_k|x_i, x_i, I_k, I_i) = 0 \) for \(k \neq i \), and \(E(\epsilon_k^2|I_k) = \sigma_k^2 = f(x_k, z_k) < \infty \), where \(z_k \) is a vector of values associated with \(k \). The \(\sigma_k^2 \) need not be known. Moreover, there is no reason (yet) why \(I_k \) cannot be a function of the components of \(x_k \) and \(z_k \).

It is easy to see that as long as the regression weights satisfy the calibration equation, \(\sum_{i} a_k x_k = \sum_U x_k, t_R \) will be model unbiased in the sense that \(E_e(t_R - T) = 0 \). Moreover, its model variance (as an estimator of \(T \)) is

\[
E_e[(t_R - T)^2] = E_e \left[\left(\sum_{i \in S} a_i \epsilon_i - \sum_{i \in U} \epsilon_i \right)^2 \right]
\]

\[
= \sum_{i \in S} a_i^2 \sigma_i^2 - 2 \sum_{i \in S} a_i \sigma_i^2 + \sum_{i \in U} \sigma_i^2
\]

\[
= \sum_{i \in S} a_i^2 \sigma_i^2 - \sum_{i \in S} a_i \sigma_i^2 - \left(\sum_{i \in S} a_i \sigma_i^2 - \sum_{i \in U} \sigma_i^2 \right).
\]

When \(\sigma_i^2 \) has the form \(x_i \mathbf{h} \), for some not-necessarily-specified vector \(\mathbf{h} \), then \(\sum_{i} a_i \sigma_i^2 = \sum_{i} \sigma_i^2 \), and the model variance of \(t_R \) collapses to \(\sum_{i} (a_i^2 - a_i) \sigma_i^2 \). Alternatively, if we add \(\theta_k = \sigma_k^2 \) to the variables assumed to satisfy Eq. (3), then one can see that the model variance of \(t_R \) is \(O(N^2/n^*) = (N^2/n^*)O(1) \), while \(\sum_{i} a_i \sigma_i^2 - \sum_{i} \sigma_i^2 \) is \(O_p(N/\sqrt{n^*}) = (N^2/n^*)O(\sqrt{n^*}/N) \). Although we are interested in model-based expectations, we plan to invoke a large-sample, randomization-based equality. Model-based theory, at least as viewed here, does not deny the applicability of the law of large numbers to probability sampling. It simply resists taking averages (expectations) across all possible samples.
Our last equality suggests the following asymptotic approximation for the model variance of t_R:

$$E_g \left[(t_R - T)^2 \right] \approx \sum_{i \in S} a_i^2 \sigma_i^2 - \sum_{i \in S} a_i \sigma_i^2,$$

(5)

which drops a $O_p(N/\sqrt{n^*}) = (N^2/n^*) O(\sqrt{n^*}/N)$ term.

What about likewise replacing a_i^2 by π_i^{-2} (and a_i by π_i^{-1}) in Eq. (5)? Such a substitution would effectively drop $(N^2/n^*) O_p(1/\sqrt{n^*})$ terms since it is not hard to show that

$$\sum_S a_i^2 \sigma_i^2 = \sum_S \pi_i^{-2} \sigma_i^2 + (N^2/n^*) O_p(1/\sqrt{n^*})$$

under our assumptions.

Suppose finite-population correction matters. At the extreme, $N = O(n^*)$, and $(N^2/n^*) O_p(1/\sqrt{n^*})$ is of the same asymptotic order as the $(N^2/n^*) O(\sqrt{n^*}/N)$ term dropped in Eq. (5). An alternative assumption allows the finite population to be relatively large (Kott, 1990a), but still potentially matter: $N \geq O((n^*)^{3/2})$. Under this regime, Eq. (5) appropriately drops a $(N^2/n^*) O_p(1/n^*)$ term, but replacing a_i^2 by π_i^{-2} would effectively drop a larger, $(N^2/n^*) O_p(1/\sqrt{n^*})$, term.

The model variance of t_R is a function of the realized sample and does not depend at all on the sampling design. As noted in the previous section, it is $O_p(N^2/n^*)$ under the (extended) asymptotic assumptions of Eq. (3). In fact, if we are willing to drop $(N^2/n^*) O_p(1/\sqrt{n^*})$ terms, the model variance can be approximated by $E_g[(t_R - T)^2] \approx \sum_S (\sigma_i^2/\pi_i)(1 - \pi_i)$.

The randomization expectation of the model variance of t_R is then

$$E_p \left\{ E_g[(t_R - T)^2] \right\} \approx \sum_{i \in U} (\sigma_i^2/\pi_i)(1 - \pi_i).$$

(6)

This quantity can be called the “anticipated variance” of t_R; that is, the model variance anticipated before random sampling. The term is due to Isaki and Fuller (1982), although Eq. (6) goes back considerably further in the literature. They use it to mean $E_g[E_p[(t_R - T)^2]]$, what that model anticipates the randomization mean squared error to be. The expectation operators can be switched, and the two concepts of anticipated variance coincide, when e_k and \hat{e}_k^2 are uncorrelated with I_k given x_k and z_k, where $\sigma_k^2 = f(x_k, z_k)$, as we have assumed. This is weaker than the requirement that the e_i and I_i be independent, as stated in Isaki and Fuller. Maintaining the latter condition would rule out designs where $\pi_k \propto \sigma_k$ for some hypothesized σ_k^2. This selection probability rule minimizes the asymptotic anticipated variance on the right-hand side of Eq. (6) for a fixed expected sample size, $n^* = \sum_U \pi_i$. Brewer (1963) makes a similar point.

From Eq. (6), we can also see that the anticipated variance of the randomization-consistent regression estimator is (asymptotically) a function of the unit selection probabilities but not the joint selection probabilities. Every design with the same unit selection probabilities produces a regression estimator with the same anticipated variance. If minimizing anticipated variance is the goal, then there is no penalty from using Poisson sampling nor is there any loss or gain from the choice of c_k.
4. Simultaneous variance estimation

It is a simple matter to estimate the (approximate) model variance of t_R expressed in Eq. (5):

$$v = \sum_{i \in S} (a_i^2 - a_i)r_i^2,$$

where $r_i = y_i - x_i \beta$, and $b = (\sum S \beta_k \pi_k^{-1} x_k')^{-1} \sum S \beta_k \pi_k^{-1} x_k' y_k$. Now $r_i = \bar{y}_i - x_i (b - \beta) = \bar{y}_i - x_i (\sum S \beta_k \pi_k^{-1} x_k')^{-1} \sum S \beta_k \pi_k^{-1} x_k' \bar{y}_k$, so $E_v(r_i^2) = \sigma_i^2 + 2x_i (\sum S \beta_k \pi_k^{-1} x_k')^{-1} c_i \pi_i^{-1} x_i' \sigma_i^2 + x_i (\sum S \beta_k \pi_k^{-1} x_k')^{-1} (\sum S \beta_k \pi_k^{-1} x_k')^{-1} (\sum S \beta_k \pi_k^{-1} x_k')^{-1} x_i'$. It should be noted that v can be negative—although it rarely will be—when some $a_i < 1$. Brewer (1994) suggests setting the c_k in Eq. (1) so that the appearance of an a_i less than 1 is rare.

After a little work, we can conclude that v is asymptotically model unbiased when the population is relatively large, $N \geq O_p([n^*]^{3/2})$, so $E_v([t_R - T]^2) \approx \sum S a_i^2 \sigma_i^2 - \sum S a_i \sigma_i^2$, and

$$E_v(v) = \sum_{i \in S} (a_i^2 - a_i)\sigma_i^2 + (N^2/n^*) O_p(1/n^*).$$

Observe that the term we are ignoring in Eq. (8) are smaller than the $(N^2/n^*) O_p(1/\sqrt{n^*})$ term we would have ignored had we replaced a_i with π_i^{-1}.

We can likewise show that v is an asymptotically unbiased estimator for the randomization mean squared error of t_R under Poisson sampling. In this context, however, we are willing to drop $O_p(N^2/[n^*]^{3/2})$ terms. The equalities

$$r_i = e_i - x_i (b - B) = e_i - O_p(1/\sqrt{n^*}),$$

ultimately imply that $v = \sum S (a_i^2 - a_i)r_i^2 = \sum S (\pi_i^{-2} - \pi_i^{-1})e_i^2 + O_p(N^2/[n^*]^{3/2})$. From this, we conclude

$$E_p(v) = \sum_{i \in U} (\pi_i^{-1} - 1)e_i^2 + (N^2/n^*) O_p(1/\sqrt{n^*}).$$

We call v the simultaneous variance estimator because it simultaneously estimates the model variance and randomization mean squared error of t_R. The relative model bias of v (as an estimator of $E_v(t_R - T)^2 \approx \sum S a_i^2 \sigma_i^2 - \sum S a_i \sigma_i^2$) is $O_p(1/n^*)$ when the population is relatively large; see Eq. (8). Its relative randomization bias (as an estimator of $E_p(t_R - T)^2 \approx \sum U (\pi_i^{-1} - 1)e_i^2$ is $O(1/\sqrt{n^*})$; see Eq. (10). Empirical analyses of repeated samples from a finite population, like those in Wu and Deng (1983), have shown that the emphasis on making the model bias small, which is the core of the randomization-assisted model-based paradigm, can lead to superior coverage estimates. This is because when constructing a confidence interval one is restricted, as in model-based analysis, to the realized sampled.
5. Adjusting for small-sample bias

It is tempting to scale \(v \) in Eq. (7) by \(n/(n - Q) \) to account for the fact that \(r_i^2 \), a squared residual from a \(Q \)-variate regression, is a slightly biased estimator for \(\sigma_k^2 \). Since the factor, \(n/(n - Q) \), is asymptotically unity, the scaling does not affect the randomization-based properties of \(v \).

A more principled approach than the above ad-hoc adjustment of \(v \) would be to replace the \(r_i^2 \) with model unbiased estimators for the components of \(\sigma_k^2 \). This can be calculated by inverting an \(n \times n \) matrix. Kott and Brewer (2001) show how \(r_i^2 \) can be calculated by inverting a \(Q(Q + 1)/2 \times Q(Q + 1)/2 \) matrix instead. Replacing the \(r_i^2 \) by the components of \(r_i \) does not affect the randomization consistency of \(t_R \) because \(M \) is asymptotically the identity matrix.

A simpler alternative relies on assuming that \(s_k^2 \propto \sigma_k^2 \) for some known \(s_k^2 = (s_1^2, ..., s_n^2)' \). One replaces each \(r_i^2 \) in \(v \) with the model-unbiased estimator:

\[
\begin{align*}
 r_i^2 A &= r_i^2 s_i^2 / E(r_i^2|\sigma^2 = s^2) \\
 &= r_i^2 s_i^2 / \sum_{i \in S} m_{ik} s_k^2.
\end{align*}
\]

(11)

This can produce an exactly model-unbiased variance estimator, call it \(v_A \), when the assumption \(s_k^2 \propto \sigma_k^2 \)—called “the working model”—is correct, but not generally. Still, it has the same desirable asymptotic model and randomization-based properties as \(v \) when Eq. (3) is assumed to apply to the \(s_k \) as well as the \(\sigma_k \) (recall that \(M \) is asymptotically the identity matrix).

A second alternative can be found in Kott (1990b). It replaces \(v \) with

\[
 v_B = v E_\tau[(t_R - T)^2|\sigma^2 = s^2] / E_\tau(v|\sigma^2 = s^2).
\]

(12)

Like \(v \), \(v_B \) is an asymptotically unbiased estimator for the randomization mean squared error to \(t_R \) under our assumptions. It is exactly model unbiased under the working model.

As we will see in the next section, \(v_B \) generalizes most easily among the bias-adjusted alternatives. Unfortunately, its implementation will often be messy in practice (especially when \(N < O(n^2) \)).

6. Other sampling designs

In practice, of course, there are many other sampling designs than the Poisson. We will focus first on other single-stage element-sampling designs and then move on to multi-stage designs.

It is not hard to show that \(t \) and \(t_R \) remain randomization consistent under the assumptions in Eq. (3) when \(\pi_{ik} \leq \pi_i \pi_k \) for \(i \neq k \). This property is shared by most element-sampling designs with one notable exception—systematic sampling. We will restrict attention to designs where \(\pi_{ik} \leq \pi_i \pi_k \) when \(i \neq k \) for the remainder of the discussion of element sampling.
The desirable model-based properties of t_R and v likewise are unchanged when we move from Poisson sampling to an alternative design with $\pi_{ik} \leq \pi_i \pi_k$. The model unbiasedness of t_R does not depend on the design at all. We do invoke a randomization-based property when asserting that the relative model bias of v is $O_p(1/n^*)$ for a relatively large population. That property is unchanged in the expanded context under examination here.

Unfortunately, v is no longer necessarily asymptotically randomization-unbiased as an estimator for the randomization mean squared error of t_R. In some situations, it may make sense to replace v with

$$v^* = v + \sum_{i,k \in S(i \neq k)} \left[(\pi_{ik} - \pi_i \pi_k) / \pi_{ik} \right] (r_i / \pi_i)(r_k / \pi_k),$$

(13)

which is similar to Särndal et al., weighted residual variance estimator (1989): $v_{SSW} = \sum_{i,k \in S} [(i_{ik} - i_i i_k) / i_{ik}] (a_i r_i a_k r_k)$.

This variance/mean-squared-error estimator, v^*, can be shown to retain the model and randomization-based properties of v under Poisson sampling when the summation in Eq. (13) has only $O(n^*)$ “cross” terms in the summation. This restriction assures that substituting for the model error term, π_{ik}, and its randomization analogue, e_{ik}, repeatedly in the summation does not add appreciable bias (for example, the summation is at most $O(1)$ under the model, while v itself is $O(N^2/n^*)$). An unfortunately property of v^* is that, like v_{SSW}, it can be negative for some samples under certain design even when Eq. (13) has only $O(n^*)$ cross terms.

Nothing is lost or gained in terms of the asymptotic properties of v^* by replacing some of all of the π_i in Eq. (13) by $1/a_i$. One potential gain is convenience. Under stratified simple random sampling, if all $a_i \geq 1$, then Eq. (13) can be replaced by

$$v' = v + \sum_{h=1}^H \sum_{i,k \in S_h(i \neq k)} \left[(\pi_{ik} - \pi_i \pi_k) / \pi_{ik} \right] (r_i / \pi_i)(r_k / \pi_k)$$

$$= v - \sum_{i,k \in S_h(i \neq k)} [(1 - n_h/N_h)/(n_h - 1)](N_h/n_h)^2 r_i r_k$$

$$= v - \sum_{i \in S_h} \left[\sum_{i \in S_h} (1 - n_h/N_h)^{1/2}(N_h/n_h)r_i \right]^2$$

$$- \sum_{i \in S_h} (1 - n_h/N_h)(N_h/n_h)^2 r_i^2 \right] \right) / (n_h - 1)$$

$$\approx v - \sum_{i \in S_h} \left[\sum_{i \in S_h} (1 - a_i^{-1})^{1/2} a_i r_i \right]^2 - \sum_{i \in S_h} (1 - a_i^{-1}) a_i^2 r_i^2 \right] / (n_h - 1)$$

$$= \sum_{h=1}^H (n_h/[n_h - 1]) \left\{ \sum_{i \in S_h} (a_i^2 - a_i) r_i^2 - \left[\sum_{i \in S_h} (a_i^2 - a_i)^{1/2} r_i \right]^2 / n_h \right\},$$

(14)
where S_h is the sample within stratum h, and n_h/N_h the sampling fraction (selection probability) in that stratum. Notice that by making repeated use of the asymptotic equality, $N_h/n_h \approx a_i$ for $i \in S_h$ (but only $O(n)$ times), we are assured that v' is nonnegative whenever it exist.

The weighted residual variance estimator, v_{SSW}, effectively replaces each $a^2_k - a_k$ in Eq. (14) with $a^2_k(1 - \pi_k)$. Särndal et al’s treatment of asymptotics is looser than ours, but essentially they assume $N \geq O(n^2)$ rather than $N \geq O(n^{3/2})$ when deriving the model-based properties of v_{SSW}. Moreover, assuming $\sigma_i^2 = x_i h$ for some h is no help. Unlike v', however, v_{SSW} exists when some $a_i < 1$. Whether v' has any practical advantages over v_{SSW} awaits empirical analysis.

If finite population correction can be ignored (i.e., when all $N_h \gg n_h$ and almost all $a_i \gg 1$), then Eq. (14) can be approximately by

$$v^\star = \sum_{h=1}^{H} \left(n_h/[n_h - 1] \right) \left\{ \left(\sum_{i \in S_h} (a_i r_i) \right)^2 - \left(\sum_{i \in S_h} a_i r_i \right)^2 / n_h \right\}. \quad (15)$$

This same variance equation we can use in practice for many stratified designs with unequal selection probabilities within each strata when all $\pi_k \ll 1$. The key is that $\pi_{ik}/\pi_i \pi_k$ needs to be $(n_h - 1)/n_h + O(n^*/N)$ for all unequal i and k in stratum h.

Small-sample-bias adjustment can be applied using the method in either Eq. (11) or (12). The fully model-unbiased method, however, is no longer viable.

It is of some interest to note that v^\star in Eq. (15), since it ignores finite population correction, expresses the model variance of t_R as estimator for $\sum U x_k \beta$.

In a multistage design, a cluster of elements called a primary sampling unit (PSU) is first selected without replacement, then probability samples of elements are selected independently within each PSU. We will not formally address with-replacement sampling, either real or fictitious, here.

Let n_I denote the number of PSUs in the sample, and n_j the number of elements subsampled in each PSU. If n_j is bounded for all j as n^* grows arbitrarily large (so that $O(n_I) = O(n^*)$), it is a simple matter to show that all t_R remains randomization consistent as long as $\pi_{Ijg} < \pi_{Ij} \pi_{Ig}$ when $j \neq g$, where π_{Ij} is the selection probability of PSU j and π_{Ijg} is the joint selection probability of PSUs j and g.

It is common to estimate the variance of t_R with the multistage analogue of Eq. (15):

$$v^\star = \sum_{h=1}^{H} \left(n_{Ih}/[n_{Ih} - 1] \right) \left\{ \sum_{j \in S_{1h}} \left(\sum_{i \in S_{hj}} a_i r_i \right)^2 - \left(\sum_{j \in S_{1h}} \sum_{i \in S_{hj}} a_i r_i \right)^2 / n_{Ih} \right\}, \quad (16)$$

where h denotes a stratum of PSUs, n_{Ih} the number of sampled PSUs in stratum h, S_{1h} the set of sampled PSUs in h, and S_{hj} the set of subsampled elements from PSU h_j.

The estimator in Eq. (16) is asymptotically randomization unbiased for the randomization mean squared error of t_R when $\pi_{Ijg}/(\pi_{Ij} \pi_{Ig}) - (n_{Ih} - 1)/n_{Ih}$ is ignorably small. It is easy
to see that it is also asymptotically model unbiased for the model variance of t_R as an estimator for $\sum U x_i \beta$.

We can generalize the error structure of the model. Instead of requiring $E(\varepsilon_i \varepsilon_k)$ to be zero when $i \neq k$, we now require only that this correlation be bounded when i and k are from the sample PSU. When i and k are from different PSUs, $E(\varepsilon_i \varepsilon_k)$ is again assumed to be zero.

The new error structure allows elements within the same PSU to be correlated in complex patterns, which need not be specified. Correlations can differ across PSUs and even within PSUs when there are additional levels of clustering (e.g., individuals within households, households within blocks, and blocks with PSUs). Observe that under this more general error structure both $E(v^{**})$ and $E[(t_R - \sum U x_i \beta)^2]$ are (asymptotically in the case of the former) equal to $\sum E_i[(\sum_{i \in S(hj)} a_i \varepsilon_i)^2]$, where the first summation is over all the PSUs in the first-stage sample (and $S(hj) = S_{hj}$). Thus, v^{**} retains its model-based properties under the more general error structure.

The method in Eq. (12) can be applied in an attempt to remove the small-sample model bias of v^{**}. This assumes, however, that all the $E(\varepsilon_i \varepsilon_k) = 0$ for $i \neq k$. Alternatively, we can replace $\sigma^2 = s^2$ with a more complex assumption about the error structure of the ε_k. As before, if this working model is correct up to a scalar, the variance estimator is model unbiased. Otherwise its relative bias is $O(1/n^*)$.

The real world is not asymptotic. The expected element sample size may be large in practice, but with multistage sampling, n_I will be less so. Kott (1994) discusses how to calculate the relative model variance of v^{**} under ideal conditions; that is to say, when we the ε_k are normally distributed with $E(\varepsilon_i \varepsilon_k) \propto s_{ik}$ for a hypothesized set of s_{ik} (note: $s_{ik} = 0$ when i and k are from different PSUs).

If v^{**} had a chi-squared distribution, its degrees of freedom would be related to its relative variance: $F = 2/\text{relvar}(v^{**})$. With this in mind, Kott proposes the following Satterthwaite-like calculation for the effective degrees of freedom of v^{**}:

$$F = \frac{\left(\sum_{h=1}^{H} \sum_{j \in S_{1h}} v_{hj}^2\right)^2}{\sum_{h=1}^{H} \left\{ \sum_{j \in S_{1h}} v_{hj}^2 + \sum_{g \neq j \in S_{1h}} v_{hj} v_{hg} / (n_h - 1)^2 \right\}},$$ \hfill (17)

where $v_{hj} = E_i[(\sum_{i \in S(hj)} a_i \varepsilon_i | E(\varepsilon_i \varepsilon_k) = s_{ik})^2]$. The idea is that one should construct a confidence interval for t_R assuming the pivotal, $t_R / \sqrt{v^{**}}$, has Student’s t distribution with F degrees of freedom. Kott shows that attempting to estimate F from the sample without assumptions about the structure of the ε_k is not advisable.

The same computation of F could be applied if v^{**} were bias-adjusted using the method in Eq. (12). Bell and McCaffrey (2002) have pointed out that the determination of F above ignores the distinction between ε_k and t_R. They offer a theoretically superior alternative, which, unfortunately requires v^{**} to have an unstratified form:

$$v^{**} = \sum_{h=1}^{H} \sum_{j \in S_{1h}} \left(\sum_{i \in S_{bj}} a_i r_i \right)^2.$$
They also propose different methods of removing the model bias of v^{**} from those discussed here. These methods likewise require a working model about the variance/covariance matrix for the ε_k.

7. Concluding remarks

We have attempted here to commit to paper an idea this author has long espoused in public; namely, that the dominant model-assisted (randomization-based) survey-sampling paradigm, although fruitful in many ways, should be supplanted by a randomization-assisted model-based one. That is because inference should be based on the sample actually observed rather than averaged over all potential samples. Randomization-based methods provide some protection against inevitable model failure, but that protection relies on invoking the powers of asymptotic properties in a finite world.

Many have been unwilling to use asymptotic statistics at all in the service of survey sampling. This is because the principal goal of survey sampling is the estimation of finite population parameters. The real issue, however, is not whether the population can be viewed as large, but whether the sample can. It is precisely because samples are often very large in survey sampling, that the apparently exclusive use of randomization methods dominated its practice for so long.

Notice that the modifier “apparently” in the last sentence. Models were always there, lurking in the background of strictly randomization-based survey sampling, helping practitioners choose among estimation strategies. The model-assisted paradigm took models out of the shadows and awarded them a formal place in survey theory and practice. Still, real inference was deemed to be related to the randomization distribution of an estimator, not its model distribution.

In the model-assisted paradigm, one chooses among randomization-consistent estimation strategies by hypothesizing a reasonable and practical model, restricting attention to model-unbiased estimators, and selecting that strategy with the minimum model-expected randomization mean squared error.

We have argued that this selection routine makes even more sense under a randomization-expected model-based paradigm. In addition, the weighted-residual variance estimator of Särndal et al. (1989), which is in their 1992 text book on model-assisted methods, actually does a better job estimating model variance than randomization mean squared error. A more logically consistent model-assisted approach would arguably give primacy to estimating the model expectation of the randomization mean squared error. Wu (1982) attempts this, but his later empirical findings with Deng (Wu and Deng, 1983) on coverage largely derailed further efforts. An exception is described below.

Brewer and Donadio (2004) investigates estimating T with the simple expansion estimator, t, when x_k is the scalar x_k, the sampling design has “high entropy,” like the Rao-Sampford design or systematic probability sampling from a randomly ordered list, and $\pi_k \propto x_k$. Under the model in Eq. (4) with the ε_k uncorrelated, and $E(\varepsilon_k)^2 \propto x_k^2$, t is known to be both randomization and model unbiased. Focusing on the model expectation of the randomization variance, the authors propose the following model-assisted randomization variance
estimator (combining their Eqs. (16) and (18)):

\[v_{BD} = (n/[n-1]) \sum_{k \in S} \left(1 - \left\{ n \pi_k - \sum_{j \in U} \frac{\pi_j^2}{n} \right\} / [n-1] \right) \times \left(\frac{y_k}{\pi_k} - \left[n^{-1} \sum_{j \in S} \frac{y_j}{\pi_j} \right] \right)^2. \]

Compare this to this randomization variance estimator studied by Cumberland and Royall (1981), which results from plugging Hartley and Rao’s (1962) large-population approximations for \(\pi_{kj} \) into the Yates-Grundy variance estimator:

\[v_{HR} = (n/[n-1]) \sum_{k \in S} \left(1 - \sum_{j \in S} \pi_j/n + \sum_{j \in U} \frac{\pi_j^2}{n} - \pi_k \right) \times \left(\frac{y_k}{\pi_k} - \left[n^{-1} \sum_{j \in S} \frac{y_j}{\pi_j} \right] \right)^2. \]

The two variance estimators, \(v_{BD} \) and \(v_{HR} \), are asymptotically identical when \(O_p(N^2/n^{3/2}) \) terms can be ignored, but are different otherwise. Cumberland and Royal showed that \(v_{HR} \), unlike \(v_{BD} \), is an unbiased estimator for the variance of \(t \) as an estimator for \(T \) under the model. It, not \(v_{DB} \), is what randomization-assisted model-based sampling theory would recommend in this context.

Returning to Särndal et al., variance estimator, we improved a bit upon it in the text by paying closer attention to the asymptotics, concentrating first on those situations where finite population correction matters and then on cases where the sample itself is not very large. As the population and then the sample because less large, it was necessary to make more assumptions about the error structure of the model. This may be regrettable, but relying instead on randomization-based properties, which are asymptotic in nature, makes little sense. Indeed, as we have seen, models can help us ferret out just when the sample may be too small to assert the asymptotic normality of the pivotal (\(t_R/\sqrt{v^*} \) or \(t_R/\sqrt{v^{**}} \) when finite population correction is ignorable), a common and often unjustified practice.

There is an alternative way of conceptualizing randomization-assisted model-based survey sampling from the way it has been done here. In the alternative, the linear model in Eq. (4) holds for any element of the population, but not necessarily the sample. That is because \(\varepsilon_k \) may be correlated with the sample-inclusion indicator, \(I_k \). That is to say, the sampling design may be informative, or equivalently, non-ignorable. This approach is intriguing when estimating model parameters using sample data. See, for example, Pfeffermann and Sverchkov (1999). It is less attractive when estimating finite-population totals like \(T \). For one thing, it forces the statistician to accept the truth of his (her) model. For another, determining the model variance of an estimator conditioned on a realized sample is difficult when the design is informative. One usually is forced to determine the model expectation of the randomization mean squared error instead.
A referee questioned whether the approach taken here is really model based since it allows the possibility of total model failure, in which case the approach becomes entirely randomization based. A true model-based approach, in this contrary view, protects against model failure by imbedding a parsimonious model within a more general one. That was done here to a limited extent when estimating the model variance of t.

Invoking randomization-based inference to protect against total model failure is reasonable because, 1, T is a finite-population parameter that can be defined in a completely model-free manner, and, 2, in survey sampling we often have the luxury of large samples. As a result, the usual focus of statistics on parsimonious models and Type 1 error (rejecting a model that is true) can often be redirected at robust models and Type 2 error (accepting a model that is false). Randomization-based methods appear to free us from assuming much of a model at all, although assuming variables satisfy Eq. (3) can be viewed as a model of sorts. Unfortunately, as has been noted, the relevant randomization-based properties are asymptotic, while samples are always finite.

There are many topics we have not had the space to address here. Kott and Bailey (2000) discuss a method for drawing a multipurpose sample under the randomization-assisted model-based paradigm. Kott (1998) shows that the jackknife and balance-repeated-replication variance estimators share the asymptotic model-based properties of the weighted-residual variance estimator when finite population correction can be ignored.

We have not discussed techniques for handling the impact of nonresponse and measurement error, two areas where the use of model-based methods is already widely accepted. Another area where model-based methods are widely used is in small-domain estimation. This is because sample sizes can be too small for randomization-based theory to have much virtue. There, the incorporation of randomization-based principles is problematic. On the one hand, for the small domains sampling weights are, at best, a nuisance. On the other, when small domains are aggregated together, the result is based on a large enough sample for randomization-based principles to offer some protection against model failure. Although not described that way, the approach to small-domain estimation in You and Rao (2001) is consistent with the randomization-assisted model-based paradigm.

Breidt and Opsomer (2000) have developed a promising randomization-consistent local-polynomial-regression estimator. Their variance estimator, however, does not have the desirable asymptotic model-based property discussed here. That failing should be corrected. Kott (2003) offers an attempt. Finally, model-assisted papers on strategies using multi-phase sampling are appearing in the literature with increasing frequency (see, for example, Hidiroglou and Särndal, 1998). Just how to handle such designs from a randomization-assisted viewpoint needs to be addressed.

References

