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Understanding streamflow patterns in space and time is important for improving flood and drought fore-
casting, water resources management, and predictions of ecological changes. Objectives of this work
include (a) to characterize the spatial and temporal patterns of streamflow using information theory-
based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic
zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those
measures. We selected two USDA experimental watersheds to serve as case study examples, including
the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental
watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds
and more than 30 years of continuous data records of precipitation and streamflow. Information content
measures (metric entropy and mean information gain) and complexity measures (effective measure com-
plexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow
and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or
sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information
content measures of streamflow time series are much smaller than those for precipitation data, and the
streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of
the precipitation information that leads to the observed additional complexity in streamflow measures.
Correlation coefficients between the information-theory-based measures and time intervals are close to
0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial
scale effects on streamflow patterns are observed with absolute values of correlation coefficients
between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We con-
clude that temporal effects must be evaluated and accounted for when the information theory-based
methods are used for performance evaluation and comparison of hydrological models.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

et al., 2009). Poff and Ward (1989) noted that detection of recovery
from natural or anthropogenic disturbance in lotic ecosystems de-

Quantification of streamflow patterns, especially observable
and to some extent predictable recurrent changes in hydrographs,
is of paramount importance for improvement of flood and drought
forecasting and water resource management (Black, 1996; Simo-
novic, 2009). The structure and composition of lotic communities
in fluvial ecosystems strongly depend on streamflow patterns (Poff
and Allan, 1995), and these patterns may be observed and inter-
preted at various temporal and spatial scales (Poff, 1996; Matteau
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pends on the selection of appropriate spatial and temporal scales
for the variables of interest. And, complementary information
about hydrologic systems may be inferred from the analysis of
streamflow patterns at different scales (Carey et al., 2010).
Various parameterization methods may be used to characterize
streamflow patterns and detect changes in them. Historically, the
first group of methods proposed rely on probability distribution
functions of several flow characteristics. Poff and Ward (1989)
developed a classification system of regional hydrologic regimes
based on four flow characteristics: duration of intermittency, high
flow frequency, high flow predictability, and overall flow variabil-
ity. Subsequently, Richter et al. (1996) assessed flow alteration of
regulated rivers in terms of five characteristics of flow: magnitude,
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duration, frequency, timing, and rate of change. With these meth-
ods, a relatively small number of parameters derived from the
probability distribution functions may be used to characterize
streamflow patterns. For example, Conrad and Booth (2005) dis-
criminated between streamflow patterns using nine parameters
that characterize the high flow frequency, the flow distribution,
the daily variation, and the low flow magnitude.

A large group of methods to characterize streamflow patterns
rely on multivariate statistical methods. Large numbers of stream-
flow metrics can be computed and then a principal component anal-
ysis (PCA) can be performed to create a small number of predictors
that describe the most variance in the data. For example, Sanborn
and Bledsoe (2006) computed 84 parameters to characterize stream-
flow patterns and applied a PCA to define aggregated metrics of flow
patterns. Similarly, Clausen and Biggs (2000) used 35 parameters
and defined four principal components as aggregated streamflow
parameters. Canonical correlations or classification methods have
been used together with PCA to relate flow properties to watershed
properties (Detenbeck et al., 2005; Matteau et al., 2009), while clus-
ter analysis with multiple streamflow pattern variables facilitates
classification of streams into flow regime groupings (Baeza Sanz
and Garcia del Jalén, 2005; Moliere et al., 2009).

Various decompositions of streamflow time series have been
proposed to characterize and classify streamflow hydrographs. Ini-
tially, Fourier series analysis was applied to evaluate climatic ef-
fects of streamflow at coarse temporal scales (Kahya and Dracup,
1993). Later, wavelet decompositions were used to characterize
streamflow patterns at a progressively-increasing series of tempo-
ral scales (Smith et al., 1998; Anctil and Coulibaly, 2004).

Yet another group of methods of streamflow characterization
concentrates on features in streamflow hydrograph shapes. For
example, symbolic coding of hydrographs was proposed by Lange
(1999). The range of flow variability is divided into a number of inter-
vals, each interval is denoted with a symbol, and each flow observa-
tion is coded with the symbol of the interval within which this
observationis found. The resulting string of symbols can be analyzed
with information theory methods. As a result, streamflow patterns
may be characterized, classified, and compared in terms of their
information content and complexity (Engelhardt et al., 2009). This
method of pattern classification has provided useful complementary
information about the soil water model performance, especially
comparison of results from different models and measured soil
water time series (Pachepsky et al., 2006; Pan et al., 2011).

To our knowledge, scale effects on information content and
complexity of streamflow patterns have not been studied in detail
previously. The objectives of this work include (a) to characterize
the spatial and temporal patterns of streamflow using information
theory-based measures at thoroughly monitored agricultural
watersheds located in different hydroclimatic zones with similar
land use, and (b) to evaluate temporal and spatial scale effects on
these measures.

2. Materials and methods
2.1. Study sites and data collection

The study sites are two USDA-ARS experimental watersheds,
including the Little River experimental watershed (LREW) in Tifton,
GA, and the Sleepers River experimental watershed (SREW) in
North Danville, VT (Fig. 1). Both watersheds include several sub-
watersheds with more than 30 years of continuous data records
of precipitation and streamflow (USDA-ARS, 2009).

The LREW is located in the Western headwaters of the Suwannee
River Basin (Bosch et al., 2007a). The watershed has an area of
334.2 km? with seven nested sub-watersheds, areas of which range

from 2.6 km? to 114.8 km? (Table 1, Fig. 1) (Bosch et al., 2007a). The
watershed is located in the Gulf-Atlantic Coastal Plain physiographic
region in southeastern United States and has a humid climate with
an annual average rainfall of 120.3 cm. The topography of the wa-
tershed includes broad flat floodplains, river terraces, and gently-
sloping uplands. Land-surface elevation of the watershed ranges
from 80 m to 150 m with the slopes less than 5%. Soil types within
the watershed are mainly Tifton loamy sand, Alapaha loamy sand,
and Kinston and Osier fine sandy loam (Sullivan et al., 2007). The
land cover consists of 50% woodland, 31% row crops, 10% pasture,
2% water, and 7% others (Sullivan et al., 2007). The precipitation net-
work has been designed to measure the rainfall within and in imme-
diately surroundings of the LREW with 55 rain gauges installed and
measuring streamflow data since 1967, with the number of gauges
reduced to 31 since 1982 (Bosch et al., 2007b; Bosch and Sheridan,
2007).

The SREW, located in northeastern Vermont, has an area of
111 km? with a total of eleven sub-watersheds ranging from
0.5 km? to 43.5 km? (Table 1, Fig. 1). The watershed is located in
a glaciated highland region of the northeastern U.S. and has a hu-
mid continental climate. Its annual average precipitation of 110 cm
includes 25% snow (USGS, 2005). The elevation of the watershed
ranges from 195 m to 780 m with slope varying from 3% to 35%.
Bedrock within the watershed is the Waits River Formation, a
quartz mica phyllite with layers of calcareous granulite (Shanley
et al., 2002). The land cover consists of 67% forest and 33% agricul-
ture, including pasture, hay and corn fields (USGS, 2005). Precipita-
tion data have been observed at 13 sites and streamflow measured
at 17 gauged watersheds since 1959 (USGS, 2005).

2.2. Information content and complexity measures

We use symbolic strings (Lange, 1999; Wolf, 1999) to approxi-
mate the time series of hydrologic variables in this study, including
precipitation and streamflow, with systems that have a finite num-
ber of states.The median value of the measurements is found for
each time series. The symbol “1” is assigned to the measurements
that exceed the median value, and the symbol “0” is assigned to
the measurements that fall below or at the median value. The word
of length L is defined as a group of L consecutive symbols, and 2"
different words could be encountered in a string. For example, if
the word length is three, then the eight possible words are 000,
001, 010,100,011, 101, 110, 111. Each word represents the
state of the system. The transition from one state to another is de-
fined as the change in the words starting from two consecutive
observation times. For example, if the string is ‘100110’ and the
word length is three, then the shift from the first word ‘100’ to
the second word ‘001’ represents the transition from the ‘100’
state to ‘001’ state, the shift from the second word ‘001’ to the
third word ‘011’ represents the transition from the ‘001’ state to
‘017’ state, etc. Three sets of empirical probabilities are defined:
(a) p;: state probability of the occurrence of the ith in the symbolic
string, i=1,2,...,2% (b) p. ;- probabilities of the transition from
the ith to the jth L-word, i=1,2,...,2" j=1,2,...,2% and (c)
p1;i; the conditional probability of the occurrence of the jth word
provided that the ith word has occurred, i=1,2,...,2%
j=1,2,...,2" (Wolf, 1999).The information content is quantified
with two measures - metric entropy and mean information gain.
The Shannon entropy (Shannon, 1948), H(L), for words of length
L is defined as a measure of information in the time series after
it has been encoded with symbols:

21.
H(l) = - ZPL,iIngpL.ia (1)

i=1

Shannon’s entropy measures the information contained in a mes-
sage as opposed to the portion of the message that is determined
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Fig. 1. Maps of Sleepers River experiment watershed (SREW), North Danville, Vermont and Little River experimental watershed (LREW), Tifton, Georgia.

or predictable (e. g, Chang et al., 2009). The metric entropy, H,, is
the Shannon'’s entropy divided by the word length, and this normal-
ization results in the value of the information independent of the
word length. The metric entropy represents the extent of the disor-
der in the sequence of symbols. The metric entropy vanishes for
constant sequences, increases monotonically when the disorder in-
creases, and reaches its maximum of one for uniformly distributed
random sequences with complete randomness.The mean informa-
tion gain, Hg, as yet another measure of the information content,
quantifies the additional information that can be gained on the

average for the whole symbol sequence from knowing the next
symbol. It is defined as:

2L
Hq(L) = ZPL.ilegsz.iﬂ‘- (2)
ij=1
The mean information gain includes the probabilities of state
changes in a time series. The larger values of mean information
gain indicate the larger possibility of state changes from one to an-
other, and potential higher randomness or less predictability of a
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Table 1

The information content and complexity measures of 5-year daily, half-daily, and quarter-daily streamflow time series at Sleepers River (SREW) and Little River experimental

watershed (LREW) and their sub-watersheds.

SREW Daily Half-Daily Quarter-Daily

w Area ME MIG EMC FC ME MIG EMC FC ME MIG EMC FC
W-1 429 0.73 043 0.61 1.35 0.67 0.32 0.69 1.48 0.61 0.21 0.79 1.42
W-2 0.6 0.72 0.38 0.68 1.31 0.66 0.30 0.72 1.45 0.63 0.24 0.78 1.32
W-3 8.4 0.74 043 0.62 1.30 0.69 0.34 0.69 1.34 0.62 0.24 0.76 1.46
W-4 43.5 0.73 043 0.61 1.37 0.66 0.31 0.70 1.54 0.60 0.20 0.80 1.42
W-5 111.1 0.73 043 0.60 1.44 0.67 0.32 0.69 1.53 0.61 0.22 0.78 1.43
W-6 0.7 0.68 0.30 0.76 1.12 0.65 0.25 0.80 1.14 0.61 0.20 0.81 1.28
W-7 21.8 0.70 0.37 0.66 1.32 0.64 0.29 0.71 1.47 0.59 0.19 0.80 1.35
W-8 15.6 0.75 0.46 0.58 1.34 0.70 0.36 0.67 1.35 0.63 0.25 0.76 1.44
W-9 0.5 0.69 035 0.69 1.41 0.63 0.26 0.75 1.43 0.60 0.18 0.82 1.26
W-10 16.3 0.74 0.45 0.59 1.35 0.67 0.33 0.69 1.45 0.61 0.22 0.78 1.40
W-11 23 0.69 0.34 0.71 1.31 0.65 0.27 0.76 1.27 0.61 0.21 0.80 1.32
W-12 2.0 0.76 0.49 0.55 1.37 0.69 0.37 0.65 1.48 0.63 0.26 0.74 1.51
LREW

W-B 334.2 0.66 0.31 0.69 1.68 0.60 0.20 0.80 1.46 0.56 0.11 0.89 1.07
W-N 15.7 0.71 0.42 0.59 1.62 0.64 0.28 0.73 1.56 0.59 0.17 0.83 1.30
W-0 15.9 0.70 0.40 0.61 1.64 0.64 0.27 0.73 1.53 0.59 0.17 0.83 1.31
W-F 114.8 0.70 0.39 0.62 1.63 0.63 0.26 0.74 1.58 0.58 0.16 0.84 1.26
W-I 49.9 0.70 0.40 0.61 1.64 0.64 0.28 0.72 1.56 0.59 0.18 0.83 1.33
W-] 22.1 0.69 0.36 0.66 1.54 0.62 0.23 0.77 1.45 0.57 0.15 0.85 1.22
W-K 16.7 0.74 0.46 0.57 1.48 0.67 0.32 0.68 1.55 0.61 0.21 0.79 1.46
W-M 2.6 0.67 0.34 0.66 1.75 0.61 0.22 0.78 1.51 0.57 0.14 0.86 1.13

Note: SREW - Sleepers River experimental watershed; LREW - Little River experimental watershed; W - Name of sub-watersheds; Area - in km?; ME - Metric entropy; MIG -
Mean information gain; EMC - Effective measure complexity; FC - Fluctuation complexity.

time series.The complexity in this work reflects the extent of an
internal structure in a time series. Two measures of such complex-
ity - fluctuation complexity and effective measure complexity -
were used to quantify the internal structure in symbolic strings.
The fluctuation complexity (¢2) is the variance of the net informa-
tion gain, i.e., the differences between information gain and loss,
defined as

oL 2
o} = ZpL.ij (10g2 &> ) 3)
ij Dij

where the information gain is associated to the transition from the
ith word to the jth word, G;; = log,(1/p,;_;), and the information
loss L, = log,(1/p; ;) is associated with the occurrence of the
Jjth word occurs after the occurrence of the ith word. The net infor-
mation gain is the difference G.; — L, ;. Thus, the fluctuation com-
plexity characterizes the fluctuations in the system transitions
from one state to another. The more the net information gain is fluc-
tuating in the investigated string, the more complex is the string
(Bates and Shepard, 1993).

The effective measure complexity (Cgy) evaluates the minimum
total amount of information that has to be stored at any time for an
optimal prediction of the next symbol. This measure can be
approximately calculated as (Grassberger, 1986).

2L
Drij
Cem = ZpijlOgZ o (4)
ij=1 Dri

Values of the complexity measures (fluctuation and effective
measure complexity) are small for time series that are easy to de-
scribe such as constant or periodic sequences, or completely ran-
dom data. Larger values of the complexity measures are observed
in time series that are not amenable to an easy description involv-
ing only a few parameters (Pachepsky et al., 2006; Wolf, 1999).

All information theory-based measures of information content
and complexity are computed in this study using the SYMDYN
software (Wolf, 1999). Wolf (1999) presented the required lengths
of a time series using binary strings (2-letter alphabet) for different
number of symbols in order to estimate the information content

and complexity measures with 5% relative error or better accuracy.
The required lengths of a time series are 723 for 4-symbol words
using a 2-letter alphabet to estimate the effective measure com-
plexity. For 3-, and 4-letter alphabet, the required lengths of a time
series could significantly increase. The 2-letter alphabet is used in
this study.

2.3. Temporal and spatial scale effects on information theory-based
measures of information content and complexity

The temporal scale of observations is defined as the time inter-
val over which the streamflow or precipitation are averaged. The
spatial scale is characterized by the area of a watershed or its
sub-watersheds. Pearson correlation coefficients between informa-
tion theory measures and scale measures are computed.

3. Results and discussion
3.1. Precipitation and streamflow patterns

The 5-year daily time series of precipitation and streamflow for
SREW and LREW are illustrated in Fig. 2. The daily precipitation
and streamflow exhibit significant temporal variability in the two
watersheds (Fig. 2). In general, the precipitation and streamflow
at SREW are relatively less variable than the data for LREW. For
example, the 5-year accumulated precipitation is 5864 mm at
SREW, and 5839 mm at LREW but their variances are 39.6, and
82.7 mm? at SREW and LREW, respectively. The streamflow time
series exhibits large variation among sub-watersheds. For instance,
the mean values of 5-year daily streamflow time series vary from
0.01 to 1.86 m?/s at the 12 sub-watersheds of SREW, and are from
0.03 to 4.26 m°/s at the 8 sub-watersheds of LREW.

Fig. 3 displays the information content and complexity mea-
sures of 5-year and 1-year daily precipitation and streamflow time
series from 1965 to 1969 at SREW, and from 1974 to 1978 at LREW.
Daily precipitation time series has larger values of the information
content measures (mean information gain and metric entropy)
than daily streamflow time series but smaller values of the com-
plexity measures (fluctuation and effective measure complexity),
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Fig. 2. The 5-year daily time series of streamflow and precipitation at Sleepers River (SREW) and Little River experiment watershed (LREW) and their sub-watersheds.

indicating relatively higher randomness and lower complexity of
daily precipitation time series compared to daily streamflow data.
The state probabilities of “00”, “01”, “10”, and “11” for daily pre-
cipitation time series at sub-watershed W-5 of SREW are 0.324,
0.177, 0.177, and 0.322, respectively and corresponding values
for daily streamflow time series are 0.459, 0.050, 0.051, and
0.440, respectively. As discussed in Section 2, the metric entropy
reaches maximum with uniform distribution of a time series. Com-
parisons show the relatively smaller differences among the state
probabilities for daily precipitation time series than corresponding
values of streamflow time series, leading to higher information
content measures and randomness of precipitation compared to
streamflow. These data also reveal that precipitation, as one of
many forcings driving the hydrologic cycle, is highly random, and
meteorological controls of precipitation do not create systematic
structure in precipitation time series at the study sites. The smaller
information content and the higher complexity of daily streamflow
time series compared with precipitation can also be explained by
the fact that precipitation conversion to streamflow is controlled
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by watershed characteristics such as landscape, geology, geomor-
phology, and soil properties, and these controls impose additional
structure on the streamflow time series as compared with
precipitation.

Comparison of information content and complexity measures
for 5-year time series of precipitation and streamflow between
the two watersheds (Fig. 3) show that the precipitation and
streamflow time series at SREW have larger information content
and lower complexity than the same data at LREW. The higher
randomness of precipitation at SREW in terms of probabilities
of different words is associated with the fact that precipitation
at SREW is less variable than at LREW (Fig. 2). The lower stream-
flow complexity at SREW as compared with LREW could be re-
lated to the lower complexity of precipitation. Another possible
reason of lower streamflow complexity at SREW compared with
LREW is that soils at LREW are shallower than at LREW, and the
lateral flow at SREW can transmit the part of precipitation to
streams with adding the less structure to the flow than the
one at LREW.
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The information content and complexity measures of 5-year
time series are generally in the middle of their ranges of 5 yearly
time series (Fig. 3). The coefficient of variation (CV) values of the
measures in 5 yearly streamflow time series are 0.038, 0.118,
0.089, and 0.067 at sub-watershed W-5 of SREW for metric entro-
py, mean information gain, effective measure complexity, and fluc-
tuation complexity, respectively. The corresponding values are
0.065, 0.275, 0.120, and 0.132 at sub-watershed W-B of LREW.
The small CV values at both watersheds indicate small interannual
variability of the measures, thus leading to trivial variation of the
streamflow patterns among the 5 years. The CV values of the infor-
mation content and complexity measures for 5 yearly streamflow
time series at LREW are larger than the corresponding data of
SREW, indicating the relatively larger variations of streamflow pat-
terns among the 5 years at LREW than the ones at SREW. The aver-
age values of the measures from 5 one-year streamflow time series
differ from the measures in 5-year time series less than by 3%.

3.2. Temporal scale effects on information content and complexity
measures

Fig. 4 illustrates the information content and complexity mea-
sures of daily, half-daily, and quarter-daily streamflow time series
at SREW and LREW. The information content and complexity mea-
sures for 5-year streamflow time series are also listed in Table 1.
The mean information gain and metric entropy of streamflow time
series increase with the increase of time interval from 6, 12, to 24 h
at both watersheds and their sub-watersheds (Fig. 4). For example,
at sub-watershed W-B of LREW, the mean information gain and
metric entropy of 5-year streamflow time series increase from
0.11 to 0.31, and from 0.56 to 0.66, respectively when the time
interval is from 6, 12, to 24 h. As discussed in Session 2, the metric
entropy represents the extent of the disorder in the sequence of
symbols in a time series and the mean information gain represents
the probability of state changes in a time series. Since the large
time interval averages the variations in the streamflow time series,
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this leads to the larger probability of state changes from one to an-
other in the time series. This explains why the information content
measures increase with the increase of the time interval. It also
illustrates that the relatively smaller ratios among possible state
probabilities (i.e., close to uniform distribution) with larger time
interval of a time series lead to larger information content mea-
sures of the time series.

The effective measure complexity decrease with increase of
time interval at both watersheds (Fig. 4). The smaller the time
interval of a time series, the larger the effective measure complex-
ity. Since the effective measure complexity describes the minimum
information required for an optimal prediction of next symbol, the
time series with a smaller time interval is more complex and re-
quires more information for prediction, leading to larger effective
measure complexity.

The temporal scale effects on the fluctuation complexity vary
among different watersheds. The fluctuation complexity of 5-year
streamflow time series increases with an increase of time interval
at most sub-watersheds of LREW (Table 1). On the contrary, the
fluctuation complexity has close values among the daily, half-daily,
and quarter-daily time series at SREW (Table 1). For example, the
fluctuation complexity with daily, half-daily, and quarter-daily
streamflow time series are 1.68, 1.46, and 1.07 at the sub-wa-
tershed W-B of LREW, respectively. The corresponding values are
1.44, 1.53, and 1.43 at the sub-watershed W-5 of SREW, respec-
tively. The fluctuation complexity represents the fluctuations in
the system transition from one state to another and is dependent
on the transition probability and the ratios of two state probabili-
ties according to Eq. (3). Although the ratios of two state probabil-
ities decrease with the increase of the time interval, the increase of
the transition probability could lead to an increase of the fluctua-
tion complexity according to Eq. (3).

Fig. 5 depicts the mean information gain and the effective mea-
sure complexity of 5-year streamflow time series at daily, half-dai-
ly, and quarter-daily time series at SREW and LREW. The mean
information gain increases and effective measure complexity
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Fig. 4. The information content and complexity measures of daily, half-daily, and quarter-daily streamflow time series at Sleepers River (a and b), and Little River (c and d)

experimental watersheds.



F. Pan et al./Journal of Hydrology 414-415 (2012) 99-107 105

decreases as the time scale increases. The temporal scale effects
can also be evaluated by the correlation coefficients listed in Ta-
ble 2. The correlation coefficients between information content
measures and time interval are 0.90, and 0.92 at SREW and LREW
for the metric entropy, respectively and are 0.87, and 0.92 for the
mean information gain, respectively. The strong negative linear
relationships between the effective measure complexity and time
interval are observed according to their correlation coefficients of
—0.79, and —0.93 at SREW and LREW, respectively. The temporal
scale effects on the fluctuation complexity are uncertain at differ-
ent watersheds resulting from the correlation coefficients between
the fluctuation complexity and the time interval being —0.26 at
SREW and 0.79 at LREW, respectively.

3.3. Spatial scale effects on information content and complexity
measures

Fig. 6 shows the mean information gain and the effective mea-
sure complexity of 5-year and 1-year daily streamflow time series
with sub-watershed areas at SREW and LREW. The mean informa-
tion gain generally decreases and the effective measure complexity
has an increase in trend with the increase of sub-watershed areas
at LREW. The correlation coefficients between the information-
based measures and the sub-watersheds areas are —0.60, —0.60,
0.59, and 0.27 in 5-year streamflow time series for the metric en-
tropy, the mean information gain, the effective measure complex-
ity, and the fluctuation complexity, respectively, indicating the
moderate effects of the spatial scale on the information content
and complexity measures. The negative correlation of information
content measures and sub-watershed area is in agreement with
the observation of Hirpa et al. (2010) that large watersheds have
more persistent river flow fluctuations and stronger long memory.
In such cases, the distribution of states in symbolic strings should
become less even and the information content should decrease.
The streamflow response in a watershed is controlled by precipita-
tion input and watershed characteristics such as landscape,
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geology, geomorphology, and soil properties. For smaller water-
sheds, more information is transferred from highly random precip-
itation to streamflow. With increase of watershed areas, these
control factors impose more structure on the streamflow time ser-
ies and result in more complexity.

Much weaker relationships between the information-based
measures and the sub-watershed size are observed at SREW. Calcu-
lated correlation coefficients were 0.22, 0.30, —0.36, and 0.52 in 5-
year streamflow time series for the four measures, respectively
(see Table 2). The correlation coefficients also vary among the 5
yearly time series. A possible reason for that may be the presence
of shallow soils that decrease the water storage of the sub-water-
sheds. In addition, in forested shallow soils, substantial flow occurs
at the soil bedrock interface (e.g. Peters et al., 1995) and the inter-
action of precipitation with soils and vegetation may be less pro-
nounced. Modeling applied to this watershed (Wolock, 1995)
shows that large variations in responses of streamflow to precipi-
tation in this watershed and its sub-watersheds may be caused
by the variations in topography.

We realize that the current application shows the potential of
the methodology in hydrological applications rather than presents
its fit-for-all version. An essential way forward would be to re-
search and test divisions of data into ordinal categories that are
meaningful for hydrology. This direction of research would answer
the important question posed by the anonymous reviewer of the
earlier version of this manuscript: what will happen when the
thresholds between the states are based on more hydrologically
relevant distinctions? Starting points could be often made distinc-
tions between driven flow vs. non-driven flow or fast flow/high
flow versus base flow/low flow, separation of various hydrograph
components, rising limbs, falling limbs, knick points on hydro-
graphs where significance of dominant flow paths change.

Different information theory-based measures represent differ-
ent aspects of the hydrologic system behaviors in a given hydro-
logic system. Measures derived from information theory not
employed in this work, e.g., transfer entropy, mean mutual
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Fig. 5. The mean information gain and effective measure complexity versus time interval of streamflow time series at Sleepers River (a and b), and Little River (c and d)

experimental watersheds and their sub-watersheds.



106 F. Pan et al./Journal of Hydrology 414-415 (2012) 99-107

Table 2

The correlation coefficients (r) between information content and complexity measures, and time interval or sub-watershed area for 5-year streamflow time series.

Information metrics r (Time interval)

r (Sub-watershed area)

SREW LREW SREW LREW
Mean information gain 0.87 0.92 0.30 —-0.60
Metric entropy 0.90 0.92 0.22 -0.60
Fluctuation complexity -0.26 0.79 0.52 0.27
Effective measure complexity -0.79 -0.93 -0.36 0.59
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Fig. 6. The mean information gain and fluctuation complexity of streamflow time series versus sub-watershed area at Sleepers River (a and b), and Little River (¢ and d)

experimental watersheds.

information, Rényi entropy, information entropy, relative entropy,
maximum entropy, etc., have also been used to measure the infor-
mation and complexity of a hydrologic time series (Wolf, 1999;
Mays et al., 2002; Al-Hamdan and Cruise, 2010; Brunsell, 2010;
Singh, 2010a,b; Schreiber, 2000). The transfer entropy (Schreiber,
2000) holds a substantial promise, partly because it is suitable
not only for characterization of individual time series but also for
establishing relationships between information content and com-
plexity of two or more time series and directions of the informa-
tion flow between two coupled processes (Kaiser and Schreiber,
2002). Selection of information theory-based measures may de-
pend on the type of study, and the particular time series used in
the analysis (Parrott, 2010), and selection of these aspects for
streamflow time series presents a meaningful research avenue.
Similarly, additional research needs include further exploration
of effects of word length and number of symbols in the alphabet
on information content and complexity measures, given that these
measures have proven to be useful complementary measures in
model performance evaluation (Pachepsky et al., 2006).

4. Conclusions
Information content evaluated by mean information gain and

metric entropy, and complexity assessed with effective measure
and the fluctuation complexity, are analyzed at temporal and

spatial scales for two different regions. Results demonstrate the sig-
nificant temporal scale effects and moderate spatial scale effects on
the information content and complexity measures of streamflow.

Comparisons of information content and complexity measures
of 5-year daily precipitation and streamflow time series show the
relatively lower information content and more complexity in
streamflow time series than in precipitation. These results indicate
that patterns of streamflow are relatively less random and exhibit
higher complexity than the corresponding precipitation data.
These data also reveal that precipitation, as one of many forcings
driving the hydrologic cycle, is only partially transferred to stream-
flow through hydrologic processes (e.g., infiltration, surface runoff
etc.) in the watersheds, and the watersheds effectively act as filters
of the information associated with the precipitation. Conversion
from precipitation to streamflow imposes additional structure on
the streamflow patterns by controlling factors such as watershed
characteristics of landscape, geology, geomorphology, and soil
properties, ultimately resulting in higher complexity of streamflow
time series than precipitation.

The information content measures increase and the effective
measure complexity decreases from quarter-daily, half-daily to
daily streamflow time series. Correlation coefficients between the
measures and the time interval are around 0.9 (or —0.9), indicating
the significant temporal scale effects on the information content
and complexity measures and the patterns of streamflow.
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The information content measures generally decrease and the
trend of complexity measures increases with increase of sub-wa-
tershed area at LREW. The correlation coefficients between infor-
mation theory-based measures and the sub-watershed area have
absolute values ranging from 0.27 to 0.60 at LREW, and from
0.22 to 0.52 at SREW, indicating moderate spatial scale effects on
the streamflow patterns. Finally, the relationship between the
measures and the sub-watershed area also has different character-
istics for the two watersheds. Sub-watershed area is one of several
spatial scale factors that may have significant effects on stream-
flow patterns. Other factors include slope, variations in slope, chan-
nel lengths, land use, and land cover. All of these factors should be
considered and factored in evaluations of the spatial scale effects
on the information content and complexity measures and patterns
of streamflow. Overall, information theory-based measures of
information content and complexity could provide useful comple-
mentary knowledge about temporal and spatial patterns and com-
plexity of physical processes in hydrologic systems.
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