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a b s t r a c t

The arsenic (As) contamination of groundwater has increasingly been recognized as

a major global issue of concern. As groundwater resources are one of most important

freshwater sources for water supplies in Southeast Asian countries, it is important to

investigate the spatial distribution of As contamination and evaluate the health risk of As

for these countries. The detection of As contamination in groundwater resources, however,

can create a substantial labor and cost burden for Southeast Asian countries. Therefore,

modeling approaches for As concentration using conventional on-site measurement data

can be an alternative to quantify the As contamination. The objective of this study is to

evaluate the predictive performance of four different models; specifically, multiple linear

regression (MLR), principal component regression (PCR), artificial neural network (ANN),

and the combination of principal components and an artificial neural network (PC-ANN) in

the prediction of As concentration, and to provide assessment tools for Southeast Asian

countries including Cambodia, Laos, and Thailand. The modeling results show that the

prediction accuracy of PC-ANN (NasheSutcliffe model efficiency coefficients: 0.98 (traning

step) and 0.71 (validation step)) is superior among the four different models. This finding

can be explained by the fact that the PC-ANN not only solves the problem of collinearity of

input variables, but also reflects the presence of high variability in observed As concen-

trations. We expect that the model developed in this work can be used to predict As

concentrations using conventional water quality data obtained from on-site measure-

ments, and can further provide reliable and predictive information for public health

management policies.
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1. Introduction
 a stepwise regression technique is often required to deter-
Groundwater resources are the most important components

of drinking water supplies for Southeast Asian countries (Berg

et al., 2007). Arsenic (As) contamination of groundwater has

become a major problem on a worldwide scale because As is

a carcinogenic element, which is mostly present as an inor-

ganic species in natural water systems (Bagla and Kaise, 1996;

AWWA, 2001; Berg et al., 2006; Kocar and Fendorf, 2009;

Sthiannopkao et al., 2010). Naturally occurring As-enriched

groundwater has been observed in tube well/hand pump

drinking water supplies in South and Southeast Asia,

including Thailand, Vietnam, Loa PDR, Cambodia, Myanmar,

Bangladesh, India, Nepal, and Pakistan (Berg et al., 2001a,b;

Smedley and Kinniburgh, 2002; Sun et al., 2002; Polya et al.,

2003, 2005; Stanger et al., 2005; Kohnhorst, 2005; Tetsuro

et al., 2006; Chiew et al., 2009). It is estimated that about 200

million people are at risk of harmful toxic effects of As in these

countries (Sun et al., 2002).

In Southeast Asian countries, monitoring strategies of As

contamination need to be improved in order to quantify As

concentrations in groundwater, which can then be used to

provide further information to better assess and manage

public health. The detection of As contamination of ground-

water resources, however, is hampered by a substantial labor

and cost burden for Southeast Asian countries; it requires

sophisticated equipment, highly skilled technicians, and

incurs a high maintenance cost. As such, dealing with local

As-associated problems in Cambodia and Laos remains

problematic, where facilities for determining arsenic

concentrations as well as human resources and funding for

analyzing arsenic are still very much lacking.

Therefore, modeling approaches for As concentrations

using on-site measurement data can be an alternative to

characterizing the As contamination potential, to provide

predictive information for better public health management.

Indeed, obtaining on-site data such as pH, redox potential

(Eh), and salinity are less expensive and much easier to

perform than to detect and measure As contamination via

graphite atomic absorption spectrophotometry (AAS) or

inductively coupled plasma mass spectroscopy (ICP-MS). It is

thought that these simple measurements can be used to fill

the gap incurred by the missing facilities, human resources,

and funding for arsenic determination using sophisticated

equipment.

The most popular modeling approaches currently in use

are multiple linear regression (MLR) and principal component

regression (PCR), both of which attempt to find the most

appropriate predictive model by fitting a linear equation to

multiple observed data (explanatory variables). However, MLR

and PCR may not be successful due to their statistical

assumptions, including absence of outliers, normality, and

randomness, which can be easily violated (Gros, 1997). In

particular, the existence of correlations among explanatory

variables (referred to here as “collinearity”) diminishes the

statistical stability (or robustness) andmay cause significantly

high prediction errors (Mac Nally, 2002). Moreover, incorpo-

ration of too many redundant (or insignificant), or too few,

explanatory variables into models is not practical; thus,
mine the optimal number of variables to use as explanatory

variables (over- or underspecification) (Luan et al., 2008).

Furthermore, even though the predictive power of MLR and

PCR can be acceptable, the models often result in the poor

accuracies whenmaking predictions with new datasets in the

validation step.

Therefore, more complex nonlinear models have been

developed that achieve better predictions, and have subse-

quently been applied to water resources problems such as

hydrological processes, water quality problems, and dam

operations (Maier and Dandy, 1996; Wen and Lee, 1998; Lee

et al., 2003; Riad et al., 2004; Sarangi and Bhattacharya, 2005;

Tayfur et al., 2005; Holmberg et al., 2006; Kuo et al., 2008).

These nonlinear models such as artificial neural networks

(ANNs), however, are not only difficult to construct, but also

often cause over-fit problems in predictions; furthermore, the

straightforward interpretation of relationships between

explanatory and dependent variables cannot be achieved by

nonlinear models. A few researchers have applied ANN to the

prediction of As in groundwater (Purkait et al., 2008; Chang

et al., 2010). For example, Purkait et al. (2008) used conven-

tional water quality parameters to predict As contamination

in Eastern India in an attempt to select the best model among

linear and nonlinear models. Chang et al. (2010) applied an

ANN model to recover missing values in As concentration

datasets in an area of Taiwan.

This study utilizes a comprehensive dataset from three

different countries, having a wide range of As concentration

levels and conventional water quality parameters. The

objective of this study is to analyze and evaluate the predictive

performance of MLR, PCR, ANN, and the sequential combi-

nation of principal component and ANN (PC-ANN) in the

prediction of As concentrations in groundwater and thereby

provide improved assessment tools for Southeast Asian

countries. In addition, a sensitivity analysis is also applied to

investigate the cause and effect relationship between input

parameters and As concentrations.
2. Materials and methods

2.1. Field and sampling sites

Groundwater samples were taken in an attempt to investigate

the As concentration and five in-situ parameters for three

countries: Cambodia, Loas, and Thailand (see Fig. 1). Table 1

shows the information on the timing and study sites. In

Cambodia, thirty groundwater samples were collected from

six villages in Kandal Province in 2008 ((Prek Thom village,

Kbal Kaoh commune, n ¼ 5), (Phoum Thom village, Phoum

Thom commune, n ¼ 5), (Chounlork village, Korki commune,

n ¼ 5), (Tuol Tnort village, Koki commune, n ¼ 5), (Doun Sor

village, Koki commune, n ¼ 5), (Poul Pear Ker village, Khom

Day Eth commune, n ¼ 5)). In 2010, 49 samples were taken

from south of Phnom Penh. In Laos, a total of 62 tube well

samples were collected in 2008 from households located in

provinces of Champasack (n ¼ 27), Attapeu (n ¼ 10), Saravane

(n ¼ 11), Savannakhet (n ¼ 4), Borikhamxay (n ¼ 7), and

http://dx.doi.org/10.1016/j.watres.2011.08.010
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Table 1 e Timing and sites of Arsenic sampling in
Southeast Asia.

Study
area

Sampling
time

Number of
samples

Number of
villages

or provinces

Cambodia 2008 30 6

2010 49 1

Laos 2008 62 6

Thailand 2008 10 1
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Vientiane (n ¼ 3). Vientiane is located in the upstream of the

Mekong River, followed by Borikhamxay, Savannakhet, Sar-

avane, Champasack and Attapeu, respectively. The areas

along the Mekong River located in middle and southern parts

of Laos starting from Borikhamxay downward are floodplain

areas. In Thailand, the concentrations of As in groundwater

were examined in Tambon Ongphra (n ¼ 10) in Suphan buri

province in 2008. In the three countries, samples for total As

were collected from tube wells by following this sequence: 1)

pumping the tube well for several minutes, 2) washing a clean

polyethylene bottle with the well water, and 3) taking water

without filtering.
2.2. Sample analysis and on-site measurement

As concentrations in groundwater samples were measured by

graphite atomic absorption spectrophotometry (GF-AAS; Per-

kin Elmer 5100 PC, with a detection limit of 0.5 mg L�1). GF-AAS

was calibrated by an external standard technique in the range

of 0e100 mg L�1. For a quality control, standard reference

material (SRM) for natural water (National Institute of Stan-

dards & Technology NIST 1640) was used to assure the preci-

sion of the measurement. After every tenth sample during

analysis, the SRM sample and calibration standards were

analyzed to check the analysis accuracy. All samples were

measured at least twice in order to assess the measurement

reliability; samples were reanalyzed if the error either from

the SRMor from the calibration standards exceeded 10%or the
Fig. 1 e Map of study the site, showing sampling stations

and Mekong River in Cambodia, Laos, and Thailand.
relative standard deviation of the measurement exceeded 5%.

Dilution was made with 2% HNO3 when the concentration of

the sample was over the upper limit of the standard range

(100 mg L�1). During the sample collection in three countries,

a series of in-situ measurements were conducted: pH, Eh,

water temperature (Wt) (HORIBA d-54 meter), electrical

conductivity (EC), and total dissolved solids (TDS) (ORION 3

STAR, Thermo Electron Corporation).

2.3. Modeling approaches: MLR, PCR, ANN, and PC-
ANN

All predictive models were developed using on-site data for

pH, EC, TDS, Wt, and Eh. These variables were logarithmically

transformed in order to normalize them for four different

models (Rawlings et al., 1998). A pattern search algorithm and

the Latin hypercube-one-factor-at-a-Time (LH-OAT) method

were used to optimize parameters and investigate parameter

sensitivity analysis of ANN, respectively (see Supplementary

Information). Strategies of training, validation, and testing

for ANN are also addressed in Supplementary Information.
Table 2 e Results of MLR and PCR for As concentration of
groundwater.

Regression coefficients Collinearity statistics

Independent
variable (i)

bi
a Std.

Error SEbi

VIF Mean VIF

(Constant)b 2.83 2.73 2.02

pH 2.60 0.89 1.14

Electrical

conductivity

0.00 0.05 2.67

Total dissolved

solids

�0.23 0.04 2.83

Temperature �1.62 1.74 1.16

Redox potential �0.21 0.19 2.29

(Constant)b 1.80 0.04 0.99

PC1 �0.18 0.04 0.98

PC2 �0.13 0.04 0.99

PC3 0.01 0.04 0.99

PC4 �0.16 0.06 1.00

PC5 �0.34 0.04 0.98

a The subscript i indicates the water quality parameter, and bi the

computed coefficients of the water qualities in the MLR and PCR

models,

log(As) ¼ b0 þ b1 � pH þ b2 � Conductivity þ b3 � TDS þ b4 � Water

temperature þ b5 � Redox, log(As) ¼ b0 þ b1 � PC1 þ
b2 � PC2 þ b3 � PC3 þ b4 � PC4 þ b5 � PC5.

b (Constant) in the table represents b0 in the MLR and PCR models.

http://dx.doi.org/10.1016/j.watres.2011.08.010
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2.3.1. Multiple linear regression (MLR)
The MLR model was developed as follows:

logðyÞ ¼ b0 þ
Xn

i¼1

bilogðxiÞ (1)

where xi is the explanatory variable i, y is the dependent vari-

able, bi is the regression coefficient of explanatory variables i,

and b0 is the value of the intercept in the log-linear fitting.

2.3.2. Principal component regression (PCR)
PCR combines a principal component analysis (PCA) decom-

position with MLR (Jolliffe, 2002; Cho et al., 2009). As a result of

PCA, a new set of variables (the principal components (PCs))

and PC scores are generated from the orthogonal linear

transform of the original data. The PC scores are then used in

the regression as explanatory variables.

2.3.3. Artificial neural network (ANN)
ANN is a useful method for determining pattern classifica-

tions of multi-variable datasets as well as the prediction of

complex processes. The multilayer perceptron ANN consists

of two or more layers of nodes, including an input layer,

a hidden layer, and an output layer, which are connected by

links with varying weights. The nodal data are multiplied by

the weights to compute the signal strength, and then are

transferred to the next node in the network; the input layer

nodes accept the input vectors and forward the signals to the

next layer according to the connection. This process is

continued until the signals reach the output layer.

2.3.4. Principal component-artificial neural network (PC-
ANN)
PC-ANN merges PCA decomposition with ANN (Sousa et al.,

2007). The main difference between this approach and ANN

is that PC scores generated from the orthogonal linear trans-

formation of the original data are used as the input variables
Fig. 2 eMean values of As concentration, pH, redox potential, tot

along with their standard deviations for Cambodia, Laos, and T
of ANN; other procedures for the optimization, training, and

validation are the same as those for the ANN model.
3. Results and discussion

3.1. Relationship between As concentrations and on-site
measurements

Fig. 2 shows the average values and standard deviations of As

concentrations and conventional water quality parameters in

Cambodia, Laos, and Thailand. Arsenic concentrations of

groundwater were observed to be the highest in Cambodia

and the lowest in Laos. Similarly, pH was the highest in

Cambodia, and the lowest in Laos. Conversely, Eh was the

highest in Laos, and the lowest in Cambodia. Significant

positive (Pearson correlation: 0.25; p-value: 0.00) and negative

correlations (Pearson correlation: �0.10, p-value: 0.12) were

found between the As concentrations and pH and between the

As concentrations and Eh, respectively. Even though the p-

value for Eh is greater than 0.05, the presence of this correla-

tion is consistent with previous studies (Berg et al., 2007;

Buschmann et al., 2007), indicating that high arsenic concen-

trations might be triggered by reducing conditions.

3.2. Linear models for predicting As concentrations

3.2.1. MLR for predicting As concentrations
Fig. 3(A) and (B) respectively shows the observed and the

predicted As concentrations of groundwater in both the

generation and validation steps of two different regression

models (i.e., MLR and PCR). Overall, the MLR model did not

reproduce the variations of observed As concentrations in

either the generation or validation steps; the developed MLR

model tends to underestimate As concentrations. Table 2

shows the regression coefficients bi, the corresponding
al dissolved solids, electrical conductivity, and temperature

hailand.

http://dx.doi.org/10.1016/j.watres.2011.08.010
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Table 3 e MAEs and NasheSutcliffe model efficiency
coefficients of the model predictions for As.

Generation/Training steps Validation step

MAEa NSEb MAEa NSEb

MLR 141.59 �0.29 345.26 �0.75

PCR 93.68 0.14 102.54 0.19

ANN 79.68 0.71 88.93 0.47

PC-ANN 72.08 0.61 101.17 0.66

Group A ANN 24.93 0.83 24.78 0.34

PC-ANN 22.63 0.84 44.09 0.52

Group B ANN 49.68 0.96 111.21 0.74

PC-ANN 35.10 0.98 75.15 0.71

a Mean absolute error (MAE) is a statistical approach used to assess

the model performance, and its unit is mg L�1

MAE ¼ ½n�1
Pn

i¼1 jxobs � xprej� where n indicates the number of

observations of As. Here, xobs and xpre indicate the observed and

predicted As concentrations, respectively.

b NSE ¼ 1�
PT

t¼1ðxtobs � xtpreÞ2PT
t¼1ðxtobs � xtpreÞ2

where xobs is the observed As

concentrations, xpre is the predicted As concentrations, and xtobs is

the averaged value of the observed As.

Fig. 3 e Comparison results between the observed and predicted As concentrations of groundwater, (A) and (B): MLR and

PCR, (C) and (D): ANN and PC-ANN, closed circles: MLR, open circles: PCR, closed squares: ANN, open squares: PC-ANN.
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standard error SEbi ; and the collinearity statistics of the MLR

model. Note that if the absolute value of bi in the MLRmodel is

greater than twice its standard error (i.e., SEbi ), the ith variable

can be regarded as a significant variable (Rawlings et al., 1998).

Here, TDS and pH have regression coefficients greater than

twice their standard errors.

Furthermore, collinearitywas foundamong the explanatory

variables because the largest variance inflation factor (VIF) was

greater than 10, with an average VIF value being substantially

greater than 1 (Bowerman and O’Connell, 1990; Myers, 1990).

Consequently, the computed values of bi and SEbi for a certain

explanatory variable strongly rely on the degree of its correla-

tion with the other variables in the MLR model. The modeling

accuracy was also compared using the NasheSutcliffe model

efficiency coefficient (NSE) computed from the predicted and

observed As concentrations (Nash and Sutcliffe, 1970). In

essence, the closer theNSE is to 1, themore accurate themodel

is. In particular, an acceptable NSE value needs to be greater

than 0.5, while a good agreement value should be greater than

0.7 (Moriasi et al., 2007). As shown in Table 3, the NSE values of

the MLR model (�0.29 and �0.75) indicate that the MLR model

developed in this study cannot be considered a suitable model

for predicting the As concentration of groundwater using on-

site measurement data. This result is similar to a previous

study in Eastern India; Purkait et al. (2008) found that MLR

showed good accuracy for low levels, but that it did not repro-

duce the high levels of As concentration.
3.2.2. PCR for predicting As concentrations
In the PCR model, five PCs were generated from five water

quality parameters and then used as input variables for

http://dx.doi.org/10.1016/j.watres.2011.08.010
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predicting As concentrations. Here, the cumulative

percentage of the variations explained by the five PCs was

100%, implying that these PCs were able to explain all the

variations in the original dataset. The five extracted PCs are

significantly related to each water quality parameter, PC1 (Eh,

0.95), PC2 (conductivity, 0.93), PC3 (water temperature, 0.99),

PC4 (pH, 1.00), and PC5 (TDS, 0.81).

Fig. 3(A) and (B) respectively compares the observed and

the predicted As concentrations of groundwater in both the

generation and validation steps of PCR. Overall, however, the

PCR model did not reproduce variations of the observed As

concentrations, usually by underestimating the relatively

high As concentrations similar to the MLR. As shown in Table

2, PC1, PC2, PC4, and PC5 had regression coefficients with

absolute values being greater than twice their standard errors.

In addition, all VIF values for the explanatory variables were

equal to or less than 1, thereby implying that the collinearity

problem in MLR was completely overcome through the PC

application. As shown in Table 2, however, the calculated

NSEs imply that the PCR model developed in this study still

cannot be used as a reasonable model for predicting ground-

water As concentrations using on-site measurement data.

Consequently, it demonstrates that the linearity of MLR and

PCR cannot reproduce the dynamic variations of observed As

concentrations in groundwater.

3.3. Nonlinear models for predicting As concentrations

3.3.1. Optimization processes for ANN and PC-ANN models
The optimal momentum rate, the number of hidden nodes,

and the learning rate were obtained by the pattern search

algorithm. The pattern search was used to determine the

optimal parameter set from the ranges of three parameters;

hidden nodes were ranged from 5 to 20, and learning and

momentum rates were ranged from 0.01 to 0.6. Finally, the

pattern search provided the optimal parameter set of the

learning and momentum rates and the number of hidden

layers, resulting in a minimum objective function. Moreover,

while too few hidden nodes in ANN results in a poor predictive

power, too many hidden nodes may cause a large computa-

tional time and over-fitting. The optimized number of hidden

nodes for the ANN and PC-ANN models were respectively set

to 13 and 15, which is consistent with past works on ANN

because they range between 2 and 3 times the number of input

nodes (Brion and Lingireddy, 1999). Note that the “tan-

sigmoid” transfer function was used in the neurons of the

hidden and output layers.

After the determining the learning rate, the momentum

rate, and the number of hidden nodes in the ANN and PC-ANN

models, the errors for the prediction of As concentrations

were computed in terms of MAE and NSE, and then compared

to those of MLR and PCR.

3.3.2. ANN for predicting As concentrations
Fig. 3(C) and (D) compares the observed and the predicted As

concentrations of groundwater in both the training and vali-

dation steps of ANN, where the horizontal and vertical axes

respectively indicate the observed and the predicted As

concentrations in groundwater. Overall, it can be seen that the

ANNmodel well reproduced the variations of the observed As
concentrations of groundwater in Cambodia, Laos, and

Thailand. As shown in Table 2, NSE values of ANN in training

and validation step are respectively greater than 0.5 and

approximately 0.5. In this case, it is clear that the MAE values

for ANN are much less than those for MLR and PCR. Conse-

quently, it can be seen that the optimized ANN model can be

a useful tool in predicting groundwater As concentrations

using on-site measurement data. This result is in good

agreement with a previous study by Purkait et al. (2008), in

which ANN showed better results than either a linear model.

3.3.3. PC-ANN for predicting As concentrations
Fig. 3(C) and (D) illustrates the observed and predicted

groundwater As concentrations in both the training and

validation steps of PC-ANN, where the open circles and

squares indicate values from PC-ANN. The figure shows that

the PC-ANN model also well reproduced the variations of

observed groundwater As concentrations in Cambodia, Laos,

and Thailand. As shown in Table 2, whereas the NSE value for

PC-ANN in the training stepwas 0.61, the NSE in the validation

step was 0.66; i.e., the NSE of PC-ANNwas greater than that of

ANN in the validation step. Consequently, it demonstrates

that the PC-ANN model can be useful in predicting ground-

water As concentrations using on-site measurement data.

3.4. Comparison between MLR, PCR, ANN, and PC-ANN

As shown in Table 2, the prediction accuracies of ANN and PC-

ANN are better than those of MLR and PCR models in both the

generation/training and validation steps. The table also

demonstrates that the developed ANN and PC-ANN models

show acceptable accuracies for predicting As concentrations

in the groundwater in Cambodia, Laos, and Thailand, which

can be explained by the fact that the nonlinearity of ANN can

reproduce the vigorous variations of As concentrations. As

mentioned above, the MLR and PCR models developed in this

study are not deemed to be suitable models because linearity

is not sufficient for explaining the dynamic variations of

observed As concentrations. This study demonstrates,

however, that the ANN model is a more acceptable approach

than the MLR model in terms of modeling As concentrations

using data from on-site measurements. In particular, it can be

posited that PC-ANN is the best model because of its highest

NSE in the validation step.

3.5. Redox potential vs As concentration

Fig. 4 shows the As concentration versus Eh. Based on the Eh,

the dataset was divided into two groups, Group A (<0.00) and

Group B (�0.00). The 89.23% of data for Group A are samples

collected fromKandal Province in Cambodia and the 84.52% of

data for Group B were measured from Lao PDR and Thailand.

Kandal Province is located in the Mekong Delta, which

receives a substantial volume of sediment (160 millon t yr�1)

from the Mekong River (Meybeck and Carbonnel, 1975; Ta

et al., 2001); the delta is mainly composed of young alluvial

soil (Nguyen et al., 2000). In addition, a reduced state of As (III)

was found to be the dominant species in Kandal Province

(Polya et al., 2003; Rowland et al., 2008; Polizzotto et al., 2008).

Consequently, Group A in the figure can be characterized as

http://dx.doi.org/10.1016/j.watres.2011.08.010
http://dx.doi.org/10.1016/j.watres.2011.08.010


Fig. 4 e As concentration versus redox potential, showing

Groups A and B.

Fig. 5 e The prediction results of ANN and PC-ANN for Groups A

B, (C) PC-ANN model for Group A, and (D) PC-ANN model for Gr
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predominantly As in highly reducing aquifer regions having

a low Eh level. In the figure, the As concentrations are mostly

stable in the elevated level (Group A), but show a steep

negative trendwith increasing Eh in Group B (i.e., Lao PDR and

Thailand). Hydrological conditions in Lao PDR, Cambodia, and

Vietnam have many characteristics in common and As (III)

was also found to be a dominant species in Lao PDR. Here,

Group B can also be interpreted as As in a reducing region,

though it showed a negative correlation with Eh as opposed to

Group A. This correlation may result from a combination of

low iron (ferrous) concentrations and high Eh in Lao PDR

(Chanpiwat et al., 2011). This different type of dependence of

As on Eh found may result in difficulty in using the entire

dataset for a single modeling approach. Therefore, Groups A

and B were utilized to train ANN and PC-ANN models, which

showed superior accuracy than linear models, in an attempt

to improve the prediction performance.

Fig. 5 compares the observed and predicted values of As

concentrations for the two datasets (Groups A and B). The two

models show a better prediction for Group A, but relatively

poor accuracies for Group B. Table 2 also demonstrates that

the NSE of themodels for Group Awere lower than themodels

for Group B in the validation steps, and even worse than the
and B, (A) ANN model for Group A, (B) ANN model for Group

oup B.
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Table 4 e Sensitivity rank of the conventional on-site measurement data in ANN and PC-ANN models from the LH-OAT
sensitivity analysis.

Group A Group B

ANN PC-ANN ANN PC-ANN

Rank 1 Temperature [�C] pH [e] Total dissolved solids [g L�1] Redox potential [mV]

Rank 2 Total dissolved solids [g L�1] Total dissolved solids [g L�1] Redox potential [mV] Electrical conductivity [ms cm�1]

Rank 3 Electrical conductivity [ms cm�1] Temperature [�C] Temperature [�C] pH [e]

Rank 4 Redox potential [mV] Redox potential [mV] pH [e] Temperature [�C]
Rank 5 pH [e] Electrical conductivity [ms cm�1] Electrical conductivity [ms cm�1] Total dissolved solids [g L�1]
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models trained with a whole dataset. This result may be

attributed to the insignificant relationship between As

concentration and the other water quality parameters, and

the limited variability of the observed As concentration in

Group A. In particular, the prediction for the lower As

concentration in Group A is poor, resulting in a lower NSE. In

contrast, the model accuracies for Group B in the training and

validation steps are satisfactory in terms of NSE (Moriasi et al.,

2007).
3.6. Sensitivity analysis

The sensitivities of the model outputs (i.e., As concentrations)

to water quality parameters were investigated in an attempt

to optimize ANN and PC-ANN models using the LH-OAT

method. Table 4 presents the sensitivity ranks for the five

parameters of ANN and PC-ANN for Groups A and B. For Group

A, the most significant parameters of ANN and PC-ANN are

temperature and pH, respectively. It seems to be counter-

intuitive because pH, TDS, and Eh were identified as signifi-

cant parameters in previous studies (Buschmann et al., 2007;

Amini et al., 2008; Chanpiwat et al., 2011). Conversely, pH is

the most sensitive parameter for PC-ANN, followed by TDS

and temperature [�C]; this is an acceptable result because

neutral to high pH conditions favor As release by promoting

desorption processes compared to the predominantly acidic

(Buschmann et al., 2007). In addition, pH � 7 might possibly

enhance the mobilization of As, as explained by Buschmann

et al. (2007). The sensitivity results for Group B indicate that

Eh is themost sensitive parameter for PC-ANN. This coincides

with a previous study on As in Laos (Chanpiwat et al., 2011).
Table 5 e Comparison results between the observed and
predicted mean As concentrations (PC-ANN) for each
province.

Countries Province Observed As
[mg L�1]

Predicted As
[mg L�1]

Thailand Suphan Buri 70.0 70.4

Cambodia Kandal 440.0 325.6

Phnompen 136.4 127.6

Lao PDR Vientiane 14.4 24.4

Borikhamxay 14.0 30.0

Savannakhet 24.0 6.4

Saravance 18.8 13.6

Champasack 40.0 25.6

Attapeu 11.2 31.6
Also, it is clearly seen that As is negatively correlated with Eh,

as shown in Fig. 4. Consequently, even though the predictive

power of ANN is sufficient for following variations of the

observed As concentration, the role of temperature is theo-

retically different from that in literaturedindeed, it may be

caused by a collinearity problem among the input variables.

Conversely, the roles of pH and Eh in PC-ANN coincide with

preliminary studies, and thereby imply that PC-ANN is the

superior model for predicting the As concentrations of

groundwater in Cambodia, Laos, and Thailand.

Table 5 compares the averaged observed concentrations

and the As concentrations predicted by PC-ANN for each

province. In general, the model performances for Cambodia

showing a higher As concentration are more accurate than

those for the others countries. This may be caused by the

training process, which tends to follow a higher observed As,

though may not be as useful for lower As concentrations. In

other words, themodel developed in this studywould bemore

informative for a high-risk area, such as Kandal Province in

Cambodia.
4. Conclusions

Groundwater resources are one of the most important

components of drinking water supplies, especially in rural

areas of Southeast Asian countries including Cambodia, Laos,

and Thailand. Over the years, several researchers have

attempted to explore the levels of As contamination from

various viewpoints. However, few studies have focused on

a statistical modeling of As that involved other conventional

water quality parameters. As such, the main conclusions

drawn from this study are as follows:

1) The poor accuracies of MLR and PCR indicated that linear

models for conventional water quality parameters cannot

reproduce dynamic variations of observed groundwater As

concentrations.

2) The prediction accuracies of ANN and PC-ANN were better

than those of MLR and PCR models in both the generation/

training and validation steps, showing acceptable accura-

cies for predicting As concentrations.

3) The results of the sensitivity analysis demonstrated that

the predictive power of ANN was satisfactory to follow

variations of the observed As, but the roles of the input

parameters are theoretically different from those in litera-

ture, which might be caused by a collinearity problem

among the input variables.
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4) Conversely, the roles of pH and Eh in PC-ANN coincided

with preliminary studies, and thereby imply that PC-ANN is

the superior model for predicting As concentrations of

groundwater in Cambodia, Laos, and Thailand.

We expect the PC-ANNmodel developed in this study to be

valuable to not only environmental scientists when designing

an efficientAsmonitoring and removal plan, but also for policy

makers and NGOs for establishing effective public health

management policies. In particular, because the As testing in

a laboratory is a complicated and costly process, themodel can

be better applied to establish an effective As monitoring and

public health management in developing countries. The

predictionofAs, however, is still a challengingwork, especially

for developing a reliable model. In this study, the PC-ANN

model developed for Cambodia, Laos, and Thailand will be

more robust and reliable once new datasets are obtained from

other countries. As clearly shown in this study, As contami-

nation could not be explained by a linear combination of

conventional water quality parameters. Therefore, this model

still needs to be validated by using new datasets in order to

more precisely investigate the relationship between As

contamination and conventional water quality parameters.
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