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Abstract
Purpose The research presented here was motivated by an
interest in understanding the magnitude of sampling error in
crop production unit process data developed for life cycle
assessments (LCAs) of food, biofuel, and bioproduct pro-
duction. More broadly, uncertainty data are placed within
the context of conclusive interpretations of comparative
bioproduct LCA results.
Methods Data from the US Department of Agriculture's
Agricultural Resource Management Survey were parameter-
ized for 466 crop–state–year combinations, using 146 vari-
ables representing the previous crop, tillage and seed
operations, irrigation, and applications of synthetic fertilizer,
lime, nitrogen inhibitor, organic fertilizer, and pesticides.
Data are described by Student's t distributions representing
sampling error through the relative standard error (RSE) and
are organized by the magnitude of the RSE by data point.
Also, instances in which the bounds of the 95 % confidence
intervals are less than zero or exceed actual limits are
identified.
Results and discussion Although the vast majority of the
data have a RSE less than 100 %, values range from 0 to

1,600 %. The least precision was found in data collected
between 2001 and 2002, in the production of corn and
soybeans and in synthetic and pesticide applications and
irrigation data. The highest precision was seen in the pro-
duction of durum wheat, rice, oats, and peanuts and in data
representing previous crops and till and seed technology
use. Additionally, upwards of 20 % of the unit process, data
had 95 % confidence intervals that are less than or exceed
actual limits, such as an estimation of a negative area or a
portion exceeding a total area, as a consequence of using a
jackknife on subsets of data for which the weights are not
calibrated explicitly and a low presence of certain practices.
Conclusions High RSE values arise from the RSE repre-
senting a biased distribution, a jackknife estimate being
nearly zero, or error propagation using low-precision data.
As error propagates to the final unit process data, care is
required when interpreting an inventory, e.g., Monte Carlo
simulation should only be sampled within the appropriate
bounds. At high levels of sampling error such as those
described here, comparisons of LCA bioproduct results
must be made with caution and must be tested to ensure
mean values are different to a desired level of significance.
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1 Introduction

For life cycle assessment (LCA), ISO 14044 defines uncer-
tainty analysis as a “systematic procedure to quantify the
uncertainty introduced in the results of a life cycle inventory
analysis due to the cumulative effects of model imprecision,
input uncertainty and data variability” and notes that “either
ranges or probability distributions are used to determine
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uncertainty in the results.” However, the vast majority of
LCAs do not consider data variability, in part because of a
lack of variability estimates, e.g., in LCA databases. One
exception lies in data put forth by the ecoinvent Centre,1

which uses qualitatively derived data quality scores to esti-
mate the “additional” uncertainty resulting from lower data
quality as the “square of the geometric standard deviation
(95 % interval—SDg95)” (Weidema and Wesnæs 1996).
However, Lloyd and Ries (2007) warn that unless distribu-
tion forms and parameters are defined for specific scores
and parameter contributions, there is no basis for their
accuracy. Noting that the ecoinvent Centre has commis-
sioned an empirical study to validate and revise the basic
uncertainty factors used in the estimation of the SDg95
(Weidema et al. 2011), here, we consider data variability
outside of this “additional” uncertainty.

Consider for example sampling error, a measure of the
inaccuracy caused by observing a sample instead of an
entire population. In an LCA, data might be developed
based on the operation of a single or multiple industrial sites
sampled over some timeframe, or they might be estimated
using a computational model that quantifies production as a
function of a sample of feedstock compositions (e.g., the
composition of crude oil or a bio-feedstock). Basic statistics
provide methods for using such sample data to estimate
probability distributions (functions that describe the proba-
bility that a random variable will take certain values, such as
normal, Student's t, lognormal, Poisson, and Bernoulli dis-
tributions, etc.) for use in uncertainty analysis in an LCA.
Further, the characteristics of the data and the sampling
method dictate the appropriateness of distribution form;
e.g., whereas a normal distribution might be used at large
sample sizes, Student's t distribution can better represent a

population based on smaller sample sizes by increasing the
probabilities at the extremes of the distribution (i.e., the tails
are larger than in a normal distribution).

As the use of LCA in the development of public policy
and law (e.g., in the USA, the 2007 Energy Independence
and Security Act) and in the comparison of products (e.g., in
the development of Product Category Rules) is rising, it
seems data uncertainty analysis based on well-developed
statistical methods will be demanded from LCA practitioners.
Questions that immediately arise relate to the magnitude of
variability in the data being used in LCA, irrespective of the
consideration of the “additional” data quality-based uncertain-
ty. Specifically, is the variability of LCA data small or large as
compared to mean exchange values, and can we conclusively
interpret comparative LCA results?

Consider for example a comparison of the life cycles of a
conventional fuel and a biofuel in which the conventional
fuel has an estimated mean greenhouse gas emission of 47 g
CO2e/MJ and the biofuel of 38 g CO2e/MJ. Without con-
sideration of variability, the biofuel is found superior to the
conventional fuel, offering a 20 % improvement. If the
relative standard errors (the RSEs,2 also called coefficients
of variation) are, e.g., 5 and 10 % for the conventional fuel
and biofuel, respectively, and in both cases, 30 random
samples were taken from much larger populations that are
assumed to be normal, at a significance level of 5 %, the
means are found to be significantly different using a two-
sample t test. In this case, drawing the conclusion that the
biofuel is superior is valid. Alternatively, under the same
sampling scheme and at the same significance level, if the

1 Available at http://www.ecoinvent.ch/

2 The RSE is the standard error (SE) of the mean divided by the mean
and expressed as a percentage. Because the SE is the sample standard
deviation divided by the square root of the sample size, the RSE is
intended to represent the difference between the estimate and the true
value with respect to the magnitude of the mean.

Fig. 1 ARMS raw data by year
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RSEs for both fuels are 10 %, the means are statistically the
same, and drawing the conclusion that the biofuel is superior
is misleading. Thus, without knowledge of the error and
sample sizes, the comparison of greenhouse gas emissions
can be meaningless on the sole basis of the means, and as
RSEs increase, it becomes less likely that conclusions re-
garding the difference in mean values for the sample statistic
are statistically valid.

Moving from the hypothetical to actual LCA data, herein,
we analyze the magnitude of variability (specifically, the
sampling error) in unit process data representing field
crop production. Field crop LCAs and related unit pro-
cess data representing food, biofuel, and bioproducts are
currently in high demand. In the USA, agricultural data
relevant to LCA have been collected since 1810 (US
Department of Agriculture 2011). Presently, the USDA's
National Agricultural Statistics Service (NASS) conducts
hundreds of surveys each year. Among the NASS sur-
veys, a joint project with the USDA Economic Research
Service (ERS), the Agricultural Resource Management
Survey (ARMS3) provides field-level farm data that are
particularly useful in the development of unit process
data for LCA.

Specifically, ERS provides annual data summaries
from the ARMS for field crops produced in 38 US states
beginning in 1996 with only select crops surveyed each
year: barley for malt and feed, corn, cotton, oats, peanuts,
rice, sorghum, soybeans, durum wheat, other spring
wheat, and winter wheat. Each ARMS crop–state–year
combination (e.g., the production of soybeans in Iowa
in 2006) covers seed use, irrigation technology and water
use, tillage systems, nutrient and organic fertilizer (manure)
use and management, crop residue management, and previous
crop and pesticide use as defined by the ARMS variables.4

When the ARMS data are combined with NASS Quick
Stats5 data representing field crop production for each
ARMS crop–state–year combination, the basis for an LCA
unit process data flow is created. For example, the data for
soybean production in Iowa in 2006 use the ARMS varia-
bles “Average seeding rate” (in pounds per acre) and
“Planted acres” and are combined with NASS data repre-
senting the soybean production in Iowa in 2006 (in pounds)
to estimate the seed use ultimately as kilograms of seeds per
kilograms of soybeans produced in Iowa in 2006. To com-
plete a field crop production unit process data set, additional
information sources (e.g., data and documents from NASS,
the Intergovernmental Panel on Climate Change, and more)
are used to estimate a wide variety of activities and flows
from and to nature.

Sommer et al. (1998) describe ARMS as a probability-
based survey where each respondent represents a number of
farms of similar size and type and the sample data are
expanded using appropriate weights to represent operations
at the state level. According to Kim et al. (2004), a delete-a-
group jackknife variance estimator is used to describe how
well a given estimate represents the population mean.
“Jackknifing” is a resampling technique used to quantify
bias and RSE by successively computing the mean, each
time leaving out one or more groups of observations from
the sample set. The RSE determined by a jackknife is a
representation of the sensitivity on the estimate of the
groups of samples used to produce that estimate and can
be represented by an unbiased probability distribution
such as a Student's t.

With the ARMS data, replicate weights are used to form a
sample size of 15 or 30 replicate groups that are used for the
jackknife estimation (15 prior to 2009 and 30 in 2009).
Differences between the estimate and population mean re-
sult from nonsampling errors (e.g., related to questionnaire
design or data processing) and sampling errors (e.g., related

3 Data are available at http://www.ers.usda.gov/Data/ARMS/.
4 See http://www.ers.usda.gov/Data/ARMS/Variables.htm for a list of
ARMS variables.

Fig. 2 ARMS raw data by state

5 See http://quickstats.nass.usda.gov/.
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to sample selection, estimation, or nonresponse adjust-
ments). Whereas nonsampling errors cannot be measured
directly, sampling error is represented in ARMS as the
jackknife RSE of the expected population mean. According
to Dubman (2000) and Kim et al. (2004), RSE was chosen
for the ARMS data as a measure of statistical reliability for
two explicitly defined reasons: it is roughly equal to the
expected value of the RSE of the population, and its
measure of reliability is dependent on both the sample
deviation and sample size. When calculations combine
ARMS estimated means to estimate LCA exchange data,
the ARMS jackknife RSEs are propagated based on the
type of mathematical operation performed as described
by Dieck (2007).

Given this, of interest here is to understand how the
magnitude of the sampling error in the raw ARMS field
crop data is propagated to sampling error in example unit
process data. The overall intent is to begin a dialog, within
the LCA practitioner community and among those using
LCA results, concerning conclusive interpretations of com-
parative bioproduct LCA results.

2 Methods

ARMS data were used to prepare unit process data using
parameterization (i.e., the presentation of data as formulas
and the variables used) as they would be formatted for the
European Reference Life Cycle Data System6 according to
the International Reference Life Cycle Data System (ILCD)
data format and will be supported in the ecoinvent database7

according to the EcoSpold v2 format. Because of the rela-
tively small sample sizes of 15 or 30 used in the jackknife
estimate of the ARMS means, a Student's t distribution is the

appropriate representation of the probability density func-
tion (see Kim et al. 2004; Spiegel et al. 2009) and is thus
used here. The RSE is used to construct a 95 % confidence
interval for the estimated mean, assuming a t value of 2.145
for the 15 sample jackknives (at 14 degrees of freedom) and
2.045 for the 30 sample jackknives (at 29 degrees of
freedom).

Given this, ARMS data were analyzed for 466 crop–
state–year combinations (see Table S1 in the Electronic
supplementary material) using 146 ARMS variables (see
Table S2) in six categories: previous crop; till and seed;
irrigation; synthetic fertilizer, lime, and nitrogen inhibitor;
organic fertilizer; and pesticides. Of the possible 68,036 data
points, values for 24,512 data points were available in
ARMS with the remaining omitted as noncompliant with
the NASS and ERS disclosure limitation practices, not
available, or not applicable. The four units of measure for
the variables were area (e.g., the planted or irrigated area or
the area to which pesticide is applied), percent (e.g., the
percent of the planted area treated with synthetic nitrogen
fertilizer), depth (for the depth of irrigation water applied),
and mass/area (e.g., mass of synthetic nitrogen fertilizer
applied per treated area). All raw data (i.e., the farm data
aggregated to the state level by ERS) can be downloaded
directly from the ARMS website and note that the Supple-
mental electronic information has been intentionally left in
the English units of measure of the raw ARMS data for the
purpose of transparency.

Using the raw ARMS data with crop production data
from NASS Quick Stats for each crop–state–year combina-
tion, 105 unit process exchanges and interim calculations
were calculated. Unit process exchanges are flows that
would appear in a unit process data set as calculated here,
and interim calculations are data that require information
beyond the ARMS and NASS data considered here to rep-
resent exchanges (e.g., the percent of nitrogen fertilizer that
is ammonia, ammonia nitrate, urea, etc.). Noting that only a

6 Available at http://lca.jrc.ec.europa.eu/lcainfohub/datasetArea.vm
7 Available at http://www.ecoinvent.ch/

Fig. 3 ARMS raw data by crop
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subset of the exchanges for the crop production unit
process data area considered here (in fact representing
only select technosphere flows), the parameterization of
the exchanges and interim calculations represent three
units of measure: area (e.g., on which organic fertilizer
is injected/knifed in), mass (e.g., that applied as the
active ingredient aryl triazolinone), and volume (e.g., of
irrigation groundwater applied using pressure irrigation
systems) (see Table S3 in the Electronic supplemental
information). Only the parameters for the estimation of
the exchanges or interim calculations are included here,
with the parameterization of the RSE data described
elsewhere (Cooper et al. 2011).

3 Results

3.1 Evaluation of the raw ARMS data

The RSE values of the ARMS variables investigated range
from zero to over 1,600 %.8 All were divided into three
groups (Figs. 1, 2, 3, and 4): those with a RSE <100 %,
those with a RSE between 100 and 500 %, and those with a
RSE >500 % by year, crop, state, and ARMS variable
group. Noting that the vast majority of the RSE values are

<100 %, in particular the results should be viewed noting
that the vast majority of the RSE values that are >100 %
represent the synthetic nutrient and pesticide applications
for corn and soybean production for which data were only
collected in 2001 and 2002 (i.e., placing Figs. 1, 2, 3, and 4
within the context of Table S1 in the Electronic supple-
mentary material). Also, there are only six data points
with a RSE >500 % (three representing the production
of cotton in Arizona in 1996, one representing the
production of corn in Kansas in 2001, one representing
the production of corn in Texas in 1999, and one
representing the production of soybeans in Nebraska in
2002) covering nitrogen fertilizer application, pesticide
application, and irrigation.

All data related to the production of durum wheat, rice,
and oats have ARMS raw RSE values <100 %, and only one
peanut-related data point had a RSE exceeding 100 %. Also,
all data measured in area for previous crops and till and
seed technology had RSE values <100 %. Finally, data
collected outside of 2001–2002 are represented by data
with RSE values <100 % for between 99 and 100 % of
the data points.

Using Student's t distribution to represent the distribu-
tion of the raw ARMS data, it was found that many of the
ARMS variables have 95 % confidence bounds that either
fall below zero and/or, in the case of variables, measured
as a percentage above 100 %. In fact, data with a 95 %
confidence interval below zero represented 12 % of all
raw data points, and percentage data with a 95 % confi-
dence interval exceeding 100 % represented 7.4 % of all
the raw data points. These phenomena dictate a need to be
mindful of how the raw data are used to develop unit
process data and ultimately how such data are combined
into an inventory.

8 The RSE value of 1,636 % for the crop–state–year combination
cotton–Arizona–1996 representing the percent of nitrogen fertilizer
broadcast with incorporation can be viewed at http://www.ers.usda.gov/
Data/ARMS/app/default.aspx by selecting the survey “Crop production
practices,” the subject “Cotton,” the filter by US/State “Arizona,” from
year “1996,” and the report “Nutrient use by application method.” The
next two largest RSE values also represent cotton–Arizona–1996
followed by a RSE of 594 % for corn–Kansas–2001 representing the
percent of insecticide acre treatments that were broadcast with
incorporation.

Fig. 4 ARMS raw data by variable group and units of measure
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3.2 Evaluation of the unit process data

Overall, 18,673 exchange and interim calculation data
points were calculated, each with its respective RSE propa-
gated from the raw data. Again, the vast majority of the RSE
values are <100 % (Figs. 5, 6, 7, and 8) and range from 0 to
over 1,600 % (see Tables S4–S6, Electronic supplementary
material) with a greater portion of the data >100 % as single
larger raw data RSE values used in multiple calculations.
Again, the exchange and interim calculation data show a
greater portion of the RSE >100 % for (a) data collected
from 2001 to 2002, (b) data representing the production of
corn and soybeans, and (c) data representing pesticide and
synthetic applications; however, notably, the frequency of
irrigation data with RSE >100 % is the largest among the
exchange and interim calculation groups.

When the 95 % confidence bounds of the raw data fall
below 0 and/or above 100 %, the characteristic is propagated
to the un-normalized9 and ultimately the normalized exchange
and interim calculation data. For example, for the crop–
state–year combination winter wheat–Texas–2009, the
exchange data representing the area to which potassium
fertilizer is applied are estimated to be 696,481 acres with
a 95 % confidence interval from 541,298 to 851,674 acres.
Of that area, 421,330 acres is estimated to broadcast potas-
sium fertilizer with incorporation and 153,832 acres without
incorporation (with the balance using an unspecified appli-
cation method). However, the 95 % confidence intervals of
the application methods are −21,559 to 864,218 and
−78,662 to 386,325 acres for applications with and without
incorporation, respectively. Thus, not only are the data
wrongly inferring that the lower bounds are below 0 acres

but also the upper bound of the area broadcast with incor-
poration exceeds the upper bound of the application area
even before the area without incorporation is added to it.
Thus, it is found that the probability density function for
these data falls outside the actual limits for both the lower
and upper tails.

Although the 95 % confidence interval does not include
the full probability distribution function (which technically
goes to ±infinity), here, the interval is used as an indication
of how much of the exchange and interim calculation data
fall outside actual limits. The result was that 20.3 % of the
data points have a 95 % confidence interval lower bound
less than 0 and 20.1 % are found to exceed the upper limit of
the 95 % confidence interval of the interim calculation for
which they are based.

4 Discussion

The research presented here was motivated by an interest in
understanding the magnitude of sampling error in crop
production unit process data for LCA within the context of
conclusive interpretations of comparative bioproduct LCA
results. Towards this, select exchanges from the techno-
sphere and related interim calculations were developed from
the ARMS data. With RSE values ranging from 0 % to
greater than 1,600 %, the least precision was found in data
collected between 2001 and 2002, in the production of corn
and soybeans, and in synthetic and pesticide applications
and irrigation data. The highest precision was seen in data
representing the production of durum wheat, rice, oats, and
peanuts and in data representing previous crops and till and
seed technology use.

High RSE values arise from the RSE representing a
biased distribution, a jackknife estimate being nearly zero,

Fig. 5 Exchange and interim calculation data by year

9 As in not divided by production (named PROD in Table S3 of the
Supplemental electronic information)
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Fig. 7 Exchange and interim calculation data by crop

Fig. 6 Exchange and interim calculation data by state

Fig. 8 Exchange and interim calculation data by variable group and units of measure

Int J Life Cycle Assess (2013) 18:185–192 191



or error propagation using low-precision data. Sommer et al.
(1998) note that the higher the ARMS RSE, the less well the
estimate represents individual items in the delete-a-group
jackknife. They also note that the ARMS data are also
influenced by nonsampling errors and that efforts are taken
to minimize them. Given this, Kim et al. (2004) note that the
magnitude of the ARMS data bias is unknown and that the
reliability of an ARMS estimate cannot be tested when there
is no knowledge of the distribution because the population
variance is unknown—i.e., the reliability test for the sample
mean can be made only under the normality assumption and
leading to the use of Student's t distribution due to the low
number of jackknife samples. Also, many of the ARMS
variables describe positive definite parameters, depth of
irrigation water or acres of herbicide applied, as examples.
Unless negative weights are applied to groups during the
jackknife, an estimate mean with a value nearly zero should
not be sufficient to produce an RSE greater than 100 % for a
positive definite or semidefinite, unbiased parameter, noting
that none of the jackknife samples should be negative for
positive semidefinite parameters. Within this context,
guidance can be taken from ARMS in which data with a
RSE >25 % are deemed statistically unreliable, for example
due to low sample size and/or a high sampling error. The
unit process data prepared from this work will also mark
such data in a comment data field.

Further, here it is found that a portion of the data is
represented by a 95 % confidence interval that falls outside
actual limits. Confidence intervals beyond physical bounds
are entirely possible due to the high standard errors that are a
consequence of using a jackknife on subsets of data for which
the weights are not calibrated explicitly and a low presence of
certain practices. Such data essentially represent a truncated
Student's t distribution, which when interpreting an inventory,
e.g., using Monte Carlo simulation, should only be sampled
within the appropriate bounds. With the advent of parameter-
ization in LCA data formats, which provides the opportunity
to include raw data and the formulas that use them within a
unit process data set, the raw percentage data can be kept
within appropriate bounds while still maintaining the distri-
bution of interest, as described by Cooper et al. (2011).

At high levels of sampling error such as those described
here, comparisons of LCA bioproduct results must be
made with caution and must be tested to ensure mean
values are different to a desired level of significance. As
the use of LCA is growing in decisions being made
pursuant to public policy, law, and product comparisons,
the need for uncertainty data grows as well. Emerging
data formats such as ILCD and EcoSpold v2 that allow

parameterization in a way that uncertainty can be prop-
agated from raw data to exchange provides another
important component of a move towards improved
LCA data and improved LCAs.

All data are expected to be available through the USDA
LCA Digital Commons (at http://www.openlca.org/
index.html) early in 2012.
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