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Introduction
Many of the positive environmental impacts of conser-
vation tillage systems are well documented (National
Research Council [NRC], 2010). By leaving substantial
amounts of crop residue (at least 30%) on the soil sur-
face (from harvest through planting), conservation till-
age reduces soil erosion from wind and water, increases
water retention, and reduces soil degradation as well as
water and chemical runoff. In addition, conservation till-
age reduces the carbon footprint of agriculture (Holland,
2004; NRC, 2010).

Less is known about the interaction of adoption of
herbicide-tolerant (HT) crops and conservation tillage,
as well as their effects on herbicide use. These are
important issues. For example, if adoption of HT crops
induces the adoption of conservation tillage, then HT
crop adoption indirectly benefits the environment in the
form of reduced soil losses and runoff. However, if her-
bicide use increases with conservation tillage, then
(some of) the environmental gains from reduced soil
erosion may be offset by increased reliance on herbi-
cides,1 which are a source of concern for their potential
harm to human health and the environment (Fuglie,
1999). In consequence, HT crop adoption, conservation
tillage, and herbicide use should be examined together.

This study represents the first part of an ongoing
project with the objective of presenting a long-term rela-
tionship between adoption of conservation tillage, adop-
tion of HT crops, and herbicide use for major crops in
the United States. This article focuses on soybeans.

First, we provide background information on conser-
vation tillage and HT crops. Next, we review the litera-
ture on 1) the interaction of the decision to adopt HT
seeds and the choice of tillage technology and 2) how
herbicide use is impacted by the adoption of HT crops
and of conservation tillage. Third, we discuss the data,
models, and empirical techniques used in the study. To
conclude, we present the results and discuss them.

Conservation Tillage

Conservation tillage systems are cropping production
systems that leave at least 30% of crop residues on the
soil after planting. There are several types of these sys-
tems. For instance, mulch-till systems redistribute at
least 30% of crop residues over the entire soil surface.
This is a full-width tillage system, usually involving one
to three tillage passes over the field, disturbing the soil
surface. It is performed prior to and/or during planting
(Conservation Technology Information Center [CTIC],
2002). Ridge-till systems leave crop residues undis-
turbed except for the ridges (up to 1/3 of the crop row
width) into which seeds are planted (CTIC, 2011). No-
till systems, often considered the most effective, leave
100% of crop residues on the soil surface and the soil is
undisturbed from harvest to planting, resulting in the
highest percentage of surface being covered by crop res-
idues; this minimizes soil loss and water runoff (Janssen
& Hill, 1994).

The use of conservation tillage systems increased
steadily throughout the 1980s and 1990s. For instance,
while only 30% of soybean farmers used conservation
tillage systems in 1996, 63% of soybean farmers used
conservation tillage in 2006 (Figure 1). While approxi-
mately 33% of corn acres were produced using conser-
vation tillage systems in 1990, 40% of corn acres were
produced using conservation tillage systems in 2006.

1. While the term pesticide includes herbicides, insecticides, and 
fungicides, in the case of soybeans, most of the pesticides used 
are herbicides. For example, more than 95% of the pesticides 
(in pounds of active ingredient) applied to soybeans in 2006 
were herbicides. This article focuses on herbicides.
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In part, the rapid increase in conservation tillage was
facilitated by the availability (since the 1980s) of post-
emergent herbicides. Post-emergent herbicides can be
applied over crops throughout the growing season (not
just before planting, as had previously been the case).
Post-emergent herbicides had an especially large impact
on the use of no-till production systems because con-
ventional tillage was one of the primary methods of
weed control in earlier years.

HT Crop Adoption

HT crops, developed to survive the application of spe-
cific herbicides that previously would have destroyed
the crop along with the targeted weeds, provide farmers
with a broader variety of options for effective weed con-
trol.

US farmers have adopted genetically engineered
(GE) crops widely since their introduction in 1996. Soy-
beans genetically engineered with herbicide-tolerant
traits have been the most widely and rapidly adopted GE
crop in the United States, followed by HT cotton (Fer-
nandez-Cornejo, 2010). Based on US Department of
Agriculture (USDA) survey data, adoption of HT soy-
beans went from 17% of US soybean acreage in 1997 to
68% in 2001 and 93% in 2010 (Figure 2). Plantings of
HT cotton expanded from about 10% of US acreage in
1997 to 56% in 2001 and 78% in 2010. The adoption of
HT corn, which had been slower in previous years, has

also accelerated, reaching 70% of US corn acreage in
2010.

HT Crops and Conservation Tillage

Anecdotal evidence indicates that the adoption of HT
crops (particularly HT soybeans) has facilitated the use
of conservation tillage systems because the use of HT
seeds tends to make weed control more effective and
less costly (Carpenter & Gianessi, 1999).

Researchers have carried out empirical analyses to
examine the interaction of the decisions to adopt HT
crops and conservation tillage systems. While most
studies have found that the decisions to adopt conserva-
tion tillage and to adopt HT seeds are correlated (Fer-
nandez-Cornejo & Caswell, 2006), it is difficult to
demonstrate whether HT adoption induces farmers to
adopt conservation tillage practices, or whether adop-
tion of conservation tillage practices induces farmers to
adopt HT seeds.2

Fernandez-Cornejo et al. (2003) presented an econo-
metric model to address the potentially simultaneous
nature of the decisions. This model was estimated using
national survey data collected in 1997 (the second year
of adoption) and tested using the Wu-Hausman statistic.
They found that soybean farmers using no-till practices
had a higher probability of adopting HT soybeans. How-
ever, HT soybean adoption did not appear to signifi-
cantly affect no-till adoption rates. These results seemed
to suggest that farmers already using no-till practices

Figure 1. Adoption of conservation tillage for soybeans 
(percentage of acres): United States and three major states.
Source: CTIC (2010); USDA ARMS data (USDA, 2012).

Figure 2. Adoption of herbicide-tolerant soybeans (percent-
age of acres): United States and three major states.
Sources: Fernandez-Cornejo (2010); Vialou et al. (2008).
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found HT seeds to be an effective weed-control mecha-
nism that could be easily incorporated into their weed-
management program. On the other hand, the adoption
of HT soybeans did not seem to encourage the adoption
of no-till practices, but this may be due to the relatively
low adoption rate of HT soybeans in 1997 (17% adop-
tion).

Mensah (2007) identified a two-way relationship
between adoption of HT seeds and conservation tillage
using a simultaneous adoption model and a 2002 survey
of soybean farmers. Using Wu-Hausman tests, Mensah
found that farmers who adopted no-till practices were
more likely to adopt HT soybeans and that adopters of
HT soybeans were more likely to adopt no-till systems.

Roberts, English, Gao, and Larson (2006) analyzed
data of cotton farmers in Tennessee from 1998 to 2004
using two methods. First, they compared the conditional
probabilities (using Bayesian methods) of adopting HT
cotton given that conservation tillage was adopted and
conversely. Second, they estimated simultaneously
(using 3-stage least squares estimation) two binomial
logit models. They found that adoption of HT cotton
increased the probability that farmers would adopt con-
servation tillage. They also found that farmers who had
previously adopted conservation tillage were more
likely to adopt HT cotton. However, Roberts et al.
(2006) found that the influence of adoption of conserva-
tion tillage on adoption of HT cotton weakened over
time. And in the later years of their sample period
(2003-2004), differences in tillage had minimal influ-
ence on the probability of adopting HT seeds because
almost all the acreage in the sample used HT seed,
regardless of the tillage method.

Kalaitzandonakes and Suntornpithug (2003) used a
simultaneous equation system for the adoption of Bt
cotton, HT cotton, stacked (Bt/HT) cotton, and conser-
vation tillage using farm data of several cotton-produc-
ing states in 1998-1999. The four-equation model was
estimated using the generalized method of moments
(GMM). They found that adoption of conservation till-
age both encourages the adoption of HT cotton and is
encouraged by it.

Using state-level data for 1997-2002, Frisvold, Boor,
and Reeves (2009) found that the diffusion of conserva-
tion tillage speeds diffusion of HT cotton and vice versa,
suggesting that the two technologies are complemen-
tary. Frisvold et al. (2009) estimated that a 1% increase
in a state’s adoption rate for HT cotton increases the
state’s adoption rate for conservation tillage by 0.48%.
The influence of adoption of conservation tillage on
adoption of HT cotton was weaker: a 1% increase in the
adoption rate of conservation tillage increases the adop-
tion rate of HT cotton by 0.16%.

In sum, there are many differences among previous
studies—the crops studied, periods considered, unit of
analysis (farm vs. state level), methodology, and even in
the concepts involved. For that reason, caution should
be exercised to make definitive conclusions. Still, in
most cases we examined, adoption of HT crops has
facilitated the use of conservation tillage systems and
vice versa. This implies that by encouraging farmers to
adopt conservation tillage, HT crop adoption indirectly
benefits the environment by reducing soil losses and
erosion, runoff, fuel use, and the carbon footprint of
agriculture (NRC, 2010, and references cited therein).

Herbicide Use

Several studies have examined the adoption of conser-
vation tillage, HT crops, and herbicide use. The results
depend on the period studied, the data analyzed, and the
methodology employed. For instance, most researchers
analyze cross-sectional data and measure herbicide use
by aggregating the total pounds of active ingredients
applied. While the results of cross-sectional studies are
informative, the findings of these studies can be biased
by unobservable conditions prevailing in the year of the
study. Moreover, when herbicide use is aggregated
across active ingredients, it is often implicitly assumed
that all active ingredients have the same characteristics
(i.e., potency, toxicity, etc.).

2. Causality is a complex concept that has evolved over many 
centuries. Aristotle, Hume, and Stuart Mill—and, more 
recently Simon, Zellner, and Granger—addressed the subject 
(see review by Hoover, 2008). As Hoover (2008) notes, in the 
20th Century it was understood that, unlike correlation, 
regression has a natural direction (the regression of Y on X 
does not produce coefficient estimates that are the algebraic 
inverse of those from the regression of X on Y; “The direction 
of regression should respect the direction of causation.” How-
ever, as Hoover also observes, “Although regressions may 
have a natural causal direction, there is nothing in the data on 
their own that that reveal which direction is the correct one.” 
This is also related to the problem of econometric identifica-
tion, as exogenous variables can be considered as “causes” 
of endogenous variables. Causality also has been defined 
explicitly using a modern probabilistic approach by Granger 
(1969). This is a data-based approach developed to apply to 
time series models (Hoover, 2008).
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Herbicide Use and HT Crops

While most studies show that insecticide use rates (in
terms of active ingredient) are lower for adopters of Bt
crops than for nonadopters, in the case of HT crops the
evidence is less clear. Particularly in the case of soy-
beans, some studies suggest that herbicide use on HT
soybeans may be slightly higher than herbicide use on
conventionally grown soybeans in the United States
(Fernandez-Cornejo & Caswell, 2006; Fernandez-Cor-
nejo & McBride, 2002; NRC, 2010). However, gly-
phosate (the herbicide used on most HT crops) is less
toxic to humans and not as likely to persist in the envi-
ronment as the herbicides it replaces (Fernandez-Cor-
nejo & McBride, 2002; NRC, 2010). Consequently,
increased herbicide use on HT soybeans is not necessar-
ily indicative of worse environmental outcomes.

Herbicide Use and Conservation Tillage

There is no clear consensus on how conservation tillage
affects herbicide use. Results tend to depend on the type
of conservation tillage system employed, the location,
the weather, the soil type, the metric used to measure
herbicide use, and endemic pest pressure. For example,
a USDA report (1998, p. 28) citing Fawcett (1987)
observes that herbicide use may decrease with conserva-
tion tillage after a few years of adoption: “when a
farmer uses conservation tillage, dormant weed seeds in
the soil will no longer be transferred to the germination
zone near the soil surface by tillage. Consequently, as
annual weeds are controlled, the overall weed problem
may decrease after a few years when fields are con-
verted to conservation tillage and if effective weed con-
trol is practiced.” Knake (1989, p. 71) states that, “as
tillage is reduced, some weeds (such as velvetleaf) may
become less of a problem. Other weeds such as fall pan-
icum, mare’s tail, hemp dogbane, and common milk-
weed may increase.” Using 1991-1992 Cornbelt data,
Fuglie (1999, p. 133), finds “no evidence that herbicide
or fertilizer application rates are higher on fields with

conservation tillage systems compared with fields with
conventional tillage.” On the other hand, analyses of
Cropping Practices Survey data collected for corn and
soybeans from 1990 to 1995 (USDA, 1998) showed that
herbicide application rates were higher for conservation
tillage than for conventional tillage systems. Holland
(2004) shows that conservation tillage not only influ-
ences the quantity of herbicides used but also that tillage
has an effect on the leaching losses of herbicides. He
also observes that, by improving soil structure, conser-
vation tillage may also reduce the risks of runoff and
pollution of surface water with pesticides.

Data and Research Methodology
Herbicide use in soybeans is hypothesized to be related
to location, weather (temperature and precipitation dur-
ing the plant growing season), crop prices, herbicide
prices, tillage practices, and HT adoption decisions. We
have constructed a panel dataset of the major soybean-
producing states3 for 1996 through 2006 using tillage
data obtained from the Conservation Technology Infor-
mation Center (CTIC, 2010) for the years 1996-2004,
supplemented by USDA’s ARMS data for more recent
years;4 HT adoption rates obtained from the USDA
(Fernandez-Cornejo, 2010); crop prices obtained from
USDA’s Agricultural Prices Summary; and data on her-
bicide use obtained from USDA’s Agricultural Chemi-
cal Usage reports (USDA National Agricultural
Statistics Services [NASS], 2006, and other years), sup-
plemented by data from the Doane Countrywide Farm
Panel Survey. Table 1 provides descriptive statistics for
the main variables in the dataset.

Table 1. Summary statistics of main variables, US soybean farmers, 1996-2006.

Variable Label Means

Conservation tillage adoption Share of acreage under conservation tillage 0.55

HT soybean adoption Share of acreage planted with HT soybean seeds 0.60

Relative soybean price Soybean price (relative to corn) 4.61

Quality-adjusted herbicide use Quality-adjusted quantity of herbicide used, index 9.37

Quality-adjusted herbicide price Quality-adjusted herbicide price, index 5.12

Note: Summary statistics are calculated from state-level means.
Sources: See data section

3. Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Mis-
souri, Nebraska, North Dakota, Ohio, South Dakota, and Wis-
consin.

4. Unlike earlier years, CTIC data for 2005 and 2006 covers 
only a few counties. For example, only 305 counties were 
included in the 2006 data (CTIC, 2011).
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Because herbicides contain active ingredients with
different characteristics, aggregating herbicide-use sta-
tistics across herbicide types produces results that are
difficult to interpret. In order to analyze herbicide trends
across states and over time while accounting for
changes in the quality of the herbicides used, we use
quality-adjusted indices of herbicide prices and quanti-
ties. The procedure used to create these indices is dis-
cussed at length in Fernandez-Cornejo and Jans (1995);
Fernandez-Cornejo, Nehring, Newcomb, Grube, and
Vialou (2009); and Vialou, Nehring, Fernandez-Cor-
nejo, and Grube (2008). This approach is briefly dis-
cussed below.

Measuring Herbicide Use

Agricultural pesticide use is typically measured and
reported in pounds of active ingredient. This approach is
straightforward, but has limitations. For instance, one
pound of a fairly potent herbicide is not directly compa-
rable to one pound of another herbicide that is twice as
effective, In order to compare herbicide use across states
and over time, it is necessary to account for differences
in herbicide quality.

The first step in accounting for these differences
entails defining “quality.” In this study we follow Fer-
nandez-Cornejo and Jans (1995) and consider three
measures of herbicide quality—potency, hazardous
characteristics, and persistence.5 Herbicide potency, a
proxy for “effectiveness,” is calculated by taking the
inverse of the application rate per crop year. The appli-
cation rate per crop year (which can be viewed as the
dosage) is equal to the number of pounds of active
ingredient applied per acre in one application multiplied
by the number of applications made in a year. Hazard-
ous characteristics are measured by the chronic scores
described in Kellogg, Nehring, Grube, Goss, and Plot-
kin (2002). Persistence is measured by the herbicide half
life. Table 2 presents quality measures for the most com-
monly used herbicide active ingredients applied to soy-
beans in 1996 and 2006.

The second step in quality-adjusting herbicide use
involves creating an index of quality-adjusted prices and
quantities. Following Fernandez-Cornejo and Jans
(1995), we estimate a hedonic price function that explic-
itly models herbicide prices as a function of the charac-
teristics that the herbicides embody. Prices are specified
using the following hedonic function: w = W(X, D),

where w represents the price of herbicide, X is a vector
of herbicide quality characteristics variables and D is a
vector of year dummy variables. The variables in X (in
this case, we include potency, toxicity, and soil half-life)
control for differences in herbicide “quality.” The vari-
ables in vector D capture all price effects other than
quality. The parameter estimates for the dummy vari-
ables in D are used to create the quality-adjusted price
indices.

The third step in quality-adjusting herbicide use is to
divide herbicide expenditures by the index of quality-
adjusted prices. The result of this calculation is a qual-
ity-adjusted quantity.

In this study, we use the results of Fernandez-Cor-
nejo et al. (2009) and Vialou et al. (2008), who obtained
quality-adjusted herbicide prices and quantities for soy-
beans.6

5. A “high quality” herbicide would be potent, non-hazardous, 
and dissipate quickly.

Table 2. Quality characteristics for selected commonly-
used soybean herbicides in 1996 and 2006.

Rate per 
crop year 
(Lbs Ai / 

crop acres)1

Chronic 
toxicity 
score2

Soil half 
life 

(days)3
% of 
use

Herbicides, 1996

Pendimethalin 1.18 70 90 23

Trifluralin 0.85 5 60 17

Glyphosate 0.7 700 47 15

Alachlor 2.49 2 15 8

Bentazone 0.71 200 20 7

Metolachlor 2.19 70 90 7

2,4-D 0.54 70 10 6

Others 17

Herbicides, 2006

Glyphosate 1.1 700 47 85

2,4-D 0.54 70 10 4

Pendimethalin 0.89 70 90 3

Metolachlor 1.07 70 90 1

Trifluralin 0.87 5 60 2

Others 5

1 Higher rate indicates lower potency of the herbicide; more 
potent herbicides require a lower rate to achieve a degree of 
pest control.
2 A higher score indicates lower chronic toxicity.
3 A higher half life indicates that the herbicide is more persis-
tent in the environment.
Sources: See data section; Kellogg et al. (2002)
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Model Selection and Testing

The purpose of our study is to determine a long-term
relationship between the use of conservation tillage in
soybean fields, adoption of herbicide-tolerant soybeans,
and herbicide use in the United States. However, in
order to determine the appropriate specification for our
model, it is necessary to test certain assumptions about
the data.

First, we tested whether the model variables are sta-
tionary (i.e., whether the random process generating the
variables changed over time). The model variables must
be stationary in order to minimize the potential for spu-
rious results in regressions using time-series or panel
data. To test for stationarity we used a panel unit root
test developed by Levin, Lin, and Chu (2002). As shown
in Appendix 1 (Table A1), we determined that the model
variables are stationary.

After determining that the model variables were sta-
tionary, we used Granger Causality Tests that had been
developed by Granger (1969); we determined that adop-
tion of HT soybean “Granger-causes” conservation till-
age adoption for soybeans (Appendix 2). This means
that state-level HT soybean adoption rates contain infor-
mation that is useful in predicting state-level conserva-
tion tillage rates. However, conservation tillage
adoption does not Granger-cause the adoption of HT
soybean (Table A2).7 Consequently, we model conser-
vation tillage rates as a function of HT soybean adop-
tion.

Next, we used Hausman tests developed by Wool-
dridge (2002) to test whether state-level HT soybean
adoption rates were exogenous to 1) state-level conser-
vation tillage rates and 2) quality-adjusted herbicide use.
As shown in Appendix 3, the results of the Hausman

tests allow us to conclude that state-level HT soybean
adoption rates are exogenous to state-level tillage rates
and state-level quality-adjusted herbicide use for the
1996 to 2006 period (Appendix 3). Because the Granger
Causality tests indicate that state-level HT soybeans
adoption rates can be used to predict state-level conser-
vation tillage rates, and because the Hausman tests indi-
cate that HT adoption rates are exogenous, our data can
be analyzed using a recursive, two-equation system.
Ultimately, we specified two regressions.

ConsTillit = α + βHT HTit + βPsoy Psoyit-1 + u1it (1)

QAHerbit = α + βC ConsTtillit + βHT HTit + βPsoy 

Psoyit-1 + βPQAH PQAHerbit-1 + u2it , (2)

where ConsTillit represents the adoption rate of conser-

vation tillage (percentage acres planted using conserva-
tion tillage) in state i, at time t; HTit represents the

adoption rate of HT soybeans (percentage of acres that
farmers plant with HT seeds); Psoyit-1 represents lagged

soybean prices (relative to corn); QAHerbit represents

quality-adjusted quantity of herbicide used; and PQA-
Herbit-1 represents lagged quality-adjusted herbicide

price.
The first regression models conservation tillage rates

as a function of the adoption rate of HT soybeans and
the real price of soybeans. The second regression mod-
els quality-adjusted quantity of herbicide applied to soy-
beans as a function of the adoption rate of conservation
tillage, the HT soybean adoption rates, and lagged qual-
ity-adjusted herbicide price.

Given the panel structure of the data, either fixed
effects or random effects are potential estimators of the
parameters in Equations 1 and 2. After all, both fixed-
and random-effects models control for unobserved or
omitted time-invariant, observation-specific variation.
Using Hausman tests, we conclude that both the ran-
dom-effects and the fixed-effects estimators are consis-
tent in both equations (see Appendix 4). However, the
random-effects model is more efficient than the fixed-
effects model (Wooldridge, 2002). Consequently, we
use random effects.

Main Results

Table 3 shows the regression results for the random-
effects model of Equation 1, which analyzes the effect
of HT adoption on conservation tillage adoption. Our
results indicate that HT soybean adoption has a positive
and highly significant (p value < 0.0001) impact on

6. Fernandez-Cornejo et al. (2009) and Vialou et al. (2008) esti-
mated the hedonic price equations using a generalized linear 
form, where w and X were rescaled using the Box-Cox trans-
formation. The data analyzed in these studies were compiled 
from USDA pesticide use surveys and the Doane Countrywide 
Farm survey.

7. That is, state-level conservation tillage adoption rates do not 
contain information that is useful in predicting HT adoption 
rates. This result is not comparable to results of previous 
work discussed in our literature review because the concept of 
causality implicit in those studies is not equivalent to that 
used in this work. Additionally, most previous work included 
beginning and mid-years of adoption of HT soybeans while 
this study includes 11 years of adoption. As Robert et al. 
(2006) argued, differences in tillage have minimal influence 
in the adoption of HT seeds when a large portion of the acre-
age uses HT seed, regardless of the tillage method.
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adoption of conservation tillage amongst US soybean
farmers. This suggests that farmers who adopt HT soy-
bean seeds are also more likely to adopt conservation
tillage systems than farmers using conventional seeds.
Thus, in addition to shifting usage from relatively toxic
traditional herbicides (such as Trifluralin and Pendime-
thalin) to glyphosate (which is known to be relatively
benign), HT adoption induces farmers to adopt more
environmentally friendly tillage techniques.

Expressing the results of Table 3 as elasticities, we
find that the elasticity of the adoption of conservation
tillage with respect to the adoption of herbicide-tolerant
soybeans (at the means) is 0.21 (Table 4). This means
that a 1% increase in adoption of HT soybeans leads to a
0.21% increase in adoption of conservation tillage.8

Table 5 shows the regression results for the random-
effects model of Equation 2, which analyzes how HT
adoption affects quality-adjusted herbicide use. Our
results indicate that HT adoption has a very significant
impact on quality-adjusted herbicide use but that con-
servation tillage does not significantly affect quality-
adjusted herbicide use. Given that the use of HT seeds
induces farmers to shift herbicide usage towards gly-
phosate, it is not surprising that adopting HT seeds
induces farmers to use fewer quality-adjusted pounds.

After all, glyphosate is less toxic than many other herbi-
cides.

From the results of Table 5 we calculated that the
elasticity of quality-adjusted quantity of herbicide use
with respect to HT adoption (at the means) is -0.30
(Table 4). This means that a 1% increase in adoption of
HT soybeans leads to a 0.3% decrease in the quality-
adjusted quantity of herbicide use.

Conclusions
Using a panel-data set covering 12 states and 11 years
(from 1996 to 2006), we find that HT soybean adoption
leads to a significant increase in the adoption of conser-
vation tillage. A 1% increase in HT soybean adoption
leads to a 0.21% increase in conservation tillage. In
addition, HT soybean adoption leads to a decrease in the
quality-adjusted quantity of herbicide used: a 1%
increase in HT soybean adoption leads to 0.3% decrease
in quality adjusted herbicide use. Thus, this study finds
that the adoption of herbicide-tolerant crops benefits the
environment directly by reducing quality-adjusted her-
bicide use and indirectly by increasing conservation till-
age.

In coming to these conclusions, we verified that 1)
the data-generating process was stationary over the
course of the study period; 2) state-level HT soybean
adoption rates are exogenous to state-level conservation
tillage rates and state-level estimates of quality-adjusted
herbicide use; and 3) while state-level HT soybean
adoption rates contain information that can be used to
predict state-level tillage rates (HT soybean adoption
rates “Granger cause” conservation tillage rates), state-
level tillage rates do not contain information that can be
used to predict state-level HT soybean adoption rates

Table 3. Effect of HT soybean adoption on conservation till-
age—Random effects model, 1996-2006, for US soybean 
farmers.

Observations 132

R-squared 0.17

Variable
Parameter 
estimate P-value

HT soybean adoption 0.19 *** <0.0001

Lagged relative soybean price 0.02 ** 0.03

Constant 0.34 *** <0.0001

*** indicates that p<0.01, ** indicates that p<0.05, * indicates 
that p<0.1
Source: Model results

Table 4. Elasticities of conservation tillage and quality-
adjusted herbicide use with respect to HT soybean adop-
tion.

Dependent variable Elasticity

Conservation tillage 0.21

Quality-adjusted herbicide use -0.30

Source: Model results

8. This is about half of the effect found by Frisvold et al. (2009) 
for the case of HT cotton.

Table 5. Effect of HT soybean adoption and conservation 
tillage on quality-adjusted herbicide use random effects 
model, 1996-2006, for US soybean farmers.

Observations 132

R-squared 0.33

Variable
Parameter 
estimate P-value

Conservation tillage 0.72 0.78

HT soybean adoption -4.67 *** <0.001

Lagged relative soybean price 0.04 0.81

Lagged quality-adjusted 
herbicide price

0.22 0.55

Constant 10.36 ** 0.02

*** indicates that p<0.01, ** indicates that p<0.05, * indicates 
that p<0.1
Source: Model results
Fernandez-Cornejo et al. — Conservation Tillage, Herbicide Use, and GE Crops in the US: The Case of Soybeans



AgBioForum, 15(3), 2012 | 238
(conservation tillage rates do not “Granger cause” HT
soybean adoption rates).
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Appendix 1. Testing the Stationarity of the 
Data Generating Processes
In order to meet a necessary condition of classical
econometrics and minimize the potential for spurious
results in regressions using time-series or panel data, the

model variables must be stationary; in other words, the
random process generating the variables should not
change over time. Typically, stationarity tests have been
carried out using the augmented Dickey-Fuller test—or
semiparametric tests—such as the Phillips-Perron test
(Ball, Hallahan, & Nehring, 2004). The main problem
with these tests is that, in a finite sample, any unit root
process can be approximated by a trend-stationary pro-
cess. This implies that unit root tests have limited power
against the stationary alternative (Ball et al., 2004).
Recently, researchers have exploited the extra informa-
tion provided by pooling time-series and cross-sectional
data. Unit root tests for panel data have been created to
exploit the advantages of these datasets. Building on the
work of Levin and Lin (1992, 1993); Levin et al. (2002);
and Im, Pesaran, and Shin (1997), many unit root tests
for panel data have been proposed. Levin et al. (2002)
showed that combining time-series and cross-sectional
information makes it easier to infer the existence of unit
roots, especially when the time-series dimension of the
data is not very long, and similar data may be obtained
from a cross-section of units such as countries.

In this article, we use a panel unit root test developed
by Levin et al. (2002). This test is particularly useful
because the alternative hypothesis is that all the panels
are stationary. As shown in Table A1, the test results
indicate that the variables are stationary.

Appendix 2. Assessing Granger Causality: 
State-level Conservation Tillage and HT 
Soybean Adoption

We tested the direction of causality amongst our primary
variables of interest using the Granger causality test. In
general, this statistical procedure tests whether one time
series is useful in forecasting another. Thus, a time

Table A1. Levin-Lin-Chu panel unit root test statistics (with 
time trend).

Variable
Adjusted 

test statistic P-value Stationarity

Conservation tillage 
adoption

-4.53 <0.0001 Yes

HT soybean adoption -5.08 <0.0001 Yes

Relative soybean 
price

-7.91 <0.0001 Yes

Quality-adjusted 
herbicide use

-3.77 <0.0001 Yes

Quality-adjusted 
herbicide price

-3.01 <0.0001 Yes

Source: Model results
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series X is said to Granger-cause Y if it can be
shown—usually through a series of t-tests and F-tests on
lagged values of X (and with lagged values of Y also
included)—that those X values provide statistically sig-
nificant information about future values of Y.

The results shown in Table A2 indicate that state-
level HT soybean adoption rates Granger-cause conser-
vation tillage adoption rates at the 5% level (p-value =
0.014), but conservation tillage rates do not Granger-
cause HT soybean adoption rates (p-value = 0.17).

Appendix 3. Assessing the Exogeneity of 
State-level HT Soybean Adoption
Many analyses of cross-sectional, farmer-level data treat
HT adoption as endogenous. This is reasonable because
it is likely that unobserved, farmer-specific factors affect
both HT adoption decisions and outcomes like profits or
yields. However, it was not clear that state-level HT
adoption rates are endogenous in a panel setting.
Because endogeniety has the potential to bias statistical
results, we conducted a regression-based form of the
classic Hausman test proposed by Wooldrige (2002) to
determine whether HT adoption is endogenous.

Consider the relationship between the dependent
variable y1 and the independent (but potentially endoge-

nous) variable y2. To test the exogeneity of y2, Hausman

(1978, 1983) suggests a simple two-stage procedure: 1)
regress y2 on a set of strictly exogenous instruments, z;

and 2) regress y1 on z1 (a subset of z), y2, and the residu-

als from the regression in the first stage. If the residuals
from the first stage are significant in Stage 2, then unob-
served factors affect both y1 and y2. In other words, y2 is

endogenous.
Using 1996-2006 as our sample period, we tested

whether state-level HT adoption was exogenous to 1)
state-level conservation tillage rates and 2) quality-
adjusted herbicide use. We used the lagged soybean
price, lagged herbicide price, weather variables (temper-
ature and precipitation during plant growing season),
and an indicator for weed resistance as instruments in a
two-way fixed effects model (first stage that included
year and state fixed effects). As described earlier in this
section, we used this regression to calculate residuals.
These residuals act as a proxy for unobserved, omitted,
and potentially endogenous variables.

Notice that the residuals from HT soybeans equation
were not statistically significant in either the conserva-
tion tillage or the quality-adjusted herbicide equation
(Table A3).9 This allows us to conclude that state-level
HT soybean adoption rates are exogenous to state-level
tillage rates and state-level quality-adjusted herbicide
use for the 1996-2006 period. Consequently, our model
can be estimated as a recursive system.

Table A2. Assessing the simultaneity of state-level conservation tillage and HT soybean adoption—Granger causality test 
results.

Independent variables Conservation tillage P-value HT soybean adoption P-value

Lagged conservation tillage adoption 0.41 ** 0.015 0.07 0.172

Lagged HT soybean adoption 0.18 ** 0.014 0.30 *** 0.005

Constant 0.28 *** 0.003 0.56 *** <.0001

*** indicates that p<0.01, ** indicates that p<0.05, * indicates that p<0.1
Note: State and year fixed effects not shown.
Source: Model results

Table A3. Assessing the exogeneity of HT soybean adoption, Hausman test results (second stage).

H0 = HT soybean adoption is exogenous; no correlation between the first stage residuals and the dependent variables.

Independent variables Conservation tillage P-value Quality-adjusted herbicide use P-value

HT soybean residual 1 -0.39 0.13 14.39 0.22

Source: Model results
*** indicates that p<0.01, ** indicates that p<0.05, * indicates that p<0.1
1 The HT soybean residuals were calculated using the results of a separate regression (first stage). The first stage of the endogene-
ity test entails regressing state-level adoption rates for HT soybeans by the lagged relative soybean price, the lagged quality-
adjusted herbicide price, select weather variables, and an indicator for whether weeds in a state had developed herbicide resistance.
Note: For the sake of simplicity, this table excludes parameter estimates for the state and year fixed effects, as well as the other 
explanatory variables: ‘HT soybean adoption rates’ and ‘lagged relative soybean prices.’

9. The full regression results are available upon request to the 
authors.
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Appendix 4. Estimating and Testing for 
Fixed and Random Effects

Using Baltagi’s notation (Baltagi, 2001), the fixed effect
model is

Yit = α + X’it β + uit ,  i=1…N; t=1…T (A1)

uit = µi + λt + νit , (A2)

where i represent states and t denotes time (year), α is a
scalar, β is Kx1, and Xit is the observation for State i in

time t for the K explanatory variables. µi is the unob-

servable individual specific effect; it is time invariant
and accounts for any individual effects not included in
the regression (Baltagi, 2001). λt is the unobservable

time effect; it is individual-invariant and accounts for
any time-specific effect not included in the regression.
νit is the remainder disturbance.

In the two-way fixed effects model, the µi and the λt

are assumed to be fixed parameters to be estimated. The
Xit is assumed to be independent of νit for all i and t

(Baltagi, 2001). For the random effects model, the µi

and λt are assumed to be random and independent of the

νit ; Xit is assumed to be independent of µi , λt , and νit

for all i and t (Baltagi, 2001).
To estimate the models we used the PANEL proce-

dure from SAS (2010). Fixed effects models include
dummy variables that correspond to the specified state
and time effects. For random effects, we employed a
two-stage approach. In the first stage, we estimated the
error variance components as per Fuller and Battese
(1975). In the second stage, we used the estimated vari-
ance components to perform the GLS regression.

To choose between the fixed effects and random
effects models we used a Hausman test. In this test, the
null hypothesis (H0) is that both the random effects and

the fixed effects estimators are consistent. We tested the
null hypothesis that both estimators are consistent by
determining whether the two estimators are significantly
different from each other. The Wu-Hausman test statis-

tic is defined as (b1 − b0)’ [Var(b0) − Var(b1)]-1 (b1 −

b0). Asymptotically, the statistic is chi-squared distrib-

uted, with degrees of freedom equal to the rank of
matrix Var(b0) − Var(b1).

As seen in Table A4, H0 cannot be rejected. Thus,
the Hausman test allow us to conclude that both the ran-
dom effects and the fixed effects estimators are consis-
tent in both equations (p = 0.85 for the conservation
tillage adoption equation and p = 0.86 for the herbicide
quantity equation). Because random effects models are
more efficient than fixed effects models, we have cho-
sen a random effects model to analyze our dataset.

Table A4. Hausman test results for random/fixed effects.

H0 = Both the random and fixed effects estimators are 
consistent1

Dependent variable Test statistic P-value

Conservation tillage 0.31 0.86

Quality-adjusted herbicide use 1.28 0.87

1 The random effects estimator is efficient, so failure to reject 
the null hypothesis serves as justification to use the random 
effects estimator.
Source: Model results
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