
at SciVerse ScienceDirect

Renewable Energy 55 (2013) 322e330
Contents lists available
Renewable Energy

journal homepage: www.elsevier .com/locate/renene
Why are Californian farmers adopting more (and larger) renewable
energy operations?q,qq
Jayson Beckman a,1, Irene M. Xiarchos b,*,1,2

a Economic Research Service, USDA, Washington, DC 20036, USA
bOffice of Energy Policy and New Uses, Office of the Chief Economist, USDA, Washington, DC 20250, USA
a r t i c l e i n f o

Article history:
Received 2 June 2012
Accepted 30 October 2012
Available online 4 February 2013

Keywords:
Renewable energy
Double hurdle
Agriculture
Technology adoption
q The views expressed here are solely the authors’
USDA, ERS, OEPNU, or OCE.
qq Data used are from the National Agricultural
available to the Economic Research Service for the pu
* Corresponding author. Office of Energy Policy and

Economist, USDA, 1400 Independence Ave., SW, Sou
20250, USA. Tel.: 202 401 0846, Cell: 304 685 0783, f

E-mail address: imxiarchos@gmail.com (I.M. Xiarc
1 Authors listed in alphabetic order. Irene M. Xi

author.
2 This work was performed while on detail in the

USDA.

0960-1481/$ e see front matter Published by Elsevie
http://dx.doi.org/10.1016/j.renene.2012.10.057
a b s t r a c t

The paper examines the renewable energy adoption and system size determinants for Californian
farmers. We utilize a double-hurdle methodology where system size is determined through a hetero-
skedastic ordered binary variable model for four size categories. Our results for system size show that
determinants of technology adoption differ from size determinants. For example, environmental prac-
tices, Internet connection, and electricity price influence adoption, while, total value of production and
acre value impact the size of the installed system. Surprisingly, the price of electricity bears no impact on
the size category chosen. Renewable energy adoption and system size have been increasing over time,
thus our insights about the interplay of the determinants for adoption and size choice, will assist policy
formation.

Published by Elsevier Ltd.
1. Introduction

Rising, and volatile energy prices, coupled with federal and state
policies targeted towards reducing fossil-fuel consumption have
helped lead to an increase of electricity generated from renewable
sources in the US. Wind and solar based electricity have particularly
increased (by 555% from 2000 to 2009) as resources are relatively
abundant throughout the US (compared to e.g., geothermal, hydro)
and installation costs have decreased. Similarly, the Nation’s farm
operators are increasingly investing in on-farm renewable energy
generation. For example, the majority of both wind turbines (80%)
and solar panels (89%) were installed after 2000 and more than
half of all installations were after 2005 [1]. Environmental steward-
ship, favorable policies for renewable energy, and cost reduction
opportunities have also helped grow renewable energy production
and do not necessarily reflect
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by agricultural producers. Despite the rapid buildup in total and on-
farm renewable energy production, literature targeting better
understanding of the adoption decision is scarce. This work uses
micro-level data from the state with the largest amount of farms
adopting renewable energy production (California) to examine both
the adoption and size decision for farmers.

The recent increase in renewable energy productionhas spawned
a wealth of research investigating the adoption decision at highly
aggregate levels (e.g., [2e4],); however, little has been said regarding
the potential for the agriculture sector to contribute. Electricity is
a critical input in farming, thus the recent increases in energy prices
aremaking on-farmgenerationmore attractive [5].Many stateswith
large agricultural sectors are leaders in renewable energy installa-
tions (Fig.1) and since approximately 40% of land is in agriculture [6]
the agriculture sector can be an important contributor to total
renewable energy production.3 By examining the characteristics of
agricultural producers who choose to adopt renewable energy this
work lends insight into individual adoption and size determinants.
In terms of system size, agricultural producers are adopting renew-
able energyoperationsatopposite ends, and inbetween, the capacity
spectrum; thus another focus of this work is to better understand
why producers choose different capacity amounts.
3 There is an increasing number of agriculture land-owners leasing their land for
large-scale commercial renewable energy production; however, that topic is not
pursued here since the land-owners would not likely be the ones deciding the type
and size of the renewable energy operation.
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Fig. 1. States by size of agricultural sector and highest ranked states in renewable energy capacity excluding hydro (2009). Source: DOE, BEA 2010

4 Based on ArcGIS analysis of low resolution data developed from the NREL’s
Climatological Solar Radiation (CSR). Based on monthly average and annual average
daily total solar resource averaged over surface cells of approximately 40 km by
40 km in size. Last updated in April 2009. Avialable at: http://www.nrel.gov/gis/
data_solar.html.

5 Based on ArcGIS analysis of low resolution annual average wind resource
potential for the United States produced by NREL. Represents wind power class at
50-m height above surface at a 25-km grid cell resolution. Last updated in April
2011. Available at: http://www.nrel.gov/gis/data_wind.html.
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California is a natural investigation arena for on-farm renewable
energy adoption since it accounts for 23% of all farms reporting
renewable energy production [1]. Further, California not only has
much more renewable energy generating farms than the next state
(Texas: 7%), it also houses much larger installations than average.
The average farm in California with solar and/or wind technology
has a generating capacity of 11 kilowatts (kw), versus 6.5 kw for all
farms in the US.

1.1. Renewable energy in agriculture

Agricultural producers have been early adopters of some
renewable energy technologies due partly to their convenient
application for small and remote power needs. These applications
might include electric fencing and water pumping. Other on-farm
applications include larger installations such as wind turbines and
solar panels for electricity production to offset commercial electricity
purchases. Electricity is also produced on-farm by methane
digesters; however, this technology is limited to livestock operations.

This paper focuses on farm operated wind and solar installa-
tions, excluding methane digesters (since along with being limited
to livestock producers, they are also very large investments, typi-
cally installed by the largest operators). Though off-grid applica-
tions represented themajority of renewable energy use throughout
the 1990s, in the last decade improved infrastructure, such as
interconnection and net metering, has increased system sizes and
led to the present growth of renewable energy production at the
farm level.

Electricity represents around 18% of total energy consumed on-
farm [8]; thus generating a share of electricity on-farm could reduce
electricity expenditures and also insulate the producer from energy
price fluctuations. In [9], a California producer stated that he utilizes
his farms solar-generated renewable energywhen commercial utility
rates are the highest. Further, a renewable energy operation could
provide the producer a dedicated energy supply in instances where
electricity generation is difficult or impossible. It can also substitute
for fuel andgasuse, reducing transportationandmaintenance costs as
well as environmental concerns [7]. Renewable energy production
can alsobeprofitable, orhelp to reduce costs in the long run. There are
large up-front capital costs; but once the amortized amount is paid
for, the renewable energy fuel is free or negligible.

1.2. California

California is an important state for both commercial and farm-
generated renewable energy. It is the second largest producer of
renewable energy in the United States and the top state for elec-
tricity generated from geothermal, biomass, and solar sources [10].
It is the third highest ranking state after Texas and Iowa in wind
installations. There are several reasons for the large production of
renewable energy in California. California’s residential electricity
rate was 15.4 cents per kilowatthour in 2011, placing its electricity
cost in the ten highest ranked states. In terms of resources, solar
radiation in California is very high, averaging 5.91 kWh/m2/day, in
comparison to a 4.92 kWh/m2/day US state average.4 The wind
resource in California is more varied (ranges from class 1 to class 6)
with an average of class 3 for the state which is also the US State
average.5 California’s renewable energy growth has also been
supported by favorable policies. California has one of the most
ambitious renewable portfolio standard (RPS) goals set at 33% by
2030, a feed-in-tariff since 2006, and state supported rebates for
both photovoltaic (PV) and wind energy installations. In 2008
California accounted for 55% of all net metering customers in the
United States [11]. Freeing the Grid graded California’s net metering
policy very high and deemed that its interconnection policy has
been effective in promoting on grid renewable energy installations.

For agriculture, California is thehighest ranking state in cash farm
receipts accounting for 16% of national receipts for agricultural
commodities, and 7% of US livestock revenue. With 25,400,000
dedicated acres, 81,700 farms, and 15 percent of US irrigated
lands the state produces a large variety of agricultural products. It
leads the US in milk production, generates nearly half of US grown
fruits, nuts and vegetables, and is home to some of the most
productive and valued land in the nation. In terms of revenue
generated, California’s top agricultural products are dairy products,
grapes, almonds greenhouse andnursery products, cattle and calves,
strawberries, lettuce, tomatoes, pistachios, walnuts andflowers [12].

A simple comparison with total US farms provides some inter-
esting insights into California agriculture production. On average
California farms are smaller than the US average (313 versus 418
acres), have been in operation 2 years less than the US average, and
hold more capital in machinery and equipment ($108,145 per farm
versus a US average of $88,357). A larger percent of farmers hold
full tenure of their farm, but a smaller percent resides on the farm.
There are more organic farms in California than the US average (4%
compared to 0.9), but about the same share of farmers in California
and the US practice conservation methods (approximately 22%).
The share of energy expenses relative to total farm expenses is
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the same in California as in the US (11%); however electricity in
California represents a greater share of total energy expenses (61%
versus 47% for the US average). For irrigated farms 78 percent of
energy expenses are for electricity compared to 58% for the US
average.

2. Data

This work utilizes primary data from the 2009 On-Farm
Renewable Energy Production Survey (OFREPS), the first national
survey of farm operators with renewable energy operations [1]. It
was conducted as an add-on survey in 2010 for those who
responded that they had produced some form of renewable energy
in the 2007 Census of Agriculture. Responses to this follow up
survey provide data on the type, size, cost, incentives and estimated
savings of renewable energy production. By combining the OFREPS
surveywith characteristics of farmers and their operations from the
2007 Census and other important variables (Table 1), this paper is
able to examine attributes that explain why individuals are
adopting renewable energy operations and evaluate how the
system sizes are chosen.

Nationally the number of farms that responded they produced
renewable energy in the OFRES was 8569. Solar energy production
was themost prevalent formof renewable energywith an estimated
7968 farms, or 93% of all farms with renewable energy generation.
Table 1
Variables utilized in the econometric models.

Variable Description Source

Exogenous variables
P kwh Average retail electric price

in the county
EIA, 2008

Farmer characteristics
Internet Indicator: operator has

Internet access
Census, 2007

Residence Indicator: operator residence
on farm

Census, 2007

Age Age of primary operator Census, 2007
Year Years operator has been

on this operation
Census, 2007

Primary occupation Indicator: farming is primary
occupation

Census, 2007

Household income Indicator: household income
of principal operator

Census, 2007

Income share Income percent from farm Census, 2007
Farm operation attributes
Acres owned Acres owned by operator

(in 100 s)
Census, 2007

Size Acres in the operation
(in 100 s)

Census, 2007

Acre value Value of acres owned ($) Census, 2007
Livestock Indicator: farm is primarily

livestock operation
Census, 2007

Fruit Vegetables, fruit, nuts
and other crops

Census, 2007

Hired manager Indicator: if a manager
is present

Census, 2007

TVP Total value of production Census, 2007
Organic Indicator: organic farming

operation
Census, 2007

Support Received federal/state/local
support

NASS, 2011

Tenure Indicator: if 70% of the
farmland is owned by
the operation

Census, 2007

Conservation Indicator: conservation
practices used

Census, 2007

Machine value Value of machinery owned
by farm

Census, 2007

Electricity Electricity used: utilities/
average retail

EIA, 2008/Census
2007
This result is expected since solar technologies tend themselves to
a plethora of farm applications, especially in remote locationswhere
a small amount of electricity has high value orwhere commercially-
supplied electricity is prohibitively expensive. Specifically for off-
grid applications, solar is estimated to be on average 20e90% less
expensive than the competing energy alternative [7]. Wind is the
secondmost prevalent on farm renewable fuel source, representing
17% of farms with renewable energy generation.

California has the majority of on-farm renewable electricity
generation and operations are spread throughout the state. Indeed,
out of the 56 counties, all but 3 have on-farm renewable energy
production. Although San Diego has the highest number of opera-
tions, Napa has the operations with the largest size capacity on
average. Fig. 2 maps the ten counties in California with the most
renewable energy operations. These counties house 50% of the total
number of farms with renewable energy operations. In terms of
installed capacity, the concentration is higher but has declined over
time: the top ten counties which accounted for 60% of installed
panels prior to 2000 were down to 52% in 2005e2009. Additionally
while some counties like San Diego, Mendocino, Sonoma, San Luis
and Obispo have always ranked high in panel installations, the
importance of other counties has changed over time: counties like
Riverside, San Joaquin, and Stanislaus did not become important
until later, while counties like Monterey and Trinity did not
continue having many installations after 2000.

Though the size of the renewable energy systems installed on
farms varies considerably, installations fall into three major cate-
gories: off-grid applications, small on-grid systems, and on-grid
systems for larger commercial needs. Based on the distribution of
the dataset and the size needs depending on the farm applications
we distinguish four size categories: systems kW< 1 often represent
off-grid installations serving small needs around the farm (example
small irrigation and battery chargers); systems sized between
1 > kW � 5 are typical for small on-grid needs like residential roof
Fig. 2. Top ranked counties in California for renewable energy operations with average
system size. Source: NASS (2011)



Fig. 3. Share of on Farm renewable energy systems by category. Source: NASS (2011)

Table 2
California Farm characteristics with detail for different size categories.

Average All farms RE on
Farm

Renewable energy on farms by size

kw � 1 1 < kw � 5 5 < kw � 25 kw > 25

Machine value
($1000)

148.1 102.2 59.3 64.7 129.8 310.3

TVP ($1000) 659.3 332.6 78.3 88.4 204.3 1669.7
Farm income (%) 26.8 21.3 22.5 19.5 19.6 40.6
Size (Acres) 456.5 1011.7 1008.8 2067.4 306.5 355.4
Year farming 20.6 17.8 21.4 17.0 15.6 24.4
Acre value

($1000)
64.4 72.3 19.7 72.2 94.1 75.8

Energy used
($/year)

1787.3 893.0 316.9 398.3 1050.0 3079.7

Price ($/kw h) 13.8 13.9 13.8 13.9 14.1 14.0

Source: NASS (2007, 2011).
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mounted systems [7]; larger systems between 5 > kW � 25 are
used for small commercial needs; systems with kW > 25 represent
large commercial installations.6 Fig. 3 shows the shares of instal-
lations in each category for California.

Table 2 showcases the farmer and farm characteristics by system
size to highlight the differences for the four categories. The table
indicates that machine value, total value of production (TVP), and
energy used are lower in farms with renewable energy. These
values increase by ordered size category; and for large installations
they are more than double the average for all California farms. With
the exception of large commercial systems, farm income as
a percent of total farmer remuneration is lower for farms with
renewable energy installations. Value of acres owned is also larger
for farms with installed renewable energy with the exception of off
grid systems.

Fig. 4 shows that farms with renewable energy production are
characteristically different than the average California farm and
a distinct pattern emerges for the different size categories. A higher
share of California farms with renewable energy on-farm is con-
nected to the internet, is organic and practices conservation
methods. While more farmers that produce on farm renewable
energy are retired, they do not report farming as their primary
occupation, and seemmore vested on their farmland by residing on-
farm, managing the operation themselves, and owning a high
percent of the land they operate. In terms of size, operations with
large commercial renewable energy systems show identical charac-
teristics with the average California farm and differ notably from
other farms with renewable energy systems. Off-grid systems typi-
cally are operated by a higher share of organic farmers and respon-
dentswho report farming as their primary occupation; a lower share
of farmers with off-grid systems reside on farm, are retired and hold
high tenure on their farm. More farmers with small commercial
systems practice conservation methods and are connected to the
Internet relative to other operations; while generally farmers with
small grid connected renewable energy installations are retired, live
on the farm and ownmost of the land in their operation. In terms of
farm type there are more cattle farms but less fruit farms with
renewable energy installations relative to all farms in California.

Fig. 5 provides more detail for the presence of renewable energy
and different system size by farm type. A majority of on-farm
renewable energy operations in California are utilized by fruit
farmers. Cattle and other animal operations also stand out. As ex-
pected cattle operations host a large share of the small off-grid
systems for their remote benefits. For other animal operations,
however, the majority is small residential and commercial systems.
The biggest share of large commercial systems is in fruit operations.
A very small share of fruit operations has off-grid systems; the
majority of fruit farms host small and large commercial systems.
Horse operations also have a substantial amount of small
6 A similar breakdown can be found in NREL’s open PV project: http://openpv.
nrel.gov/visualization/index.php. Our breakdown is distinguished from NREL’s in
a couple of respects. We separate out systems of kW < 1 to approximate off grid
installations, and combine systems between 5 and 25 kW into one category for ease
of examination.
commercial systems. Nurseries and greenhouses house small resi-
dential and commercial size systems, while vegetable operations
havemostly small renewable energy installations, both on- and off-
grid. Cowmilk and dairy product operations have small on- and off-
grid installations while sheep and goat product farms have small
residential and commercial size systems.

3. Literature review

The technology adoption literature guides us in formulating
the empirical methodology of the paper. In the absence of specific
studies examining on-farm renewable energy adoption, determi-
nants of adopting conservation practices in agriculture and energy
conserving technologies in the residential sector are hypothesized
to also underlie renewable energy adoption on the farm.

Factors influencing sustainable agricultural production are
grouped into farmer characteristics which includes attitudes/
awareness like age, education, income, farming experience, and
tenure; farm operation characteristics like farm ownership, type,
size, profitability, labor and capital; farm biophysical characteristics
which could include soil erosion, slope, rainfall, or available sun
radiation; and exogenous variables like regional policies and input
prices [13e15]. There is no coherency on the significance or the sign
of the different adoption influences but [13] found that educational
level, farm size, income, labor, access to information, positive
environmental attitudes and utilization of social networks emerge
as variables that are more often positively rather than negatively
associated with adoption. Capital is found to positively influence
adoption more often than not, but the predominance of studies
show insignificant coefficients. The results are inconclusive for
experience, farm tenure and ownership.
Fig. 4. California Farmer characteristic shares with detail for different size categories.
Source: NASS (2011)

http://openpv.nrel.gov/visualization/index.php
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Fig. 5. Farm types in California for all farms, farms with renewable energy, and by system size. Note:1 ¼ Crops like Grains, Oilseeds, Cotton, Dry Beans, and Hay; 2 ¼ Vegetable,
Melons, Potatoes, and Sweet Potatoes; 3 ¼ fruit, Tree Nuts, and Berries; 4 ¼ Nursery, Greenhouse, Floriculture, and Short Rotation Woody Crops; 5 ¼ Milk and Other Dairy Products
from Cows; 6 ¼ Cattle and Calves; 7 ¼ Other Animals and their Products; 8 ¼ Sampling Error. Source: NASS (2011)
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In the residential sector, economic variables shown to impact
solar hot water adoption include solar radiation availability [16,17],
electricity rates [18,19], and state tax credits [19]. Demographic
variables that positively related to energy conserving investments
are income, education, age, and household size [17e22]. However
results are not homogeneous. For example [19], find no significant
impact from income and solar radiation availability. Policies vari-
ables have been shown to play an important role in increasing
utility scale capacity of renewables. Findings have varied, but to
different degrees [3,4,23], show that policies such as an RPS, public
benefit funds, and green power options have lead to statewide
renewable energy investments. In the absence of studies examining
on-farm renewable energy adoption, conservation practice adop-
tion in agriculture and energy conservation in the residential sector
are hypothesized to be determinants underlying renewable energy
adoption on the farm.

The few studies that have examined on-farm renewable energy
adoption have done so examining economic feasibility through
simulation models. Probably the first such work was by [24] who
considered the potential of adopting solar PV technology specifi-
cally for irrigation. Though the use of PV systems for irrigation has
great potential, their prediction of wide-scale use by 2000 did not
occur. Ref. [5] also considered the economics of PV technology, this
time for the Tennessee poultry industry. They use a simulation
benefit-cost model for 5 poultry-producing counties, with data for
renewable energy production costs/benefits gathered from outside
sources. They conclude that the variables with the largest impact on
the Net Present Value calculation are: the percent of grant funding
(35%), and the percent of the federal tax credit (15%).
4. Methodology

This study examines the determinants of adopting renewable
energy on-farm as well as the factors that influence farmers to
choose their size of renewable energy operation. Methodology
analyzing technology adoption is rooted in the work of the ex-
pected utility framework.7 Farmers make many choices (e.g., off-
farm versus on-farm work, planting decisions) one of which is to
7 Expected utility is a more appropriate framework than profit maximizing or
cost minimizing due to the nature of our technology. This is because farmers are
likely adopting the technology for a variety of reasons, some which might not
generate profits relative to the standard technology (e.g., early adopters, environ-
mental stewardship, or a dedicated energy source).
adopt any new technology (assuming that they are aware of the
new technology). A farmer will adopt the new technology if the
expected utility with the new technology is greater than the ex-
pected utility with the traditional utility.

Let yi ¼ bXi þ εi (1)

Where y is the adoption intensity, expressed in the paper as the kw
size of their renewable energy operation, Xi is a vector of explan-
atory variables that may influence the adoption decision and b are
the parameters to be estimated for those variables, and εi denotes
the standard error term capturing unobserved behavior.

Equation (1) provides two pieces of information,whether farmer
i adopted renewable energy and how much was adopted. To effec-
tively use both pieces of information, we need a suitable modeling
framework. We utilize a two-stage modeling technique first
advanced by [25] commonly known as the ‘double-hurdle model.8

The general notion of the double-hurdle model and its counterpart
(the Heckit model [26]) is that there are two parts to the question: if
an observation occurred (a binary-choice); and if that observation
occurred, what was the result (in a continuous sense). The benefit
of these two models is that the two-stage process allows outcomes
from the two stages to be determined by separate processes. Both
models have received particular usage in the medical literature
where the nature of health expenditures and habits (many obser-
vations with zero occurrences) is conducive for such modeling.
Both models feature the two-stage modeling decision; however,
the Heckit model is favored when sample-selection bias is an issue.
Sample-selection bias is not an issue, since we are using the entire
Census population of California farms, thus the Cragg double-
hurdle model is optimal.

The first stage binary-choice model is used to examine if there
are characteristics which significantly increase the likelihood of
operations adopting renewable energy. The model is specified as:

yi ¼ bXi þ εi

�
1 if yi > 0
0 otherwise

(2)
8 Another alternative would be to use a tobit model; however, a key limitation to
the model is that the probability of a positive value and the actual value, given that
it is positive, are determined by the same underlying process (i.e., the same
parameters).
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Vector Xi of explanatory variables utilizes those listed in Table 1
and can be broken down to:

� Exogenous variables representing those factors which are out
of the farmers’ control (e.g., electricity prices)

� Farmer characteristics (e.g., how long the farmer has been
farming, if the farmer lives on-farm; if farming is the main
occupation for the farmer)

� Farm characteristics (e.g., acres owned by the operation; value
of machinery, farm type, e.g., primarily row crop).

The second-stage of the double-hurdle model focuses on those
who ‘participated’ in the first-stage Equation (2). Typically, the
second-stage component is estimated using a linear regression
estimator; however, as noted in [27] an ordered binary model can
be applied when the dependent variable is given quantitative
meaning but we wish to acknowledge the discrete, ordered nature
of the response. As described earlier, installations of renewable
energy can fall into four categories: off-grid applications, small on-
grid systems, small commercial systems and systems for larger
commercial needs. An ordered binary variable model is estimated
for these categories (Equation (3)):

y*i ¼ bXi þ εi; εiwNormalð0;p=3Þ;

where y* adoption intensity with exact cutpoints unknown

y ¼ 1; if off grid
y ¼ 2; if small residential
y ¼ 3; if small commercial
y ¼ 4; if large commercial

(3)

The ordered model can be extended to the heteroskedastic case
by taking the variance of εito be 1=3p2expðz0igÞ2 (with zi a vector of
explanatory variables) so that ε=expðz0igÞis now a homoskedastic
error term [28,29]. This heterogeneous choice model is applicable
when the parallel regression assumption is violated i.e., that the
bs are the same for all j categories [29,30].9 To test the assumption,
J�1 binary regressions are estimated and the hypothesis that
b1 ¼ b2 ¼ . ¼ bj�1 ¼ b is evaluated [31].

The ordered binary model is based on an interval regression
model for the size ranges specified earlier to approximate our four
categories (Equation (4))

yi ¼ bXi þ εi; εiwNormal
�
0; s2

�
;

where y is system size

y � 1 kw; off grid
1 � y � 5; small residential

5 � y � 25; small commercial
y � 25 kw; large commercial

(4)

We interpret the ordered model (Equation (3)) as the main
estimation tool and use interval regression (Equation (4)) to verify
the robustness of the results. Since we wish to acknowledge the
discrete ordered nature of the choice and model qualitatively the
ordered responses, how these are assigned becomes irrelevant for
estimating the probabilities of the choice. Interval regression gives
9 The underlying issue is first introduced by [33] who argues that in binary models
differences in the degree of residual variation across groups can produce apparent
differences in slope coefficients that are not indicative of true differences. Ref. [30]
shows that the heterogeneous choice models provide a superior means for dealing
with such problems by extending the specification to both binary and ordinal depen-
dent variables andallowingamuchmoreflexible specificationof the variance equation.
quantitative meaning to y and calculates the effect that the
explanatory variables have on the conditional mean. We focus on
the orderedmodel because it gives amoreworthwhile emphasis on
how regressors influence the conditional probability distribution of
the size category choice [32]. The model is estimated using
maximum likelihood estimation procedures in STATA.

5. Results

Renewable energy adoption on the farm is determined by
a combination of factors (first two columns of Table 3). The prob-
ability of adoption increases when a farm is connected to the
Internet, faces higher electricity prices, and has demonstrated
interest in environmental practices: organic or conservation tech-
niques. The probability for adoption also increases when the farmer
has vested interest in his land by residing on the farm or holding
tenure for the acres operated. Contrarily, the probability of adop-
tion decreases for farmers who have been farming longer. Addi-
tionally, the higher the household income share coming from the
operation the lower the probability of adoption. A cattle farm has
a higher probability for adopting renewable energy, while the
probability of adoption decreases for fruit operations.

The results for the size choice as represented through the
interval regression and the ordered logit are shown in the last three
columns of Table 3. The coefficients of the interval regression and
the ordered logit are very similar in magnitude, sign and z statistics.
For the interval regression, the size intervals are expressed in log-
arithmic terms and the coefficients interpreted as in ordinary least
squares (OLS). Operations that are connected to the Internet and
have a hired manager install larger systems. The availability of
outside funding has a large positive impact on system size. TVP, acre
value owned, and if the farmpractices conservation techniques have
positive coefficients; but the coefficient for organic operations is
negative. The interval regression and ordered logit also find that
older operations and farmers residing on farm and with farming as
their primary occupation tend to adopt smaller systems. Fruit farms
are shown to install larger systemswhile cattle farms install smaller
systems, as represented by the sign of the coefficient.

The ordered logit results rely on the parallel regression assump-
tion, which assumes that the relationship between each pair of
outcomes groups is the same. The Brant test [31,34] presented in
Table 4 reveals that the parallel regression assumption is violated, and
the violation is sourced in the explanatory variables of conservation,
retirement, year, residence and funding. Consequently these variables
are used to explain the variance of the heteroskedastic model.
According to Ref. [34] an alternative specification to the heteroge-
neous choice model we adopt is the generalized ordered logit which
allows the bs to differ across categories; however this specification
does not fit our dataset. The results of the heteroskedastic model are
very similar to the ordered model, while providing a better fit and
coefficients that are closer to the interval regression. However, when
heteroskedasticity is accounted for primary occupation, residence,
fruit, and cattle drop out as significant factors in influencing system
size. Furthermore we find that older farms and farms that use
conservation practices have higher residual variability in their choice
of size category for their installation. Contrarily, farmers that are
retired, reside on farm, or have received funding show lower residual
variability in the size category choices they make.

Comparing the results of the technology adoption choice to the
heteroskedastic-ordered logit, it is evident that the determinants
influencing the technology adoption are different than those that
influence the size of the renewable energy system chosen. For
example farm size and tenure increase the probability of adoption
but have no impact on the size category chosen. Organic operations
with higher probability of adoption, adopt smaller systems sizes.



Table 4
Parallel regression assumption.

Variables Brant test Coefficients of J�1 binary regressions

Chi2 Probability y > 1 y > 2 y > 3

All 74.820 0.000
Conservation 6.610 0.037 �0.216 0.427 1.381
Machine value 3.300 0.192 �2.240E-07 �7.120E-07 �4.070E-06
Retirement 9.360 0.009 1.018 0.113 �1.997
TVP 3.820 0.148 5.110E-07 8.300E-07 2.010E-06
Income share 0.150 0.927 0.004 0.002 �3.490E-05
Size 2.460 0.293 0.000 �1.000E-04 �3.000E-04
Year 9.410 0.009 �0.035 �0.018 0.040
Internet 1.240 0.537 0.914 1.343 0.622
Acre value 6.340 0.042 9.920E-06 2.770E-06 �7.200E-07
Organic 1.940 0.379 �0.616 �0.474 0.239
Electricity 3.230 0.199 5.000E-04 1.000E-04 �1.000E-04
Fruit 1.700 0.428 0.423 0.140 0.829
Cattle 1.040 0.595 �0.680 �0.255 �0.415
Primary

occupation
3.370 0.185 �0.324 �0.195 �1.270

Residence 10.240 0.006 0.089 �0.305 �1.893
P kwh 0.280 0.867 �0.020 0.040 �0.028
Tenure 4.610 0.100 0.834 0.353 �0.601
Hired Manager 0.540 0.763 0.520 1.379 1.333
Funding 7.860 0.020 2.499 1.454 0.888
Constant e e �0.298 �3.174 �3.315

Note: standard errors available upon request.
Significance is denoted as ***, **, * at the 0.01, 0.05, and 0.10 level respectively.

Table 3
Technology and size adoption choice: model results.

Variable Technology adoption choice Size choice

Logit Interval regression Ordered logit
homoskedastic

Ordered logit
heteroskedastic

Coefficients AMEs Coefficients Coefficients Coefficients

Conservationa 1.165*** 0.030*** 0.190* 0.303* 0.276**
Machine value 3.05E-08 6.63E-10 �3.36E-07 �5.27E-07 6.09E-08
Retirementa 0.033 0.001 0.107 0.225 0.191
TVP �1.11E-08 �2.42E-10 4.32E-07*** 1.03E-06*** 9.89E-07**
Income share �0.004*** �1.00E-04*** 0.002 0.003 0.002
Size 1.34E-05** 1.43E-07** 1.00E-06 1.60E-06 3.71E-07
Year �0.011*** �2.00E-04*** �0.011*** �0.023*** �0.017**
Interneta 0.688*** 0.013*** 0.640*** 1.003*** 0.796***
Acre value 1.78E-07 �3.86E-09 1.40E-06*** 2.43E-06*** 1.93E-06***
Organica 1.150*** 0.039*** �0.212* �0.397* �0.353**
Electricity �1.40E-05 �2.97E-07 �1.46E-05 �4.89E-05 �1.00E-04
Fruita �0.204*** �0.004*** 0.218** 0.370** 0.125
Cattlea 0.608*** 0.016*** �0.392*** �0.577** �0.305
Primary occupationa 0.010 �2.00E-04 �0.196* �0.310(*) �0.197
Residencea 1.034*** 0.017*** �0.409*** �0.679** �0.428
P kwh 0.117*** 0.003*** 0.012 0.019 0.028
Tenurea 0.280*** 0.006*** 0.179 0.327 0.221
Hired managera 0.037 0.001 0.792*** 1.508*** 0.991**
Funding 0.967*** 1.645*** 1.142***
Cut 1 �0.322 0.023
Cut 2 2.268 1.989**
Cut 3 5.285 4.241***
Constant �7.21*** 0.167
lnsigma 0.021
Conservation 0.187*
Retirement �0.339**
Year 0.016***
Residence �0.529***
Funding �0.228*
Sigma 1.022
LR chi2 (18) 802.31 (19) 251.44 (19) 250.37 (24) 288.68
Prob > chi2 0 0 0 0
Loglikelihood �3899.46 �543.328 �538.824 �519.668
Pseudo R2 0.093 0.189 0.217

Note: standard errors available upon request.
Significance is denoted as ***, **, * at the 0.01, 0.05, and 0.10 level respectively.

a Dummy variable; AMEs, dy/dx are for discrete change from 0 to 1.
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The price of electricity is not a significant consideration when the
system size is chosen but influences the decision of adopting the
renewable energy technology. Additionally, factors like TVP, acre
value, the presence of a hired manager, and whether farming is the
operator’s primary occupation (which have no impact on the choice
of adopting renewable energy) are influential determinants for the
size of the installed system.

To decipher what variables influence the adoption probability of
each size category we examine the average marginal effects of the
heteroskedastic ordered logit model. Table 5 provides details on the
specific variables affecting the probability of adopting an off grid,
small residential, small commercial or large commercial system
respectively. There seems to be a very distinct divide between
commercial and non-commercial systems. For example, being
organic increases the probability of adoption of a small off-grid and
residential system, but decreases the probability of adopting
a commercial sized system. Similarly, higher TVP and acre value
increase the probability of adopting a commercial system, and
decrease the probability of adopting a small system.

Farmers operating longer have an increased probability of
adopting an off-grid system and a decreased probability of adopting
a small commercial system. Retired farmers have a decreased
probability of owning an off-grid system or large commercial
system, and a statistically positive probability of owning a small
commercial system. Conservation practices increase the probability
of installing a commercially sized system, and decrease the prob-
ability of adopting a residential system (there is no significant effect



Table 5
Marginal effects per size category.

Variable Heteroskedastic ordered logit: average marginal effects

Off grid Small
residential

Commercial Large
commercial

Conservationa �0.018 �0.064** 0.054** 0.029***
Machine value �8.86E-09 �6.48E-09 1.24E-08 2.89E-09
Retirementa �0.067*** 0.038 0.048* �0.018*
TVP �1.44E-07*** �1.05E-07*** 2.02E-07*** 4.69E-08***
Income Share �2.00E-04 �2.00E-04 4.00E-04 1.00E-04
Size �5.39E-08 �3.94E-08 7.57E-08 1.76E-08
Year 0.004*** �0.001 �0.004*** 0.001
Interneta �0.138*** �0.053*** 0.163*** 0.027***
Acrevalue �2.80E-07*** �2.05E-07*** 3.94E-07*** 9.14E-08***
Organica 0.055** 0.033** �0.073** �0.015**
Electricity 1.66E-05 1.22E-05 �2.34E-05 �5.42E-06
Fruita �0.018 �0.014 0.026 0.006
Cattlea 0.047* 0.030* �0.064* �0.013*
Primary

Occupationa
0.029 0.021 �0.040 �0.009

Residencea �0.017 0.133*** �0.013 �0.103**
P kwh �0.004 �0.003 0.006 0.001
Tenurea �0.033 �0.022 0.046 0.010
Hired Managera �0.107*** �0.137** 0.165*** 0.079
Fundinga �0.204*** �0.079** 0.256*** 0.027**

Note: standard errors available upon request.
Significance is denoted as ***, **, * at the 0.01, 0.05, and 0.10 level respectively.

a dy/dx is for discrete change of dummy variable from 0 to 1.
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on the adoption of an off-grid system). Internet connection (which
might be related to grid connection) is an important determinant
for the adoption of off-grid and small commercial systems; having
connection decreases the probability of adopting an off-grid system
by 14% and increases the probability of adopting a small commer-
cial system by 16%. The impact on residential and large commercial
systems is statistically significant but 3 and 8 times smaller
respectively. The probability of installing a small commercial
system is considerably influenced from having a hired manager
(16%) and having received financial support for the project (25%).
Funding availability also significantly reduces the probability of
installing an off grid system (20%); which likely is aligned to the fact
that renewable energy is an economically viable solution for small
off-grid needs [7], thus the availability of funding is less important.
The influence on residential and large commercial systems is much
lower (�8 and 3% respectively). Having a hired manager also has
a sizable negative impact on adopting an off grid or residential
system, but has no impact on the adoption of a large commercial
system.

While residing on the farm was found to be insignificant in
determining system size in the heteroskedastic-ordered choice
model, the average marginal effects reveal that it has a positive and
statistically significant impact on the adoption of residential
systems, and a negative statistically significant impact on the
adoption of large commercial systems. Similarly being a cattle farm
increases the probability of installing of an off grid and residential
system by 5 and 3% respectively, and reduces the probability of
installing a commercial system even though its coefficient was
statistically insignificant in the ordered model. In accordance to the
ordered logit results, the average marginal effect results show that
fruit and primary occupation remain insignificant in determining
the type of system installed.
6. Implications and concluding remarks

The results of this study provide insights about the state with
the most on-farm renewable energy installations in the US. In
line with other studies examining sustainable agriculture,
environmental practices, size, Internet connection, tenure and
residence on farm positively influence renewable energy adoption.
However, age and income share are found to have a negative
influence on adoption. Electricity prices are also found to influence
adoption as suggested by [18,19].

The study further underlines the importance of evaluating the
choice of the size adopted in addition to the technology adoption
choice. Economic factors like TVP, acre value, the presence of
a hired manager, and whether farming is the operator’s primary
occupation are influential determinants for the size of the installed
system. Surprisingly the price of electricity bears no impact on
system size. Additionally, the adoption of different system sizes is
influenced by distinct characteristics. For example, conservation
practices increase the probability of adopting a commercial size
system while organic operations have a higher probability of
adopting small and off grid systems. Operation type shows an
interesting interaction: larger systems are installed on fruit
operations, but the probability of adoption is low. Cattle and
organic operations with higher probability of adoption, adopt small
systems sizes.

Renewable energy system size has increased over time [7]; thus
understanding the interplay of the determinants for adoption and
size choice, will assist with policy formation and targeting. Further
research on the influence of resource availability and installation
costs introduced by [16,17,19] would add further insight on the
economic incentives for renewable energy adoption.
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