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A STOCHASTIC METHOD TO CHARACTERIZE

MODEL UNCERTAINTY FOR A NUTRIENT TMDL

A. M. Sexton,  A. Shirmohammadi,  A. M. Sadeghi,  H. J. Montas

ABSTRACT. The U.S. EPA's Total Maximum Daily Load (TMDL) program has encountered hindrances in its implementation
partly because of its strong dependence on mathematical models to set limitations on the release of impairing substances.
The uncertainty associated with predictions of such models is often not scientifically quantified and typically assigned as an
arbitrary margin of safety (MOS) in the TMDL allocation. The Soil Water Assessment Tool (SWAT) model was evaluated to
determine its applicability to identify the impairment status and tabulate a nutrient TMDL for a waterbody located in the
Piedmont physiographic region of Maryland. The methodology for tabulating the nutrient TMDL is an enhancement over
current methods used in Maryland. The mean‐value first‐order reliability method (MFORM) was paired with a stochastic
approach to tabulate a science‐based estimate of model uncertainty and MOS for the TMDL approach. Monthly streamflow
estimates were quite good, with Nash‐Sutcliffe efficiency (NSE) coefficients of 0.75 and 0.70 for the calibration and validation
phases, respectively. Sediment and nutrients were not estimated as well as streamflow on a monthly basis; however, large
improvements in model estimation were observed on an annual time scale. MOS was determined based on the desired level
of confidence in meeting the water quality standard. The water quality standard was met at 20% nitrate reduction (9.9 kg N
d‐1) with a 37.5% level of confidence. The water quality goal was met by a 30% reduction in nitrate load (8.6 kg N d‐1), in
which case there was a 75% chance of meeting the water quality standard. Therefore, the MOS load (the difference between
the standard and the goal) was 1.3 kg N d‐1 or 10% of the baseline load. These results indicate that SWAT is a suitable model
for use in TMDL assessments of impaired water bodies, especially assessments based on long‐term simulations. In addition,
the stochastic method used to quantify MOS for a nitrate TMDL is an improvement over current methods because it provides
a formal, scientifically derived measure of model uncertainty.

Keywords. Calibration, Modeling, MFORM, MOS, SWAT, TMDL, Uncertainty.

athematical  models are mainly used in the Total
Maximum Daily Load (TMDL) program to
compensate for the scarcity and limitations of
monitored data. Nonpoint‐source pollution

monitoring studies rarely have the ability to pinpoint sources
of pollution and determine the best strategic plan to minimize
pollution from different sources. Models, however, are able
to estimate the amount of reduction necessary to meet water
quality standards under different treatment scenarios as well
as to predict the effect that treatment strategies have on water
quality after implementation. One of the main problems asso‐
ciated with using mathematical models for TMDL assess‐
ment lies in the quantification of uncertainties (NRC, 2001;
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USEPA, 2002a). Stakeholders would like to have some sense
of reliability in model predictions, especially when decisions
based on model results can potentially impose both legal and
financial responsibility upon point and nonpoint source con‐
tributors. Currently, the uncertainties in modeling are ac‐
counted for in the margin of safety (MOS) portion of TMDL
allocations:

 MOSFGLAWLATMDL ++∑+∑=  (1)

where TMDL represents the maximum amount of a pollutant
that a waterbody can receive while still meeting its water
quality standards, WLA represents waste load allocation for
point sources (e.g., wastewater treatment plant discharges),
LA corresponds to load allocation for nonpoint sources
(e.g.,�agricultural  runoff) and natural background contribu‐
tions (e.g., weathering), FG represents future growth esti‐
mates of WLA and LA, and MOS accounts for uncertainty
about pollutant loadings and waterbody response (USEPA,
1999a).

MOS is typically expressed in implicit or explicit terms
(USEPA, 1999a). Implicit considerations involve making a
conservative assumption when tabulating a TMDL, e.g., in‐
creasing the threshold of a water quality criterion above that
which is necessary. Explicit considerations involve assigning
a numeric safety factor to the value of MOS, e.g., 5% of the
point and nonpoint source allocations. Both terms represent
a highly subjective means of accounting for uncertainty
(NRC, 2001).

M
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EPA guidance and report documents (USEPA, 1999a,
1999b, 2002a) have suggested that MOS be calculated based
on scientific information rather than subjectively assigned;
however, only recently have scientists begun to devise and
study formal uncertainty and error propagation strategies to
determine MOS. In fact, after evaluating the current status of
TMDL modeling technology, a multidisciplinary panel of ex‐
perts proposed that the formal quantification of uncertainty
be made an integral part of the TMDL process (Shirmoham‐
madi et al., 2006). Hence, there is a need for further study and
development of formal methods to calculate MOS.

PREVIOUS MOS STUDIES
Few researchers have attempted to translate the uncertain‐

ty in complex models used for TMDL analysis into MOS.
Franceschini and Tsai (2008) used the modified Rosenblueth
point estimate method to tabulate a reliability‐based MOS.
The method was applied to the Water Quality Analysis Simu‐
lation Program (WASP) model to calculate a TMDL for arse‐
nic. Zhang and Yu (2004) applied first‐order error analysis
(FOEA) to another complex model, Hydrologic Simulation
Program ‐ Fortran (HSPF), to determine MOS for a nutrient
TMDL. Both studies emphasized the use of uncertainty anal‐
ysis methods requiring less computational time than the
widely used Monte Carlo techniques. Computational effi‐
ciency becomes especially important if output uncertainty
must be determined for multiple watersheds, as in the case of
using reference watersheds (Wagner et al., 2007) or multiple
land use change scenarios (Eckhardt et al., 2003) to develop
TMDLs.

Walker (2003) developed a framework to tabulate MOS
for lake phosphorus TMDLs by including stochastic terms in
the phosphorus balance equation to reflect variability and un‐
certainty. The method is not easily applicable to complex wa‐
tershed models, but the authors made some interesting
observations about MOS tabulation. When both variability
and uncertainty are considered, the result is often a large
MOS value. This leads to higher costs for reduction measures
and larger risk of not meeting water quality goals because of
the uncertain performance level of many nonpoint‐source
control measures. Therefore, an adaptive implementation ap‐
proach was suggested.

Borsuk et al. (2002) tabulated uncertainty of an empirical
eutrophication model based on the exceedance frequency of
a chlorophyll‐a water quality standard. The confidence in
meeting the percent‐based standard and the amount of confi‐
dence required by watershed management decision makers
were used to tabulate MOS. A similar approach was used in
this study, although with application to a more complex
mechanistic  model.

A few of the MOS approaches discussed above are similar
in that MOS is determined based on the level of confidence
that the water quality standard will be met. This level of con‐
fidence can be a policy decision or determined by regulation,
but it is a subjective quantity. Clearly, there must be some lev‐
el of subjectivity in determining MOS and the extent to which
MOS will be implemented, but the decisions should be based
on proper scientific or deductive reasoning.

USE OF SWAT IN TMDL STUDIES

Previous studies using the Soil and Water Assessment
Tool (SWAT) model (Arnold et al., 1998) have revealed a

great deal of information about its performance and appropri‐
ate uses (Sexton et al., 2010; Tolson and Shoemaker, 2007;
White and Chaubey, 2005; Chu and Shirmohammadi, 2004).
However, further exploration is needed in the TMDL area, es‐
pecially because the performance of TMDL modeling tools,
including SWAT, seems to be inconsistent and in need of ad‐
vancement (Borah et al., 2006; Muñoz‐Carpena et al., 2006;
Wagner et al., 2007). Such studies will demonstrate the appli‐
cability of SWAT to help identify impaired waterbodies, de‐
velop management scenarios to improve water quality
conditions, and allocate restrictive loads to various contribut‐
ing sources.

Santhi et al. (2001a) applied SWAT to the North Bosque
River watershed in Texas to demonstrate the utility of the
model in developing a TMDL for phosphorus. The model
proved to be useful for representing the effects of alternative
management  scenarios for phosphorus reduction. Similar
conclusions were also made for the Big Cypress Creek wa‐
tershed in Texas (Santhi et al., 2003). Kang et al. (2006) used
SWAT to develop TMDLs for suspended sediments, total ni‐
trogen, and total phosphorus in a small watershed (385 ha) in
Korea containing irrigated rice paddy fields. The total maxi‐
mum daily load system (TOLOS) developed in the study was
based on the integration of SWAT using geographic informa‐
tion system (GIS) and remote sensing (RS) data. The TOLOS
was found to be a useful methodological tool for planning
TMDLs.

Parajuli et al. (2008) used SWAT to demonstrate a targeted
approach to effectively reduce fecal bacteria and sediment
yield in the Upper Wakarusa watershed, a high‐priority
TMDL watershed in Kansas. Schilling and Wolter (2009) ex‐
amined nitrate‐nitrogen load reduction strategies using
SWAT in the Des Moines River watershed. The required
TMDL reduction of nitrate by 34.4% was met by reducing
fertilizer application rate from 170 to 50 kg ha‐1. Targeted ap‐
proaches were also examined and provided guidance as to the
most efficient approaches for load reduction in the wa‐
tershed. Radcliffe et al. (2009) demonstrated methods of esti‐
mating SWAT phosphorus (P) parameters for a lake north of
Atlanta, Georgia, scheduled for a P TMDL. Models using P
derived from the demonstrated methods outperformed mod‐
els using default P parameter values.

As the literature indicates, a number of studies have tested
SWAT for its usage in TMDL assessment. In addition, several
studies have applied uncertainty analysis schemes to SWAT
(Abbaspour et al., 2007; Arabi et al., 2007; Sohrabi, et al.,
2003; Shen et al., 2008; Yang et al., 2008). However, our liter‐
ature review found no studies that have demonstrated MOS
calculation for TMDLs derived using SWAT.

The objective of this study was to present a scientifically
based method of MOS tabulation using a formal and efficient
uncertainty technique for use in SWAT and other complex
water quality models used to establish TMDLs. The method
was applied to a watershed in the Piedmont region of Mary‐
land.

MATERIALS AND METHODS
SITE DESCRIPTION

Warner Creek watershed (~340 ha) is located in the Mono‐
cacy (fig. 1), a river basin that is known to contribute high
levels of nutrients to the larger Chesapeake Bay watershed
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Figure 1. Location of Warner Creek watershed in Maryland.

(Blankenship, 2007; USDA‐SCS, 1990). Several Monocacy
water bodies were listed on Maryland's 303(d) list of im‐
paired waters, including Lower Monocacy River, Upper
Monocacy River, and Double Pipe Creek (MDE, 2008).
Warner Creek is a tributary of Double Pipe Creek, which
starts at the confluence of Big Pipe Creek and Little Pipe
Creek (fig. 1). The majority of nutrient loads in the study wa‐
tershed come from nonpoint sources, including loafing
grounds for cattle and excess nutrients from croplands.
Manor‐Edgemont‐Brandywine  soils (~1/3 of watershed) and
Penn‐Reading‐Croton soils (~2/3 of watershed) are the two

dominant soil types in Warner Creek. All are well drained
soils except for Croton, which is poorly drained. Most of the
upland agricultural soils belong to the Penn silt loam series
with slopes ranging from 3% to 8%. The land uses consist of
mixed agriculture (~76%), urban (~13%), forest (~11%), and
water (<1%).

To provide a general idea of climatic behavior at the study
site, we examined annual precipitation amounts over the en‐
tire period of study (1994‐2001), as shown in figure 2. The
year 1996 was an unusually wet year with the state of Mary‐
land receiving an average of 38% more rainfall than normal
(USEPA, 2007). The northeastern blizzard of 1996, in which
record snowfall occurred from January 6 to January 8, is a no‐
table event (NOAA, 2011). Due to unusually warm weather
and high flow volumes in mid‐January (January 17 to January
19), major flooding occurred (fig. 3). Although annual yields
do not reflect it, Maryland experienced drought conditions
during the summer of 1998 through 1999 (Maryland State
Climatologist  Office, 2007). Another drought period began
in May 2001 and lasted until December 2002.

MODEL DESCRIPTION AND DATA ACQUISITION
The SWAT water quality model (Arnold et al., 1998) is a

watershed loading model that was developed by the USDA‐
ARS to estimate the impact of different management scenar‐
ios. It is a complex, physically based, semi‐distributed model
that operates in continuous time on a daily time step. The
main components of the model include: climate, hydrology,
land cover/plant growth, erosion, nutrients, pesticides, land
management,  channel and reservoir routing, soil tempera‐
ture, and bacteria (Neitsch et al., 2005).

Daily rainfall and temperature data were obtained from
measurements at the climate station set up by our group in
subbasin 2 (fig. 4). Missing data were filled in using

Figure 2. Annual precipitation and line of annual average precipitation in Warner Creek watershed.
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Figure 3. Warner Creek daily precipitation and mean temperatures in January 1996 (Maryland State Climatologist Office, 2007).
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km

Figure 4. Location of subbasins and land use configuration.

measurements from a nearby monitoring station (~19 km
away) in Emmitsburg, Maryland (fig. 1), obtained from the
National Oceanic and Atmospheric Administration (NOAA)
National Climatic Data Center (NCDC). Daily solar radi‐
ation, wind speed, and relative humidity data were generated
using SWAT's weather generator. Observed flow and chemi‐
cal loading data were obtained from field measurements;
however, supplementary data were obtained from Chu and
Shirmohammadi  (2004) and Chu et al. (2004).

SWAT requires three GIS datasets in order to run: the digi‐
tal elevation model (DEM), land cover/land use, and soils
data. A 30 m resolution U.S. Geological Survey (USGS) Na‐
tional Elevation Dataset (NED) DEM was used. Land uses
for each field were identified by aerial photos obtained from
the USDA Agricultural Stabilization and Conservation Ser‐
vice (USDA‐ASCS) office (Searing and Shirmohammadi,
1994). A Soil Survey Geographic (SSURGO) soils map of
Frederick County, Maryland, was downloaded from the
USDA‐NRCS Soil Data Mart server. The watershed was de‐
lineated into eight subbasins based on the configuration of
stream segments (fig. 4). Within each subbasin, the superim‐
posing of similar land uses and soil types produced 53 hydro‐
logic response units (HRUs).

MODEL CALIBRATION AND VALIDATION
Model calibration and validation were conducted on

streamflow, sediment, nitrate, and soluble phosphorus out‐
put. A baseflow filter program (Arnold et al., 1995; Arnold
and Allen, 1999) was used to separate baseflow from mea‐
sured streamflow in order to calibrate baseflow and surface
runoff separately. Flow and nutrient loads were calibrated us‐
ing approximately four years of data (April 1994‐1997) and
validated using another four years of data (1998‐2001). Since
sediment measurements were not available after 1997, sedi‐
ment yield was calibrated using measured data from two
years (April 1994 through 1995) and validated using 1996
and 1997 measured data. Manual calibration was performed
by changing input parameters by percentage or absolute val‐
ue. Input parameters used in calibration were chosen based
on sensitivity analyses found in the literature (Chu and Shir‐
mohammadi,  2004; Chu et al., 2004; Sohrabi et al., 2003;

White and Chaubey, 2005) and their physical relation to out‐
put variables.

MODEL PERFORMANCE CRITERIA
Moriasi et al. (2007) introduced a set of recommended cri‐

teria to establish systematic and universal guidelines for
model evaluation. The recommended criteria and some addi‐
tional evaluation criteria were used in this study, including
square of the correlation coefficient (r2), Nash‐Sutcliffe effi‐
ciency coefficient (NSE), ratio of root mean square error to
observations' standard deviation (RSR), and percent bias
(PBIAS):
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Table 1. Description of SWAT input parameters (basic variables)
evaluated in uncertainty analysis of model nitrate estimation.
Parameter Description

ANION_EXCL Fraction of porosity from which anions are excluded
BIOMIX Biological mixing efficiency

CMN Rate factor for humus mineralization of active
organic nutrients (N and P)

FRT_SURF Fraction of fertilizer applied to the top 10 mm of soil
SOL_NO3_1 Initial NO3 concentration in soil layer 1 (mg N kg‐1)
SOL_NO3_2 Initial NO3 concentration in soil layer 2 (mg N kg‐1)

NPERCO Nitrate percolation coefficient

where Oi are observed and Pi are predicted data, O  and P  are
observed and predicted mean values, SD is standard devi‐
ation, and n is the number of samples.

UNCERTAINTY ANALYSIS METHOD

The mean‐value first‐order reliability method (MFORM;
Melching and Bauwens, 2001) was chosen to quantify uncer‐
tainties in the model prediction of nitrate concentration after
model calibration. This approach allows the user to deter‐
mine the variance in the output variable as well as the vari‐
ance contributed by each important input parameter,
otherwise known as basic variables. Basic variables were de‐
termined to be important based on sensitivity analyses found
in the literature (Sohrabi et al., 2003; White and Chaubey,
2005), the physical meaning of variables as they relate to out‐
put variables, and the level of parameter importance during
model calibration. A description of each basic variable con‐
sidered in the uncertainty of nitrate is listed in table 1. Uncer‐
tainties quantified for streamflow, sediment and phosphate
outputs along with their basic variables were recorded by
Sexton et al. (2011).

MFORM is derived by performing a Taylor series expan‐
sion of the model output function as follows:
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where Y is the dependent variable or model output of interest,
g(Xe) is the function representing the simulation process to
obtain Y, Xe is the vector of basic variables at the expansion
point, n is the number of basic variables xi, and ixg ∂∂ /  repre‐
sents the rate of change of the model output with respect to
a unit change in each basic variable, usually referred to as the
sensitivity coefficient. In MFORM, the expansion point is at
the mean value of basic variables. Therefore, the mean and
variance of the dependent variable can be approximated as:

 ( ) ( )mXgYE ≈  (7)
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where E(Y) is the expected value (mean) of random variable
Y, Xm is the vector of basic variables at the mean values, �i 2
is the variance of basic variable i, Cv(xi, xj) is the covariance

of basic variables i and j, and all other variables are as pre‐
viously defined. The first term in equation 8 represents the
variance of statistically independent parameters, while the
second term is used to tabulate the variance of correlated pa‐
rameters. In many cases, the relationship between parameters
is unknown. Therefore, the parameters are often assumed to
have no correlation (Melching and Yoon, 1996; Zhang and
Yu, 2004; Sexton et al, 2011). However, neglecting parameter
correlations could result in an underestimation of parameter
and output uncertainty depending on the significance of cor‐
relations. MOS and confidence of compliance would, in turn,
possibly be underestimated as well. If basic variables are not
correlated,  then Cv(xi, xj) is equal to zero. In this case, the
variance of output can be written as:
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This term represents the fraction of model output variance
(FOV) contributed by each basic variable (xi). In this equa‐
tion the squared sensitivity coefficient (

ixg ∂∂ / ) serves as a

way to assign a measure of importance to the variance of each
basic variable. When using complex models, the best way to
solve for ixg ∂∂ /  is by using numerical methods. In this study,
a forward difference numerical scheme was used in which
each parameter was increased by 5%. The output of
MFORM, in this case, was the variance of daily nitrate con‐
centrations simulated in SWAT. Daily variances were con‐
verted to standard deviations (square root of the variance) to
be utilized in the stochastic methodology to tabulate MOS,
as described in the next section.

MARGIN OF SAFETY (MOS) AND TMDL ESTIMATION

EPA guidance has suggested making probability‐based
water quality impairment decisions for conventional pollu‐
tants (USEPA, 1997). The purpose of such guidance was to
account for measurement error and potentially small data sets
not properly representing the conditions of a waterbody
(USEPA, 2003a). EPA guidance and recommendations from
other agencies and scientists have also stressed the impor‐
tance of using formal uncertainty analysis methods to tabu‐
late MOS as opposed to arbitrarily assigning its value (NRC,
2001; Shirmohammadi et al., 2006; USEPA, 2002a).

Current methods of nutrient TMDL assessment in Mary‐
land are not probability‐based and do not account for MOS
using a formal uncertainty analysis scheme. MOS is deter‐
mined explicitly and is typically assigned as 5% to 10% of
nonpoint‐source load allocations. This study suggests an al‐
ternative method of nutrient TMDL assessment, which uses
a probability‐based or stochastic approach along with
MFORM to determine MOS and TMDL.

The designated use of the study waterbody is aquatic life
support (Shirmohammadi and Montas, 2003). That is inter‐
preted here as Maryland's Use I designation (Code of Mary‐
land Regulations [COMAR] 26.08.02.02), which is
water‐contact recreation, and protection of non‐tidal warm‐
water aquatic life. In Maryland, a waterbody of this use
would normally be evaluated for nutrient contamination us‐
ing indicators such as chlorophyll‐a and dissolved oxygen
concentration;  however, data containing that information
were not collected in Warner Creek watershed. We therefore
assumed a Use I‐P designation, which is the same as Use I
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mentioned above but contains an additional use as a public
water supply, hence the P classification. This justified the
employment of nitrate concentration (a drinking water con‐
taminant) as an indicator of waterbody impairment in this
study.

According to EPA's national recommended water quality
criteria,  the water quality criterion for nitrate concentration
measured as nitrogen is 10 mg L‐1 for a waterbody designated
for drinking water use (USEPA, 2003b). The same criterion
is used in Maryland. EPA guidance has recommended listing
a waterbody as impaired if greater than 10% of conventional
chemical samples exceed the assigned water quality criterion
(USEPA, 1997, 2002b). This type of probability‐based stan‐
dard is meant to account for natural variability and measure‐
ment error (Borsuk et al., 2002; USEPA, 2003a). Maryland
determines that a waterbody is impaired by chemical con‐
taminants if greater than 10% of samples exceed the criteria,
with a minimum of ten samples over a three‐year period
(MDE, 2010). In this study, we used daily samples from 1994
to 2001.

After examining the number of daily nitrate concentra‐
tions that exceeded the maximum contaminant level (MCL)
of 10 mg L‐1 in Warner Creek watershed, we determined that
the waterbody was not impaired. Less than 10% of daily ni‐
trate samples exceeded the 10 mg L‐1 MCL over the entire
time period (1994‐2001); therefore, EPA guidelines were
met. Best management practices (BMPs) implemented in this
watershed prior to sampling efforts may be attributed to the
unimpaired status of the waterbody. To create an impaired
waterbody scenario, we assumed a nitrate MCL of 6 mg L‐1.
This increased the probability of exceedance so the MOS/
TMDL methodology could be properly demonstrated.

Daily nitrate concentrations computed by the calibrated
SWAT model (baseline conditions representing current con‐
ditions of the waterbody) and the associated daily standard
deviations tabulated with MFORM were used to calculate
daily exceedance probabilities as (Borsuk et al., 2002):

 ⎟
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where p is the exceedance probability, c is the chemical con‐
centration,  c* is the numerical criterion of c (6 mg L‐1), � rep‐
resents the set of all model parameters (e.g., curve number
and hydraulic conductivity), � is the standard deviation of
chemical concentration (found using MFORM), X represents
model input variables (e.g., precipitation and temperature),
g(X, �) is the output chemical concentration generated by the
model (also known as c), and the function F depicts the cumu‐
lative standard normal distribution.

Days within the wet season were considered the critical
period in each year. The likelihood of exceeding the water
quality standard was larger during that time frame, which
represented the worst‐case scenario. The critical period of
each year was then used to tabulate the exceedance frequen‐
cy. Exceedance frequency is defined as the number of days
that the exceedance probability is greater than 10% divided
by the total number of days in the critical time period of each
year. A probability distribution of annual exceedance fre‐
quencies was formulated to describe the uncertainty in the
exceedance frequency resulting from parameter uncertainty.
The expected exceedance is defined as the mean of the dis‐
tribution of annual frequency values.

The portion of the probability distribution of exceedance
frequencies less than or equal to 10% represents the probabil‐
ity that the true exceedance frequency will meet the 10% fre‐
quency standard. Borsuk et al. (2002) referred to that portion
of the distribution as the confidence of compliance (CC). CC
is a measure by which water quality goals can be expressed.
For example, if a water quality manager wanted to be 40%
confident that the exceedance frequency in a waterbody is
10% or less, the manager would then reduce the load until the
CC goal of 40% was met.

Once CC was determined for the baseline nitrate load (no
reductions), several other CCs were obtained by reducing the
percentage of load flowing into the waterbody (5% up to
40%). The nitrate load associated with the desired CC to meet
the water quality goal was then compared to the load required
to meet the water quality standard. The difference between
the load required to meet the water quality standard and the
load required to meet the water quality goal was assigned to
the margin of safety value. The TMDL for the waterbody is
considered to be the resultant load after the load has been re‐
duced enough to meet the water quality standard.

RESULTS AND DISCUSSION
HYDROLOGY

Monthly streamflow estimation was very good during the
calibration period, with resulting NSE, RSR, and PBIAS val‐
ues of 0.75, 0.49, and ‐15.1%, respectively (table 2). Model
performance during streamflow validation was slightly lower
than during the calibration period but could still be catego‐
rized as good, with NSE and RSR values of 0.70 and 0.54, re‐
spectively. Although streamflow during the validation period
was overpredicted for a major portion of the test period, mod‐
el performance considering systematic deviations was very
good because PBIAS was within the range of ±10%. Total
streamflow measurements are a combination of surface and
baseflow values. Model performance was clearly worst dur‐
ing baseflow calibration compared to surface runoff calibra‐
tion (table 2). One reason for this is because errors associated
with high flow values tend to be larger than those associated
with low flow values, especially when squared terms,
e.g.,�the term (Oi ‐ O )2, are used in optimization or evalua‐
tion criteria, such as r2 (eq. 2) and NSE (eq. 3). Therefore, try‐
ing to minimize high flow errors often leads to fitting the
higher portion of the hydrograph (i.e., peak surface flows) at
the expense of lower portions (i.e., baseflow) (Krause et al.,
2005). In addition, inconsistencies in flow prediction may be
attributed to the use of empirical information to derive flow
using the SCS curve number method and errors in sample
measurement and transcription.

SEDIMENT

Monthly sediment yield estimations during the calibration
and validation periods were poor, with NSE values around
0.2 (table 3). However, an NSE value greater than zero means
that the model is a better predictor of measured data than us‐
ing the mean of observed values. Results for monthly sedi‐
ment prediction were unsatisfactory due to a number of
reasons. Measured data were lacking due to sparse measure‐
ments, unforeseen occurrences in watershed management
(e.g., cows wandering through the stream), and high flow vol‐
umes resulting from above‐normal temperatures (see fig. 3)
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Table 2. Summary statistics and model evaluation results for monthly hydrology during the calibration and validation periods.[a]

Monthly Hydrologic Measurement
Mean
(mm)

SD
(mm)

No. of
Samples r2 b

RMSE
(mm) NSE RSR

PBIAS
(%)

Calibration Period
(April 1994‐1997)

Surface runoff Measured 19.74 37.07 45 0.73 0.38 24.62 0.55 0.66 18.50

Simulated 16.09 16.24 45

Baseflow Measured 19.50 17.19 45 0.30 0.92 26.23 ‐1.38 1.53 ‐49.20
Simulated 29.10 29.38 45

Streamflow Measured 39.24 46.53 45 0.79 0.87 22.82 0.75 0.49 ‐15.10

Simulated 45.18 45.62 45

Validation Period
(1998‐2001)

Surface runoff Measured 11.30 18.45 48 0.68 0.60 10.57 0.67 0.57 ‐5.50

Simulated 11.92 13.37 48

Baseflow Measured 19.34 24.79 48 0.49 0.69 18.80 0.41 0.76 ‐11.50

Simulated 21.56 24.18 48

Streamflow Measured 30.58 38.25 48 0.73 0.84 20.64 0.70 0.54 ‐9.50

Simulated 33.48 37.54 48
[a] SD = standard deviation, r2 = coefficient of determination, b = slope, RMSE = root mean square error, NSE = Nash‐Sutcliffe coefficient of

efficiency, RSR = RMSE‐observation's standard deviation ratio, and PBIAS = percent bias.

Table 3. Summary statistics and model evaluation criteria results for monthly sediment loadings
during the calibration and validation periods, and annual loads over the entire time period.[a]

Sediment Measurement
Mean

(kg ha‐1)
SD

(kg ha‐1)
No. of

Samples r2 b
RMSE

(kg ha‐1) NSE RSR
PBIAS

(%)

Calibration period (April 1994‐1995), 
Monthly sediment yield

Measured 324.40 850.38 21 0.47 0.14 743.33 0.20 0.87 48.5

Simulated 167.21 167.92 21

Validation period (1996‐1997), 
Monthly sediment yield

Measured 244.38 434.30 24 0.24 0.3 379.15 0.21 0.87 ‐22.3

Simulated 298.96 266.31 24

Entire period (April 1994‐1997), 
Annual sediment yield

Measured 3169.36 2409.34 4 0.63 0.71 1374.59 0.57 0.57 15.7

Simulated 2671.58 2139.43 4
[a] SD = standard deviation, r2 = coefficient of determination, b = slope, RMSE = root mean square error, NSE = Nash‐Sutcliffe coefficient of

efficiency, RSR = RMSE‐observation's standard deviation ratio, and PBIAS = percent bias.

after snowfall (Maryland State Climatologist Office, 2007).
In addition, daily samples were aggregated to monthly aver‐
ages, in which case there is a loss of information and increase
in absolute errors, resulting in measurements further away
from the true load (Harmel and King, 2005). Trends during
1996 were unsatisfactory, mainly because 1996 was an ex‐
tremely wet year (fig. 2). The SWAT model does not seem to
perform well in predicting peak flow and sediment yield un‐
der extremely wet conditions or extreme storm events (Borah
and Bera, 2004). Some of the above‐mentioned issues have
been attributed to the use of empirical equations and insuffi‐
cient routing mechanisms in the model (Sexton et al., 2011;
Borah et al., 2006). Similarly, poor predictions of monthly
sediment yield using SWAT have been reported in the litera‐
ture (Kirsch et al., 2002; Santhi et al., 2001b).

Based on the RSR, PBIAS, and NSE values of 0.57,
15.7%, and 0.57, respectively (table 3), the annual sediment
yield results can be considered satisfactory. Annual predic‐
tions were expected to be an improvement over monthly pre‐
dictions since SWAT was designed for long‐term simulation
and assessment of the relative impact of BMPs and not for
short‐term events.

NUTRIENTS

Nitrate calibration trends were fairly good, with the ex‐
ception of extremely wet conditions in 1996. A high nitrate
loading event in January 1996 was attributed to unusually
high flow events as well as ammonium‐based deicer placed
on county roads during that time frame. The ammonium‐
based deicers eventually oxidize to nitrate (B. Dixon, 2001,

personal communication on ammonium‐based deicers, Col‐
lege Park, Maryland). Nitrate load was underestimated in
areas where streamflow was also underestimated, pointing to
the close association between nitrate discharge and flow. This
was true during the validation period as well. The NSE and
RSR performance criteria can both be interpreted as unsatis‐
factory, with values of 0.35 and 0.80, respectively, during cal‐
ibration and 0.44 and 0.74, respectively, during validation
(table 4).

Discrepancies in baseflow measurement could also have
contributed to poor nitrate prediction. Measured nutrient
loadings were adjusted to remove the chemical contribution
transported by subsurface flow from outside of the watershed
(Chu and Shirmohammadi, 2004). Similar performance of
the SWAT model for monthly nitrate prediction was observed
in the literature (Saleh et al., 2000; Santhi et al., 2001b).
Annual results of nitrate loading over the entire eight‐year
period show good model performance based on NSE and
RSR values of 0.67 and 0.54, respectively. A PBIAS of +20.6
for annual results represents relatively good model perfor‐
mance in terms of the average tendency of the simulated data
to be larger or smaller than the observed data.

Soluble phosphorous (sol P) was predicted very poorly
during the calibration period. Sol P in January 1996 was
largely overpredicted. Later, in November 1997, an abnor‐
mally high sol P load was observed. Those observations were
likely due to measurement errors. As mentioned earlier, mea‐
sured sediment data were very poor in quality, and since the
organic portion of phosphorous mainly travels attached to
sediment, this may have lead to inconsistencies in sol P mea-



2204 TRANSACTIONS OF THE ASABE

Table 4. Summary statistics and model evaluation criteria results for monthly nitrate loadings
during the calibration and validation periods, and annual loads over the entire time period.[a]

Nitrate Measurement
Mean

(kg ha‐1)
SD

(kg ha‐1)
No. of

Samples r2 b
RMSE

(kg ha‐1) NSE RSR
PBIAS

(%)

Calibration period (April 1994‐1997), 
Monthly nitrate load

Measured 1.58 1.77 45 0.40 0.41 1.41 0.35 0.80 25.7

Simulated 1.18 1.14 45

Validation period (1998‐2001), 
Monthly nitrate load

Measured 1.21 1.53 48 0.50 0.66 1.13 0.44 0.74 14.2

Simulated 1.03 1.42 48

Entire period (April 1994‐2001), 
Annual nitrate load

Measured 16.14 7.97 8 0.88 0.80 4.27 0.67 0.54 20.6

Simulated 12.82 6.80 8
[a] SD = standard deviation, r2 = coefficient of determination, b = slope, RMSE = root mean square error, NSE = Nash‐Sutcliffe coefficient of

efficiency, RSR = RMSE‐observation's standard deviation ratio, and PBIAS = percent bias.

Table 5. Summary statistics and model evaluation criteria results for monthly phosphate loadings
during the calibration and validation periods, and annual loads over the entire time period.[a]

Phosphate Measurement
Mean

(kg ha‐1)
SD

(kg ha‐1)
No. of

Samples r2 b
RMSE

(kg ha‐1) NSE RSR
PBIAS

(%)

Calibration period (April 1994‐1997), 
Monthly phosphate load

Measured 0.34 0.51 45 0.14 0.42 0.61 ‐0.47 1.20 0.0

Simulated 0.34 0.59 45

Validation period (1998‐2001), 
Monthly phosphate load

Measured 0.23 0.35 48 0.59 0.91 0.27 0.41 0.76 ‐8.2

Simulated 0.25 0.42 48

Entire period (April 1994‐2001), 
Annual phosphate load

Measured 3.34 1.64 8 0.64 1.30 1.58 ‐0.06 0.96 ‐3.5

Simulated 3.46 2.67 8
[a] SD = standard deviation, r2 = coefficient of determination, b = slope, RMSE = root mean square error, NSE = Nash‐Sutcliffe coefficient of

efficiency, RSR = RMSE‐observation's standard deviation ratio, and PBIAS = percent bias.

surement. For instance, neither sediment nor phosphorus
measurements reflected the high flow volumes that resulted
days after the blizzard of 1996. Therefore, the model overpre‐
dicted those measurements.

Monthly predictions during the validation period were
much better than during calibration. Model evaluation crite‐
ria reflect this difference, with NSE and RSR values of ‐0.47
and 1.2, respectively, during the calibration period and 0.41
and 0.76, respectively, during the validation period (table 5).
This is most likely due to the poor model performance during
1996, the wettest year that was simulated in the calibration
period. If 1996 is removed from the calibration period, the
NSE (0.18) and RSR (089) values are improved considerably.
Although the NSE and RSR values during validation on a
monthly basis are unsatisfactory, the r2 value of 0.59 indi‐
cates moderate model performance. The slope of 0.91
(table�5) also represents a positive rating. Similar perfor‐
mance of the SWAT model for monthly sol P prediction was
observed in the literature (Chu et al., 2004). Annual results
over the eight‐ year period were an improvement over cali‐
brated monthly results but not over the validated monthly re‐
sults (table 5).

MFORM UNCERTAINTY ANALYSIS

Uncertainty outputs (recorded by Sexton et al., 2011)
upheld the above model performance results. The largest
amount of variance in output variables occurred during wet
periods. Predicted sediment output had the largest amount of
variability around its mean, followed by nitrate, phosphate,
and streamflow as indicated by average annual coefficients
of variation of 28%, 19%, 17%, and 15%, respectively. Of the
parameters listed in table 1, ANION_EXCL contributed the
largest amount of total variance (96%) to nitrate output. BIO‐
MIX contributed about 3% of the variance, and the remaining
parameter contributions were minute (Sexton et al., 2011).

As mentioned in the Materials ands Methods section, daily
variances of nitrate concentration (derived using MFORM)
were plugged into equation 10 to calculate exceedance prob‐
ability and further tabulate the MOS value for the TMDL.

TMDL AND MARGIN OF SAFETY

Table 6 shows the average daily model predictions of ni‐
trate load and concentration, the expected exceedance fre-
quency, and the confidence of compliance for each load re‐
duction of nitrate from 0% to 40% over the entire study period
(1994‐2001). Nitrate load reductions greater than 40% re‐
sulted in a confidence of compliance equal to 100%; there‐
fore, load reductions greater than 40% are not listed. The
expected exceedance of 14% at 0% load reduction indicated
impaired waterbody status. At 0% nitrate load reduction,
there was only 12.5% confidence that the 10% frequency
standard would be met. At a load reduction of 20%, the mean
exceedance frequency was expected to be 10% with a confi‐
dence of compliance equal to 37.5%, which was the load re-

Table 6. Average daily model predictions of nitrate load and
concentration, expected exceedance frequency, and confidence

of compliance for each load reduction of nitrate from
0% to 40% over the entire study period (1994‐2001).

NO3‐N
Reduction

(%)

Average
NO3‐N Load

(kg N d‐1)

Average
NO3‐N Conc.

(mg L‐1)

Expected
Exceedances

(%)

Confidence of
Compliance

(%)

0 12.3 1.25 14 12.5
5 11.7 1.19 12 25

10 11.1 1.12 11 25
15 10.5 1.06 11 37.5
20 9.9 1.00 10 37.5
25 9.3 0.94 9 37.5
30 8.6 0.87 8 75
35 8.0 0.81 8 75
40 7.4 0.75 7 100
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Step 4:
Calculate Annual Exceedance Frequencies
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Step 5:
Determine Confidence of

Compliance (CC)
= % of annual EFs < 10%

Step 6:
Repeat Steps 3-5 for each load reduction

Step 7:
Determine TMDL at the desired level of

confidence where
MOS=Load @WQS-Load @WQG

=EF

Figure 5. Flowchart of steps for using the SWAT model and uncertainty
analysis in TMDL assessment.

duction necessary to meet the nitrate water quality standard.
MOS was then determined based on the desired level of con‐
fidence. Therefore, at a desired level of confidence of 75%,
the MOS load was equal to the difference between the load
at 20% reduction (9.9 kg N d‐1) and the load at 30% reduction
(8.6 kg N d‐1), which was 1.3 kg N d‐1. This reduced the first
portion of equation 1 (� WLA + � LA + FG) to 8.6 kg N d‐1.
The TMDL for this waterbody was therefore 9.9 kg N d‐1

(TMDL= 8.6 kg N d‐1 + 1.3 kg N d‐1).
The probability that the true exceedance frequency will be

below 10% is 100% at the nitrate reduction level of 40%. Us‐
ing a water quality criterion of 6 mg L‐1 did not make the wa‐
ter body at the outlet of the Warner Creek watershed
extremely impaired. However, in other cases when a water
body is highly impaired, it may not be as feasible to set a wa‐
ter quality goal to 75% confidence, especially when the effec‐
tiveness and efficiency of improvement strategies are not
well known. In that case, many researchers have suggested an
adaptive management approach in which an initial set of im‐
provement strategies are implemented, monitored, and eval‐
uated to determine their efficacy, and then further measures
can be taken (Dilks and Freedman, 2004; Walker, 2003).

In summary, this study suggests the following steps for us‐
ing the SWAT model for TMDL assessment. These steps are
presented as a flowchart depicted in figure 5:

1. Calibrate the model to represent observed conditions of
the impaired waterbody. In the absence of measured
data for the watershed of interest, data from a reference
watershed sharing the same physiographic region, land
use, and climatic conditions may be used to calibrate
the model. This is the baseline scenario.

2. Perform MFORM methodology using mean values and
standard deviations of input parameters to determine
daily average standard deviations of the output variable
concentrations.

3. Use daily average standard deviations obtained from
the MFORM method in step 2, and calibrated SWAT's
output concentrations to calculate daily exceedance
probabilities.  Equation 10 represents this step.

4. Calculate the annual exceedance frequencies (EFs)
(number of days with exceedances over 10% divided
by the total number of days in the critical period).

5. Determine the percent of annual EFs that are less than
or equal to 10% (confidence of compliance).

6. Repeat steps 3 through 5 for each incremental reduc‐
tion of nutrient load until the confidence of compliance
reaches 100%. It should be noted that different reduc‐
tion levels may be needed for different watersheds
based on their level of impairment.

7. Evaluate each level of confidence with its correspond‐
ing nutrient reduction to set a feasible water quality
goal (WQG). The difference in load between the nutri‐
ent reduction that meets water quality standards (WQS)
(an expected exceedance less than or equal to 10%) and
the nutrient reduction that meets the water quality goal
(desired level of confidence) should be assigned to the
MOS value.

SUMMARY AND CONCLUSIONS
In this study, SWAT was a good predictor of total stream‐

flow, a poor predictor of sediment yield, and at best a moder‐
ate predictor of nutrient loadings on a monthly basis. Model
performance measures were upheld by uncertainty analysis,
with sediment output having the largest average annual coef‐
ficient of variation and streamflow prediction having the
smallest coefficient of variation. More knowledge about the
true values of input parameters and measured data will lead
to better model performance and less output uncertainty.
More attention is also needed on the model routing mecha‐
nisms and structure in order to more properly handle environ‐
mental processes. Performance levels improved for annual
output results, demonstrating the most appropriate use of the
model for long‐term simulation studies.

The methodology used in this study to determine MOS
and TMDL for a nitrate‐contaminated waterbody included
MFORM paired with a stochastic approach. Initial SWAT re‐
sults indicated that the waterbody was not impaired. There‐
fore, a hypothetical TMDL scenario was set up (by assuming
a lower MCL of 6 mg L‐1) in order to properly demonstrate
the method. Results produced an MOS of 1.3 kg N d‐1 and a
TMDL equal to 9.9 kg N d‐1. This method is an improvement
over current methods employed in Maryland and other states
because it is probability‐based and includes a formal method
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of uncertainty analysis, which gives stakeholders an idea of
the reliability of the model results.

Although a confidence of compliance of 100% was
reached at a nitrate load reduction of 40% for Warner Creek
watershed, this level of confidence may not be as feasible for
highly impaired waterbodies. In that case, an adaptive man‐
agement strategy could prove to be more effective by identi‐
fying and implementing the most useful management
practices in a stepwise process, as opposed to spending a lot
of money to implement a large slate of BMPs to no effect. Fu‐
ture suggested work is to apply this method to an impaired
waterbody listed on Maryland's 303(d) list to demonstrate its
impaired status using SWAT along with its TMDL solution
using the method of this study with regard to actual Maryland
regulations. The feasibility of confidence levels can be ex‐
amined in this regard as well.
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