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ABSTRACT

The contributions of precipitation and soil moisture observations to soil moisture skill in a land data assimilation

system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and

Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based

on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture

retrievals from the Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E). Soil

moisture skill (defined as the anomaly time series correlation coefficient R) is assessed using in situ observations in

the continental United States at 37 single-profile sites within the Soil Climate Analysis Network (SCAN) for which

skillful AMSR-E retrievals are available and at 4 USDA Agricultural Research Service (‘‘CalVal’’) watersheds

with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite

estimates. The average skill of AMSR-E retrievals is R 5 0.42 versus SCAN and R 5 0.55 versus CalVal mea-

surements. The skill of MERRA surface and root-zone soil moisture is R 5 0.43 and R 5 0.47, respectively, versus

SCAN measurements. MERRA surface moisture skill is R 5 0.56 versus CalVal measurements. Adding in-

formation from precipitation observations increases (surface and root zone) soil moisture skills by DR ; 0.06.

Assimilating AMSR-E retrievals increases soil moisture skills by DR ; 0.08. Adding information from both sources

increases soil moisture skills by DR ; 0.13, which demonstrates that precipitation corrections and assimilation

of satellite soil moisture retrievals contribute important and largely independent amounts of information.

1. Introduction

Soil moisture is an important component of the land

surface water budget. Large-scale soil moisture data are

useful in many research fields such as hydrology, agricul-

ture, and ecology (Robock et al. 1998; Koster et al. 2008;

Entekhabi et al. 2010a). Soil moisture is also a critical

variable that needs to be carefully initialized for weather

and climate prediction (Beljaars et al. 1996; Drusch 2007;

Mahfouf 2010). In situ measurements of soil moisture,

however, are scarce, both spatially and temporally. Re-

gional to global soil moisture data rely largely on sim-

ulation with land surface models (LSM) forced by

meteorological data (Srinivasan et al. 2000; Dirmeyer

et al. 2002) or on satellite observations of active or passive

microwaves in the L- to X-band range (1.4–11 GHz) such

as those currently available from the Advanced Micro-

wave Scanning Radiometer for Earth Observing System

(AMSR-E; Jackson 1993; Njoku and Entekhabi 1996;

Wagner et al. 1999; Owe et al. 2001; Bindlish et al. 2003;

Gao et al. 2006).
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Among the surface meteorological forcing inputs to

the land model, precipitation has the most direct and

important influence on the estimation of soil moisture.

Improving precipitation forcing data, in particular through

the use of satellite- and gauge-based measurements, can

therefore substantially improve the soil moisture esti-

mates from the land surface model (Guo et al. 2006).

Model soil moisture estimates can also be improved

through the assimilation of soil moisture observations or

related variables (such as microwave brightness tem-

perature; Crow et al. 2006; Parajka et al. 2006; de Wit

and van Diepen 2007; Reichle et al. 2007; Scipal et al.

2008; Drusch et al. 2009; Li et al. 2010; to name a few).

The recently launched Soil Moisture and Ocean Salinity

(SMOS) mission (Kerr et al. 2010) and the planned Soil

Moisture Active-Passive (SMAP) mission (Entekhabi et al.

2010a) are designed to provide soil moisture measurements

with increased accuracy and should thus further enhance

the impact of data assimilation on soil moisture estimation.

We would expect that combining the best available

precipitation inputs with the assimilation of soil moisture

retrievals in a land data assimilation system, if configured

properly, should yield the best soil moisture estimates. The

exact outcome, however, depends on the characteristics

of the land surface model, the data assimilation system,

and on the uncertainty of the precipitation inputs and the

assimilated soil moisture retrievals. Relative to baseline

estimates from the recent Modern Era Retrospective-

analysis for Research and Applications (MERRA, section

2a), this study assesses the individual and combined con-

tributions of improved precipitation forcing and the as-

similation of surface soil moisture retrievals to the skill of

soil moisture estimates from a land data assimilation sys-

tem. A better understanding of these contributions is im-

portant for the design of emerging land data assimilation

systems and for the development of soil moisture data

products for current and future satellite missions.

Our soil moisture skill assessment is based on a net-

work of single-profile, point-scale observations (i.e., one

profile of sensors per location) that span the continental

United States. We supplement these observations with

high-quality in situ measurements from four additional

watersheds. The latter are based on multiple in situ mea-

surements distributed within each watershed (section 2c)

and have been validated during multiple intensive ob-

servational periods. Thus, these estimates can better ap-

proximate the scale of the satellite, model, and assimilation

estimates. We will demonstrate that our main conclusions

do not depend on the unavoidable limitations of the

point-scale network.

In the context of the Journal of Hydrometeorology’s

special collection, ‘‘Hydrology in Earth System Science

and Society,’’ our results emphasize the need to bring

together experts from various communities, including

soil moisture remote sensing, precipitation products,

and land data assimilation, to achieve the best possible

estimates of land surface conditions for applications.

2. Approach

In this section we provide an overview of the datasets

and experiments. We obtained soil moisture estimates

from 12 different land surface model (or assimilation)

integrations. The first four are land surface model sim-

ulations using four different precipitation forcing data-

sets (section 2a). The second set of four integrations

includes the assimilation of one specific set of AMSR-E

soil moisture retrievals (section 2b). The final four in-

tegrations are also assimilation integrations, but using

a different AMSR-E retrieval dataset (section 2b). Two

different datasets of in situ soil moisture measurements

are then used to assess the skill of the soil moisture esti-

mates from the satellite, model, and assimilation inte-

grations (section 2c). Skill is measured in terms of the time

series correlation coefficient (R) between the anomaly

time series of daily average estimates against the in situ

observations (section 2d). The use of the (anomaly) R

metric emphasizes relative soil moisture variations at

daily to weekly time scales and disregards any bias in the

absolute values of the mean soil moisture or its vari-

ability (Entekhabi et al. 2010b).

a. Land surface model and precipitation forcing

Model soil moisture was obtained from integrations

of the National Aeronautics and Space Administration

(NASA) Catchment Land Surface Model (herenafter

Catchment model; Koster et al. 2000), which is the land

model component of the NASA Goddard Earth Observ-

ing System, version 5 (GEOS-5; Rienecker et al. 2008).

The model domain consists of the collection of tiles (or

Catchment model computational elements) in the con-

tinental United States that contain the sites with in situ

profile sensors (section 2c). Motivated by the AMSR-E

launch in June 2002 and by the availability of the pre-

cipitation observations, the 7-yr and 2-month period from

1 June 2002 to 31 July 2009 were chosen as the experi-

ment period. Forcing data for the year 2001 were used to

spin up the model through repeated integrations. The

time step for the model integrations is 20 min. Atmo-

spheric forcing fields are based on hourly output from

the recent NASA Global Modeling and Assimilation

Office MERRA reanalysis product (see online at http://

gmao.gsfc.nasa.gov/research/merra), at a resolution of

0.58 3 0.678 in latitude and longitude, respectively. The

Catchment model version and model parameters used

here are identical to that of the GEOS-5 version used
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for MERRA data production. MERRA relies on the

assimilation of a vast number of conventional and sat-

ellite observations of atmospheric fields but does not

include a land surface analysis. The assimilation of near-

real-time rain-rate retrievals (Rienecker et al. 2008)

over the ocean has a very minor impact on the system.

MERRA precipitation estimates over land are thus

distinct from the observational precipitation products

discussed below.

Three additional precipitation products, listed in

Table 1, were used to correct the MERRA precipitation

toward gauge- and satellite-based observations. Specif-

ically, we used the National Oceanic and Atmospheric

Administration (NOAA) Climate Prediction Center

Merged Analysis of Precipitation (CMAP; Xie and

Arkin 1997; http://www.esrl.noaa.gov/psd/data/gridded/

data.cmap.html) product (‘‘standard’’ version), the Global

Precipitation Climatology Project (GPCP) version 2.1

pentad product (Huffman et al. 1997; Xie et al. 2003),

and the NOAA Climate Prediction Center (CPC) daily

unified precipitation analysis over the United States

(Higgins et al. 2000; available online at ftp://ftp.cpc.ncep.

noaa.gov/precip/wd52ws/us_daily). These corrections re-

sult in a total of four different precipitation datasets that

were used to force the land model, as shown in the top

portion of Fig. 1: (i) standard MERRA precipitation, (ii)

MERRA corrected to CMAP, (iii) MERRA corrected

to GPCP, and (iv) MERRA corrected to CPC. The re-

mainder of the surface meteorological forcing inputs

(including air temperature and humidity, radiation,

wind speed, and surface pressure) were taken from

MERRA data without applying further observations-

based corrections.

The CMAP and GPCP products are available as pen-

tad averages on a 2.58 3 2.58 global grid and are based on

a merger of satellite measurements (infrared and mi-

crowave) with global rain gauge observations from the

Global Precipitation Climatology Center (Table 1). The

GPCP pentad product is computed by adjusting the pentad

CMAP product to monthly GPCP estimates (which differ

from the CMAP estimates primarily in the input and

processing of the satellite observations and in the ap-

proach for combining the satellite and gauge inputs). In

contrast, the CPC product is available as daily averages

on a 0.258 grid over the continental United States only and

is based entirely on rain gauge measurements (Table 1).

The corrected MERRA precipitation forcings were

obtained as follows. First, the hourly MERRA total pre-

cipitation was time-averaged and regridded to the scale

of the correcting dataset (i.e., to pentad and 2.58 resolution

for CMAP and GPCP corrections, and to daily and 0.258

resolution for CPC corrections). Next, for each pentad or

daily time step and each grid cell, scaling factors were

computed by determining the ratio of the correcting

dataset to the standard MERRA data (i.e., on the grid

and at the time scale of the correcting observations). Fi-

nally, the scaling factors were regridded back to the

MERRA grid and applied to the MERRA data for each

hourly time step within the averaging period, that is, for

a given grid cell the same scaling factor was applied to the

120- (24-) hourly MERRA values within a given pentad

(day). If for a given grid cell the aggregated MERRA

value was zero, the corresponding corrected MERRA

precipitation values were set to zero, even if the correcting

observations may have indicated nonzero precipitation.

The scaling factors derived for total precipitation were

used to correct MERRA total precipitation, convective

precipitation, and snowfall (all of which are separate

forcing inputs to the Catchment model).

Because the CMAP, GPCP, and CPC products (Table 1)

are based on precipitation observations from satellites

FIG. 1. Overview of model and assimilation integrations and the

summary skill analyses of Figs. 4 and 6.

TABLE 1. Overview of precipitation products. The CMAP, GPCP, and CPC products were used to correct MERRA

precipitation (section 2d).

Product Version Time step

Spatial resolution

(latitude 3 longitude) Domain Data type

MERRA N/A Hourly 0.508 3 0.678 Global Reanalysis

CMAP ‘‘Standard’’ Pentad 2.508 3 2.508 Global Satellite 1 gauge

GPCP v2.1 Pentad 2.508 3 2.508 Global Satellite 1 gauge

CPC ‘‘ll_stdqc_new’’ Daily 0.258 3 0.258 Continental United States Gauge
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and/or gauges well beyond the data used in the MERRA

precipitation assimilation, we expect that the corrected

MERRA precipitation forcing is more accurate than the

standard MERRA precipitation product. Hereafter, we

refer to the four precipitation forcing datasets (and to the

output from the corresponding land model or assimila-

tion integrations) as ‘‘MERRA,’’ ‘‘CMAP,’’ ‘‘GPCP,’’

and ‘‘CPC,’’ respectively. Note again, however, that the

corrected precipitation datasets are scaled versions of the

MERRA precipitation forcing, rather than the CMAP,

GPCP, or CPC datasets themselves. Most importantly,

the diurnal cycle, the frequency and intensity of rainfall

events at the subpentad (or subdaily) scale, and the sub-

2.58 spatial variations (for CMAP and GPCP) are entirely

based on MERRA estimates. We did not independently

validate the MERRA and corrected MERRA pre-

cipitation data at the hourly scale.

b. Soil moisture retrievals and data assimilation

Two surface soil moisture retrieval products were as-

similated into the Catchment model: (i) the operational

NASA Level-2B AMSR-E ‘‘AE-Land’’ product (ver-

sion V09; Njoku 2010) archived at the National Snow and

ice Data Center (NSIDC) and (ii) the AMSR-E Land

Parameter Retrieval Model (LPRM) product (EASE

grid version 03) developed at the VU Amsterdam (Owe

et al. 2008). In both cases, we used retrievals based on

X-band brightness temperatures from ascending and

descending overpasses. We also repeated our analysis

with LPRM retrievals based on C-band brightness tem-

peratures (not discussed here) and reached the same

general conclusions.

Quality control prior to data assimilation was based on

information provided along with the AMSR-E obser-

vations and information from the land model. Specifically,

we assimilated only NSIDC retrievals that were flagged

for light and moderate vegetation, no precipitation, no

snow cover, no frozen ground, no radio frequency inter-

ference (RFI), and a heterogeneity index of less than 5 K

(based on higher-resolution AMSR-E channels at higher

frequencies). The latter criterion excludes soil moisture

retrievals that are affected by open water. These criteria

are identical to those of Reichle et al. (2007) except that

the present study also assimilated soil moisture retrievals

with a corresponding AMSR-E flag for moderate vege-

tation (which were excluded in Reichle et al. 2007). For

LPRM we similarly used the quality-control flags that are

provided with the retrievals. Additionally, we excluded

soil moisture retrievals from assimilation whenever the

land surface model indicated active precipitation, frozen

soil, or nonzero snow cover.

The 1D ensemble Kalman filter (EnKF) with 12 en-

semble members was used to assimilate the satellite

retrievals into the model at 3-h intervals (Reichle et al.

2002; Reichle and Koster 2003; Reichle et al. 2007). As

mentioned above, separate assimilation integrations were

conducted for the NSIDC and the LPRM retrievals.

Meteorological forcing inputs and model prognostic

variables were perturbed using the perturbations pa-

rameter values listed in Table 2 [identical to those of

Reichle et al. (2007) after correcting for a typographical

error in their Table 2 regarding the standard deviations of

the ‘‘catchment deficit’’ and ‘‘surface excess’’ perturba-

tions]. Moreover, we addressed the systematic biases

that are typical of satellite and model estimates of soil

moisture (Reichle et al. 2004; Reichle and Koster 2004;

Drusch et al. 2005; Gao et al. 2007). Prior to data assim-

ilation and separately for NSIDC and LPRM, we (i)

scaled the AMSR-E retrievals into the model’s climatol-

ogy and (ii) correspondingly scaled the input observation

error standard deviations (Reichle et al. 2007). The re-

trievals were scaled by matching the cumulative distri-

bution function of the retrievals to that of the model

(separately for each location). The input observation er-

ror standard deviation for the unscaled retrievals was set

to 0.02 m3 m23 for NSIDC and 0.08 m3 m23 for LPRM,

commensurate with the large difference in variability (or

dynamic range) in the two products. Prior to data as-

similation, these input observation error standard de-

viations are scaled by the ratio of the soil moisture time

TABLE 2. Parameters for perturbations to meteorological forcing inputs and Catchment model prognostic variables. Time series

correlations were imposed via a first-order autoregressive model [AR(1)].

Perturbation

Additive (A) or

multiplicative (M)? Std dev

AR(1) time-series

correlation scale

Cross correlation with perturbations in

P SW LW

Precipitation (P) M 0.5 1 day 1.0 20.8 0.5

Downward shortwave

radiation (SW)

M 0.3 1 day 20.8 1.0 20.5

Downward longwave

radiation (LW)

A 50 W m22 1 day 0.5 20.5 1.0

Catchment deficit A 0.05 mm 3 h N/A

Surface excess A 0.02 mm 3 h
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series standard deviation of the Catchment model to

that of the NSIDC (or LPRM) retrievals (separately for

each location). After scaling, the observation error stan-

dard deviations are similar for NSIDC and LPRM and

range from 0.01 to 0.11 m3 m23 depending on local cli-

matological conditions, consistent with the values listed

in (de Jeu et al. 2008). See section 3c for more discussion

of the observation and model error parameters.

c. In situ soil moisture observations

Two different sets of in situ soil moisture observations

were used to analyze the skill of the satellite, model, and

assimilation estimates. The first was from the USDA

Soil Climate Analysis Network (SCAN, available online

at http://www.wcc.nrcs.usda.gov; Schaefer et al. 2007).

Hourly soil moisture measurements were taken with a

device measuring the dielectric constant of the soil (Ste-

vens Water Hydra Probe sensors inserted horizontally at

depths of 5, 10, 20, 50, and 100 cm wherever possible).

There are a total of 123 SCAN sites in the contiguous

United States that provide some data during the experi-

ment period (Fig. 2). For data from each SCAN site we

applied extensive quality control steps that included au-

tomatic detection of problematic observations and a vi-

sual inspection of the time series. Specifically, we excluded

data that are obviously unrealistic (e.g., excluding data

outside of the physically possible range, or data related

to discontinuities in the time series that could not be

explained by physical processes). We also excluded soil

moisture measurements that were taken under frozen

conditions (according to SCAN soil temperature mea-

surements), or data affected by inconsistencies that are

most likely due to changes in sensor calibration or sensor

installation. After quality control of the hourly data, the

SCAN observations were aggregated into daily averages.

As will be discussed below (section 2d), we assess skill

in terms of time series correlation coefficients for daily

average anomalies at times and locations when AMSR-E

observations were assimilated. The number of SCAN

sites that we could use for skill assessment was therefore

constrained by the availability of the assimilated AMSR-E

retrievals and by the number of in situ measurements.

SCAN sites where either NSIDC or LPRM retrieval skill

is substantially worse than the corresponding baseline

MERRA skill (specifically, DR , 20.2) were excluded

from the analysis. For instance, SCAN sites located in

the northeastern United States were typically excluded

from analysis because of missing or poor AMSR-E re-

trievals, which can be attributed to the usually dense,

forested vegetation cover (Fig. 2). At these locations,

AMSR-E soil moisture retrievals are of poor quality and

should not be assimilated. Eventually, 37 SCAN sites

were used to assess the skill of surface soil moisture

estimates and 35 of the 37 sites were used to assess the

skill of root zone moisture estimates (Fig. 2 and Table 3).

The impact of this screening is obviously to exclude

FIG. 2. Location of (crosses) SCAN sites and (plus signs) ARS CalVal watersheds. SCAN sites not used here are marked with dots. The

background shows the MODIS land cover product based on UMD classification (see online at http://duckwater.bu.edu/lc/mod12q1.html)

at ;2-km resolution.
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locations for which the skill contribution from precip-

itation corrections may be dominant, which will be dis-

cussed further in section 4.

The second set of in situ observations is from dense

sensor networks that are located in four USDA Agri-

cultural Research Service (ARS) experimental water-

sheds (also shown in Fig. 2) and that were specifically

designed for the validation of satellite soil moisture re-

trievals (Jackson et al. 2010). These four watersheds are

hereinafter termed ‘‘CalVal’’ watersheds and include

(from west to east) Reynolds Creek, (RC; Idaho), Walnut

Gulch (WG; Arizona), Little Washita, (LW; Oklahoma),

and Little River (LR; Georgia). At each of the four wa-

tersheds, long-term surface soil moisture measurements

were collected at hourly (RC) or half-hourly (WG, LW,

and LR) intervals using between 8 and 15 sensors per

watershed (Stevens Water Hydra Probe sensors inserted

horizontally at 5-cm depth), distributed over an area of

size similar to that of the AMSR-E satellite footprint.

From the individual sensor measurements within each

watershed, area-average surface soil moisture mea-

surements were calculated via Thiessen polygon aver-

aging. During a series of field experiments, the CalVal

surface soil moisture measurements were shown to be

TABLE 3. Coordinates of SCAN sites. Also shown are the surface soil moisture skill levels of the MERRA, NSIDC, and LPRM

estimates and the number of daily average anomalies that contribute to the skill computation (based on joint availability of NSIDC,

LPRM, and SCAN in situ data). Boldface R values indicate the maximum among the three listed R values at each site. Sufficient numbers

of root zone soil moisture measurements were not available for SCAN sites 2057/AL and 2058/AL.

Scan ID U.S. states Lat Lon No. of data

Skill (anomaly R)

Model Satellite (AMSR-E)

MERRA NSIDC LPRM

2115 AL 32.43 285.75 881 0.42 0.41 0.39

2058 AL 34.43 287.00 1282 0.42 0.31 0.29

2057 AL 34.78 286.55 1532 0.56 0.39 0.43

2030 AR 34.85 291.88 843 0.53 0.52 0.50

2091 AR 34.28 291.35 697 0.33 0.35 0.34

2026 AZ 31.73 2110.05 1700 0.40 0.26 0.47
2013 GA 33.88 283.43 1038 0.41 0.39 0.35

2027 GA 31.50 283.55 1956 0.38 0.62 0.43

2031 IA 42.02 293.73 1258 0.54 0.39 0.39

2068 IA 42.43 295.77 1126 0.47 0.39 0.51
2029 ID 43.07 2116.75 1315 0.38 0.36 0.54

2094 KS 39.70 296.16 1001 0.59 0.43 0.42

2005 KY 37.10 287.83 164 20.06 0.28 0.19

2002 MN 45.42 293.95 1195 0.44 0.52 0.34

2061 MO 38.87 294.03 660 0.68 0.49 0.53

2047 MO 40.25 293.72 887 0.59 0.41 0.47

2110 MS 32.86 290.52 880 0.36 0.41 0.23

2032 MS 33.38 290.65 1755 0.27 0.16 0.22

2109 MS 33.66 290.57 913 0.53 0.60 0.58

2086 MS 33.09 290.51 690 0.45 0.54 0.46

2087 MS 33.00 291.06 1041 0.52 0.32 0.37

2019 MT 48.48 2109.80 1521 0.56 0.49 0.59

2119 MT 47.06 2109.95 337 0.68 0.51 0.57

2074 OR 42.02 2121.39 1076 20.03 0.11 0.14
2037 SC 34.30 279.73 1639 0.14 0.38 0.43

2076 TN 35.07 286.89 1585 0.47 0.38 0.43

2077 TN 35.14 286.19 1453 0.38 0.32 0.35

2016 TX 30.08 295.98 1086 0.52 0.46 0.50

2106 TX 33.63 2102.75 974 0.52 0.38 0.51

2104 TX 33.62 2102.04 1224 0.52 0.54 0.54

2105 TX 33.55 2102.37 1077 0.52 0.38 0.52

1056 UT 41.22 2111.29 150 0.70 0.76 0.78
2126 UT 39.42 2111.57 184 0.44 0.54 0.27

2125 UT 38.15 2112.25 200 0.33 0.17 0.14

2131 UT 39.02 2110.16 193 0.16 0.56 0.67

2132 UT 39.53 2110.81 208 0.20 0.35 0.38
2021 WA 47.00 2118.57 1496 0.43 0.45 0.44

Avg 1006 0.43 0.41 0.42

OCTOBER 2011 L I U E T A L . 755



representative of the watershed average, with an error

on the order of 0.01 m3 m23 (Jackson et al. 2010). For

this study, we excluded (hourly or half hourly) watershed-

averaged CalVal observations if the corresponding soil

temperature was below 28C or if fewer than 6 sensors

contributed to the watershed average. From the remain-

ing measurements, daily average values were computed

if at least 16 h were observed on a given day.

In each of the four CalVal watersheds there is also an

independent SCAN profile sensor, which allows us to as-

sess the impact of using the less-representative but more

widely available SCAN observations in our skill assess-

ment of surface soil moisture estimates (section 3b). Un-

fortunately, sufficiently verified root zone soil moisture

measurements from the CalVal watersheds were not

available for this study.

d. Skill metric

Absolute values for soil moisture are difficult to ob-

tain at the global scale, and bias errors (in terms of the

mean and in terms of the variability) are common for

satellite, model, and in situ soil moisture estimates (Reichle

et al. 2004). Besides the above-mentioned discrepancy

between the point-scale SCAN measurements and the

horizontally distributed satellite, model, and assimila-

tion estimates, there is also a discrepancy in the vertical

support of the in situ, satellite, and model/assimilation

soil moisture. AMSR-E retrievals of soil moisture are

shallowest, representing on average only the top 1–2 cm

of the soil column. Catchment model surface soil moisture

covers the top 2 cm of the soil column. In situ surface soil

moisture observations (SCAN and CalVal) were taken at

5-cm depth. Catchment model root zone soil moisture

covers the top 1 m of the soil profile and is validated with

a depth-weighted average of the SCAN sensors at 5, 10,

and 20 cm, because SCAN data at 50 and 100 cm were

too sparse relative to data for the upper layers. Fortu-

nately, temporal variations (in a percentile sense) are

typically more important for model-based applications

(Entekhabi et al. 2010b). We therefore assess skill here

in terms of time series correlation coefficients for daily

average anomalies.

For the results presented here, we computed the av-

erage skill across all sites (or watersheds) as follows. First,

we computed the monthly mean seasonal climatology for

the experiment period at each site and for each dataset.

Next, we computed the corresponding daily anomalies by

subtracting the seasonal climatology from the soil mois-

ture estimates and then calculated the anomaly R values

for each site. Finally, we averaged the R values across all

sites. Minimum data requirements were applied as fol-

lows. Across the experiment period of 17 yr, we required

a minimum of 8 daily averages within a month for

computing a monthly mean value; otherwise, the

monthly mean was set to a no-data value. We then re-

quired at least three valid monthly mean values for a given

calendar month for computing monthly climatological

values (on which anomalies are based). We also required

a minimum of 100 daily average anomalies (from any

calendar month) for computing the anomaly R value.

Next, we computed approximate 95% confidence in-

tervals for the R estimates at each site (or watershed)

based on the Fisher Z transform. These confidence in-

tervals depend on the estimated R value and on the

number of degrees of freedom, which is approximated

here by the number of data points. The approximate

95% confidence intervals for the average skill estimates

across all sites were then computed by averaging the 95%

confidence intervals of the N contributing sites and sub-

sequent division by the square root of N. In a separate

analysis (not shown here) we also computed R values and

corresponding 95% confidence intervals across all sites

by first normalizing the anomalies (with the site- and

dataset-specific standard deviation of the anomalies) and

then pooling the normalized anomalies from all sites for

direct computation of the R values and associated confi-

dence intervals. While the R values and confidence in-

tervals are slightly different with this alternative strategy,

we arrived at the same general conclusions. In either case,

the 95% confidence intervals computed here are only an

approximation and likely underestimate the true width of

the confidence interval because of temporal error corre-

lations, which implies that the number of degrees of free-

dom is less than the number of data points.

The results presented in section 3 are based on anomaly

R values computed from data at times and locations for

which NSIDC and LPRM retrievals were assimilated (and

whenever in situ measurements were available). This

strategy allows us to compare the skill of the NSIDC and

LPRM retrievals with that of the model and assimilation

integrations. Such masking, however, overestimates the

overall skill contribution of the retrieval assimilation

relative to that of the precipitation corrections. Unlike

precipitation observations, soil moisture retrievals are not

always available at regular intervals (e.g., because the

soil moisture signal may be seasonally masked by dense

vegetation). In section 4 we will discuss the impact of

computing the R values based on all nonwinter times and

show that the broad conclusions reached in section 3 are

not sensitive to the specific temporal mask that is used.

3. Results

As outlined in section 2, we assess skill in terms of the

anomaly time series correlation coefficient R against in

situ measurements from the SCAN sites and the ARS
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CalVal watersheds. While the SCAN measurements are

widely distributed over the continental United States,

they are also single-profile, point-scale measurements

and thus less appropriate for our purposes of validating

satellite-scale soil moisture estimates. In contrast, the

CalVal in situ measurements match the satellite footprint

scale, but are available for only four watersheds. By as-

sessing the skill of the satellite, model, and assimilation

estimates against both in situ datasets and combining the

results, we can draw more robust conclusions about rel-

ative skill levels, and we can isolate the contributions of

the precipitation corrections and the assimilation of soil

moisture retrievals. To this end, we will first discuss the

skill of the satellite, model, and assimilation estimates

against the SCAN in situ measurements, which will in-

troduce the main conclusions of our paper (section 3a).

Thereafter, we will assess the skill of the SCAN obser-

vations against the CalVal in situ measurements and

then repeat the skill assessment of the satellite, model,

and assimilation estimates against the CalVal in situ

measurements (section 3b). The salient feature of this

second analysis is that we assess skill against SCAN and

CalVal in situ measurements based on the same times

and locations. The combination of the results of the two

skill analyses will corroborate our main conclusions and

offer additional insights.

a. Skill assessment against SCAN in situ
measurements

Figure 3 summarizes the skill of the satellite, model,

and assimilation estimates when validated against SCAN

in situ measurements (section 2c). The black bars in Fig. 3

show the skill (anomaly R) of the model soil moisture

estimates, with skill averaged over 37 SCAN sites for

surface soil moisture and over 35 for root zone soil mois-

ture (Fig. 2 and Table 3). As expected, the quality of the

precipitation forcing is reflected in the skill of the soil

moisture estimates obtained from the land model. Model

skill with MERRA precipitation is lowest (R 5 0.43 for

surface and R 5 0.47 for root zone soil moisture). CMAP

and GPCP precipitation forcing resulted in similarly

higher model skills (R 5 0.47 for surface and R 5 0.50–

0.51 for root zone soil moisture). The highest model skill

is obtained with CPC precipitation forcing (R 5 0.51 for

surface and R 5 0.55 for root zone moisture). The relative

skill of surface and root zone soil moisture estimates is

consistent across the four model datasets (i.e., CPC is most

skillful, followed by CMAP and GPCP, and MERRA is

least skillful).

When using the MERRA model skill as a baseline, the

skill improvements obtained from the CMAP and GPCP

precipitation corrections thus are DR ’ 0.04 for surface

and DR ’ 0.03–0.04 for root zone moisture. CPC cor-

rections resulted in higher skill improvements of DR ’

0.08 for both surface and root zone soil moisture. The

approximate 95% confidence intervals of the R estimates

(also shown in Fig. 3) are around 60.01, which indicates

that the improvements in skill from the precipitation

corrections are statistically significant.

The skill of AMSR-E satellite retrievals of surface soil

moisture, shown in the yellow and light blue bars of Fig. 3,

is R 5 0.41 for NSIDC, and R 5 0.42 for LPRM. Both

are worse than the model skills (e.g., DR ’ 20.01 for

MERRA, and DR ’ 20.09 for CPC). The improvements

that can be expected from the assimilation of the AMSR-E

retrievals are therefore limited, particularly when precip-

itation corrections are also applied. Nevertheless, Fig. 3

shows (red and blue bars) that on average data assimi-

lation improves the skill of the model estimates in all cases.

Assimilating LPRM retrievals generally yields greater

improvements than assimilating NSIDC retrievals. When

comparing the skill of each assimilation integration with

the skill of the corresponding model integration (with

same precipitation forcing), the improvement from the

assimilation of AMSR-E soil moisture retrievals ranges

from skill improvements of DR ’ 0.04 (for root zone

moisture with CPC precipitation and NSIDC retrievals)

to DR ’ 0.12 (surface moisture with MERRA precip-

itation and LPRM retrievals). As expected (Reichle et al.

2008b), the skill improvement from the assimilation of

FIG. 3. Average time series correlation coefficient R with SCAN

in situ surface and root zone soil moisture anomalies for estimates

from two AMSR-E retrieval datasets (NSIDC and LPRM), the

Catchment model forced with four different precipitation datasets

(MERRA, CMAP, GPCP, and CPC), and the corresponding data

assimilation integrations (DA/NSIDC and DA/LPRM). Average

is based on 37 SCAN sites for surface and 35 SCAN sites for root

zone soil moisture (Table 3). Error bars indicate approximate 95%

confidence intervals.
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soil moisture retrievals is greatest when the model is

least skillful (MERRA). The approximate 95% confi-

dence intervals of the R estimates are around 60.01 and

indicate that the skill improvements from the retrieval

assimilation are statistically significant.

From the results shown in Fig. 3 we can now summarize

the soil moisture skill improvements from better precip-

itation forcing, assimilation of AMSR-E soil moisture

retrievals, and their combination. Figure 1 outlines how

the skill contributions are summarized. The model-only

integration with uncorrected MERRA forcing serves as

the baseline (top-left corner of Fig. 1). The skill contri-

bution from precipitation corrections was then computed

as the average of the differences between model skill with

corrected precipitation forcing (CMAP, GPCP, and CPC;

top-right corner of Fig. 1) versus the baseline MERRA

skill, computed separately for surface and root zone soil

moisture. Similarly, the contribution of retrieval assimi-

lation was computed as the average of the skill difference

between the assimilation estimates without precipita-

tion corrections (i.e., with MERRA precipitation forcing;

bottom-left corner of Fig. 1) and the baseline MERRA

estimates. The additional contribution of precipitation

corrections over and above retrieval assimilation is com-

puted by differencing the (average) skill of the full system

(with precipitation corrections and retrieval assimila-

tion; bottom-right corner of Fig. 1) and the skill of the

retrieval assimilation without precipitation corrections

(bottom-left corner of Fig. 1). Likewise, we also compute

the additional contribution of retrieval assimilation over

and above precipitation corrections by differencing the

(average) skill of the full system (bottom-right corner of

Fig. 1) and the average skill of the model-only integrations

with precipitation corrections (top-right corner of Fig. 1).

Figure 4 shows the summary skill analysis against SCAN

measurements. The (average) skill improvement from

precipitation corrections is DR ’ 0.06 for surface and

DR ’ 0.05 for root zone soil moisture. Greater skill

improvements of DR ’ 0.09 for surface and DR ’ 0.07

for root zone soil moisture are realized through retrieval

assimilation. Moreover, precipitation corrections and re-

trieval assimilation contribute largely (although not en-

tirely) independent information, which is evidenced by the

additional skill improvement when both precipitation

corrections and retrieval assimilation are employed.

Specifically, additional skill improvements from adding

the retrieval assimilation to precipitation corrections are

around DR ’ 0.08 for surface and DR ’ 0.07 for root

zone soil moisture. Additional skill improvements from

adding the precipitation corrections to retrieval assimi-

lation are around DR ’ 0.05 for surface and root zone

soil moisture. Consequently, the combined skill im-

provements from precipitation corrections and retrieval

assimilation are considerable (DR ’ 0.14 for surface and

DR ’ 0.12 for root zone moisture).

b. Comparison of SCAN and CalVal in situ
measurements and associated skill values

The SCAN measurements are an attractive choice for

assessing the skill of our soil moisture estimates because of

the availability of both surface and root zone soil moisture

measurements, the relatively long data record, and the

wide distribution across the continental United States.

However, the SCAN measurements also suffer from a key

disadvantage. At each SCAN site, there is only one profile

of sensors measuring soil moisture at the point scale,

which stands in stark contrast to the distributed ;40-km

scale of the satellite, model, and assimilation estimates.

Moreover, resource constraints limited the amount of data

quality control performed by the SCAN data providers.

Even though the SCAN measurements were considered to

be the validating ‘‘truth’’ in the previous section, they are

thus themselves subject to considerable measurement

uncertainties and representativeness errors.

In contrast, in situ observations from the four ARS

CalVal watersheds offer soil moisture estimates at a scale

that is more appropriate for assessing the skill of satellite,

FIG. 4. Average skill (anomaly correlation coefficient) im-

provement over model estimates from precipitation corrections

and retrieval assimilation when validated against SCAN in situ

measurements of (first and third bars from left) surface and (second

and fourth bars from left) root zone soil moisture. The two left bars

show the average skill improvement from precipitation corrections

and the additional improvement from retrieval assimilation. The

two right bars show the average skill improvement from retrieval

assimilation and the additional skill from precipitation corrections

(see text for details).
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model, and assimilation estimates. These estimates are

based on extensive knowledge of local conditions and

have been processed to a high degree of quality. How-

ever, there are only four CalVal watersheds. Moreover,

root zone soil moisture measurements of a comparably

high level of quality are not readily available for this study

at present.

In this section, we first assess the quality of the point-

scale SCAN in situ measurements taken in the four

CalVal watersheds against the corresponding (satellite

scale) CalVal in situ measurements. Thereafter, we re-

peat the previous section’s skill assessment of the sat-

ellite, model, and assimilation estimates against both

SCAN and CalVal in situ measurements. Most impor-

tantly, we compute R values based on exactly the same

times and locations for both in situ data sources.

First, Table 4 shows the skill (in terms of anomaly R)

of the SCAN against the CalVal in situ measurements of

surface soil moisture for the four CalVal watersheds.

The average skill of the SCAN in situ measurements is

R 5 0.76, ranging from R 5 0.68 (LW) to 0.84 (RC).

Such high (anomaly) correlation between the two in situ

datasets is a first indication that the SCAN measure-

ments are indeed useful for assessing the skill of satellite,

model, and assimilation estimates. (Note that the R values

of Table 4 were computed without masking to NSIDC or

LPRM retrievals. We obtain very similar R values if we

consider in situ measurements only at times when NSIDC

and LPRM retrievals are also available.)

Next, we compare the skill of surface soil moisture es-

timates from the AMSR-E retrievals, model integrations,

and assimilation estimates separately against the two

in situ datasets. For this analysis, a common space–time

mask was applied based on the joint availability of SCAN,

CalVal, NSIDC, and LPRM data. Figure 5 shows anomaly

R values averaged over the four CalVal watersheds for

all model and assimilation integrations (including SCAN

site 2023 in the LW watershed, which was excluded from

the results in Fig. 3 because at this location DR , 20.2 for

SCAN; section 2c). It is immediately obvious from Fig. 5

that the (anomaly) R values against the CalVal data are

overall considerably higher than the (anomaly) R values

against SCAN data, by DR ’ 0.09–0.15 for satellite,

model or assimilation skills. This difference primarily

reflects the errors in the SCAN data that are due to the

mismatch between the point scale of the in situ measure-

ments and the distributed scale of the satellite, model, and

assimilation estimates. The CalVal measurements are

averages over multiple sensors and therefore less noisy

and more spatially representative, resulting in higher skill

numbers (in terms of anomaly R) when used to validate

the distributed satellite, model, and assimilation estimates.

Regardless of the obvious differences in their magni-

tudes, both sets of skill numbers (left and right groups of

bars in Fig. 5) show very similar patterns of relative skill

for the CalVal watersheds: (i) precipitation corrections

(CMAP, GPCP, and CPC) improve model soil moisture

skills (over MERRA precipitation forcing), and the im-

provement is similar for the three corrected precipitation

TABLE 4. Anomaly time series correlation coefficient of surface soil moisture from SCAN and CalVal measurements and their ap-

proximate 95% confidence intervals for the four CalVal watersheds (RC, WG, LW, and LR). The final column shows the R value averaged

over the four locations.

ARS CalVal watershed ID RC WG LW LR

Avg

SCAN site ID 2029 2026 2023 2027

U.S. states ID AZ OK GA

No. of daily average data 1304 1553 1760 2442 1765

Anomaly R 0.84 6 0.02 0.73 6 0.02 0.68 6 0.02 0.79 6 0.01 0.76 6 0.01

FIG. 5. Average time series correlation coefficient R over ARS

CalVal watersheds vs (left group of bars) CalVal and (right group

of bars) SCAN surface soil moisture anomalies for estimates from

AMSR-E retrievals (NSIDC and LPRM), the Catchment model

forced with four different precipitation datasets (MERRA,

CMAP, GPCP, and CPC), and the corresponding assimilation in-

tegrations (DA/NSIDC and DA/LPRM). Error bars indicate ap-

proximate 95% confidence intervals. The R values are based on

a common space–time mask for SCAN and CalVal measurements

and for SCAN include only the four SCAN sites collocated with

CalVal watersheds.
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datasets; (ii) NSIDC retrieval skill is worse than model

skill; (iii) LPRM retrieval skill is greater than that of the

baseline MERRA estimates, and comparable with the

model estimates using CMAP, GPCP or CPC corrected

precipitation; (iv) nevertheless, retrieval assimilation al-

ways improves over the skill of the model; (v) the LPRM

retrieval assimilation skill is consistently higher than that

of the NSIDC retrieval assimilation, due to the higher

skill of the LPRM in the CalVal watersheds (in terms of

the anomaly R metric); and (vi) the largest improvements

from retrieval assimilation are realized when the model is

forced with MERRA and, surprisingly, CPC precipitation.

On closer inspection, we found that the CPC precipitation

corrections for the LW watershed resulted in the largest

improvements in model soil moisture most of the time,

but also produced a large overestimation of soil moisture

for about a dozen daily averages. These extreme outliers

reduce the overall skill of the CPC integration to the level

of the CMAP and GPCP integrations. The assimilation of

satellite retrievals effectively removed the outliers and

consequently resulted in large improvements over the

model skill.

Finally, we again condense the results by translating

the improvements shown in Fig. 5 into a summary plot.

Figure 6 compares the contributions of precipitation cor-

rections and retrieval assimilation to the skill of surface soil

moisture when evaluated against the two sets of in situ

measurements using a common mask. The combined skill

improvement from precipitation corrections and retrieval

assimilation is very similar for validation against mea-

surements from CalVal (DR ’ 0.16) and SCAN (DR ’

0.17). The contribution of precipitation corrections alone

to the skill improvement is comparable when evaluated

against CalVal measurements (DR ’ 0.08) or against

SCAN measurements (DR ’ 0.07). The contribution of

retrieval assimilation is also comparable for both in situ

datasets (DR ’ 0.11 for CalVal and DR ’ 0.12 for SCAN).

Consequently, the additional contributions from adding

precipitation corrections on top of retrieval assimilation

(or vice versa) are also comparable. The additional skill

improvement from precipitation corrections is DR ’

0.05 versus either CalVal or SCAN measurements. The

additional skill improvement from retrieval assimilation

is DR ’ 0.08 versus CalVal and DR ’ 0.1 versus SCAN

measurements.

In summary, Fig. 6 demonstrates that using CalVal or

SCAN in situ measurements yields comparable absolute

and relative surface soil moisture improvements from

precipitation corrections and retrieval assimilation, de-

spite the difference in quality between the two in situ

datasets and the apparent difference in the absolute

levels of skill (Fig. 5). The general consistency of the skill

improvement results based on the two different in situ

datasets indicates that the SCAN measurements can in

fact be used to assess the relative contributions of pre-

cipitation corrections and retrieval assimilation to the skill

of surface soil moisture estimates over a wider range of

locations. Typically, root zone soil moisture has less spa-

tial variability than surface soil moisture. By implication,

using single-profile SCAN sites for the assessment of skill

improvements (in terms of the anomaly R metric) should

thus also be possible. The results of this section corroborate

our main result of section 3a and Fig. 4: precipitation cor-

rections and retrieval assimilation contribute important

and largely independent amounts of information to the

soil moisture estimates.

c. Data assimilation diagnostics

The contribution of the retrieval assimilation to the

skill improvement of model soil moisture estimates de-

pends on the calibration of the data assimilation system.

The skill improvements documented above suggest that

our system is adequately calibrated, although not nec-

essarily optimal. We can shed more light on this issue by

examining internal diagnostics from the data assimila-

tion system (see Reichle et al. 2002, 2010 for details).

Here, we analyze two diagnostics based on the sequence

of innovations, or observation-minus-forecast residuals.

For a filter that operates according to its underlying as-

sumptions (that various linearizations hold, and that model

and observation errors are unbiased, uncorrelated and

normally distributed), the time average of the (ensemble

FIG. 6. Average skill improvement over model estimates of

surface soil moisture from precipitation corrections and retrieval

assimilation when validated against (first and third bars from left)

CalVal or (second and fourth bars) corresponding SCAN in situ

measurements.
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mean) innovations sequence equals zero. Moreover, the

standard deviation of the ‘‘normalized’’ innovations

equals 1. The latter diagnostic compares the actual spread

in the innovations to what the filter expects. A simple

interpretation is that the assumed error bars of a model

forecast and its corresponding observation must have an

appropriate overlap.

Of particular interest here is the relative performance

of the NSIDC and LPRM assimilation integrations.

Figure 7 displays the distribution of the two internal filter

diagnostics across the 37 SCAN sites used in the skill

assessment of section 3a. The top panel indicates that

despite the a priori scaling of the NSIDC and LPRM

retrievals, minor biases of up to ;0.015 m3 m23 persist at

some sites. The large climatological differences between

NSIDC retrievals and Catchment model estimates (not

shown) imply that the a priori scaling approach (section

2b) for the NSIDC retrievals relies more heavily on higher-

order moments of the cumulative distribution functions

(when compared to the scaling of LPRM retrievals into

the Catchment model climatology). Because of data

availability constraints, estimates of these higher-order

moments are more uncertain than those for lower-order

moments (such as the mean and variance), which may

explain the slightly larger innovations bias values of the

NSIDC assimilation integrations (when compared to the

bias values of the LPRM assimilation integrations).

The standard deviation of the normalized innovations,

shown in the bottom panel of Fig. 7, is typically below

the target value of 1. This indicates that the model and/

or the observation error standard deviations were over-

estimated. Again, the NSIDC assimilation integrations

exhibit slightly less optimal innovations statistics, which is

again consistent with the large climatological differences

between the NSIDC retrievals and the Catchment model

estimates. A closer inspection (not shown) reveals that

for six SCAN sites (2057/AL, 2058/AL, 2115/AL, 2013/GA,

2076/TN, and 2077/TN) the time series standard de-

viation of NSIDC retrievals is just 0.01 m3 m23, which is

smaller by a factor of 5 than that of the Catchment model

surface soil moisture and thus leads to large values of the

scaled observation error standard deviation (input to the

assimilation system, section 2b) and thus small values of

the normalized innovations variance. If we remove these

six SCAN sites from the analysis, the differences in the

normalized innovations variances between NSIDC and

LPRM vanish (not shown), while the relative improve-

ments of section 3a are largely unchanged. In any case, the

fact that the innovations diagnostics are roughly compa-

rable for the NSIDC and LPRM assimilation integrations

indicates that the assimilation performance (relative to its

unknown optimum) is comparable for the two retrieval

datasets, which lends further support to the broad con-

clusions reached in this paper.

4. Discussion and conclusions

Precipitation is the dominant source of temporal

variability for soil moisture. Thus, the most straightfor-

ward way to improve soil moisture estimates from land

surface models is to improve their precipitation forcing

(Gottschalck et al. 2005; Guo et al. 2006; Kato et al.

2007). Our study indicates that large-scale soil moisture

estimates can be enhanced by using precipitation ob-

servations to correct MERRA reanalysis precipitation

and then forcing the land model offline with the cor-

rected precipitation. As expected, corrections based on

more accurate precipitation observations (such as the

gauge-based, daily, 0.258 CPC product) provide greater

improvements than corrections based on global-scale

products (such as the satellite- and gauge-based, pentad,

2.58 CMAP and GPCP products), with average skill

improvements of DR ’ 0.06 for surface and DR ’ 0.05

FIG. 7. (top) Mean of innovations (m3 m23) and (bottom) stan-

dard deviation of normalized innovations (dimensionless) for sur-

face soil moisture from integrations that assimilate (first group of

four box plots) NSIDC retrievals or (second group of four box

plots) LPRM retrievals. Each box plot indicates the average,

standard deviation, minimum, and maximum of the respective in-

novations diagnostic across the 37 SCAN sites.
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for root zone soil moisture (in terms of improvements in

the anomaly correlation coefficient R over the skill of

the baseline MERRA estimates).

Future experiments could be designed to investigate

whether CPC corrections are superior to CMAP or GPCP

corrections because of (i) better quantitative accuracy, (ii)

higher spatial resolution, and/or (iii) finer temporal res-

olution. In this study, precipitation corrections were lim-

ited to daily (CPC) or pentad (CMAP and GPCP) totals.

By further correcting known problems of the reanalysis

precipitation (in the diurnal cycle and in the frequency

and intensity of rainfall events), additional gains in soil

moisture skill may be realized, but this is left for future

studies. Similarly, observations-based corrections to forc-

ing variables other than precipitation (primarily incident

shortwave radiation) may yield additional gains in the

accuracy of model-based soil moisture estimates.

The United States has a dense network of preci-

pitation gauge observations. For regions with sparse

precipitation observations, the skill improvement from

precipitation corrections could be smaller because

fewer precipitation observations are available. In such

regions, however, there are also typically fewer radio-

sonde and aircraft observations that support the atmo-

spheric analysis, thus leading to lower-quality baseline

precipitation estimates and leaving more room for im-

provement. The relative importance of precipitation

corrections and retrieval assimilation could therefore be

smaller or larger in data-sparse regions. Unfortunately,

soil moisture observations are typically also unavailable

for such regions, making it impossible to assess soil mois-

ture skill.

This study focuses on long-term precipitation products

that are available for the entire MERRA period (1979–

present). Current generation high-resolution products

(Joyce et al. 2004; Huffman et al. 2007) and future prod-

ucts from the planned Global Precipitation Measurement

(GPM) constellation of satellites should estimate global

precipitation with improved accuracy and space–time

coverage (Smith et al. 2007). This should enable addi-

tional gains in the skill of model-based soil moisture esti-

mates at the global scale. In any case, it is very encouraging

that the demonstrated improvements can be achieved

through very simple and computationally inexpensive

precipitation corrections using currently available long-

term global data products.

Assimilating satellite retrievals of surface soil mois-

ture into the land surface model can further enhance the

skill of soil moisture estimates, but the required land data

assimilation systems are much more complex and com-

putationally challenging than the above-mentioned pre-

cipitation corrections. Assimilation of AMSR-E surface

soil moisture retrievals yielded skill improvements of

DR ’ 0.09 for surface and DR ’ 0.07 for root zone soil

moisture, even though the assimilated AMSR-E retrievals

were on average worse (by DR ’ 20.01) than even the

baseline model estimates. The relative improvements

from precipitation corrections and retrieval assimilation

are comparable when measured against two independent

sets of in situ observations (SCAN and CalVal). The

improvements are also consistent with previous studies

(Reichle et al. 2007, 2008b). Such skill improvement from

satellite retrievals of soil moisture is essential for regions

with sparse or unreliable precipitation observations (Crow

2003).

Naturally, the magnitude of the improvement from sat-

ellite soil moisture retrieval assimilation depends on the

quality of the retrievals. Based on updated data inputs and

the latest version of the GMAO land data assimilation

system, the analysis in this paper confirms our previous

finding (Reichle et al. 2007) that land model estimates of

soil moisture are generally superior to AMSR-E satellite

retrievals in terms of the anomaly R metric (provided

adequate precipitation forcing data are available). Careful

quality control of the assimilated retrievals and/or ap-

propriate adjustments to the observation and model error

parameters are thus required to realize the gains noted

above. If the quality of the assimilated retrievals is not

properly accounted for, the assimilation estimates may

well be worse than the model estimates, resulting in a net

loss of soil moisture information.

The noted improvements from precipitation correc-

tions are average gains over 37 SCAN sites across the

continental United States and are not necessarily realized

at individual sites. Besides the obvious selection of loca-

tions with low and moderate vegetation (largely based

on quality control of the AMSR-E observations), we did

not detect any geographical pattern related to land cover

or soil types in the skill improvement values. Additional

sensitivities in the improvements, for example, to veg-

etation water content or the type of precipitation (con-

vective vs large scale), are left for future studies.

In this context it is also important to recognize that

AMSR-E was not designed specifically for measuring

soil moisture, and that it is still an open question how soil

moisture can best be retrieved from AMSR-E or similar

observations of opportunity, including passive and active

(radar) microwave measurements at the C and X band

(Njoku et al. 2003; Jackson et al. 2004, 2010; Gao et al.

2006; de Jeu et al. 2008; Bartalis et al. 2007). The advent

of newer satellite instruments that acquire L-band mi-

crowave observations (primarily SMOS and SMAP) will

alleviate this constraint and should yield more robust

skill improvements. Moreover, the skill improvements

from data assimilation documented here are not neces-

sarily optimal. Additional gains in skill may be possible
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through further refinements in the quality control module

and through further tuning of the model and observation

error parameters that are inputs to the assimilation sys-

tem (Crow and Reichle 2008; Reichle et al. 2008a; Crow

and Van den Berg 2010), but this is left for future studies.

It is no surprise that the combination of precipitation

corrections and retrieval assimilation generates the larg-

est improvement in the skill of soil moisture estimates.

Figure 4 illustrates that the additional contributions

of retrieval assimilation over precipitation corrections

(DR ’ 0.08 for surface and DR ’ 0.07 for root zone soil

moisture) or precipitation corrections over retrieval

assimilation (DR ’ 0.05 for surface and root zone soil

moisture) are only somewhat smaller than the individual

contributions themselves, indicating that each of the two

sources contribute largely independent information.

As can be expected as a result of the single-profile,

point-scale character of the SCAN in situ observations,

skill levels of satellite, model, and assimilation estimates

are generally lower when measured against SCAN ob-

servations than when measured against CalVal obser-

vations. Nevertheless, the relative skill contributions of

precipitation corrections and retrieval assimilation are

remarkably similar, regardless of whether skill is mea-

sured against the SCAN or the CalVal observations. The

combined results from the skill analyses against the

SCAN and the CalVal in situ measurements suggest that

the conclusions drawn from the SCAN network with its

wider coverage are sensible.

As mentioned in section 2d, the present study may

overestimate the skill contributed by the soil moisture

retrieval assimilation for two reasons: For the compu-

tation of the R values (i) we selected only SCAN sites

with skillful AMSR-E retrievals and (ii) we used only

times and locations for which AMSR-E retrievals were

assimilated. We addressed the sensitivity of our conclu-

sions to the latter issue by repeating the analysis with

a different mask that screens out only cold season pro-

cesses, regardless of the availability of AMSR-E retrievals

(‘‘nonwinter’’ mask). Specifically, we only excluded data

from the computation of the R values for which the base-

line MERRA model estimates indicated that the ground

was frozen or snow covered. Put differently, times for

which AMSR-E retrievals were not assimilated will now

also contribute to the skill metric. With this nonwinter

mask, we obtain skill improvement values (not shown)

that are very similar to those discussed in section 3a and

Fig. 4.

Of course, the analysis with the nonwinter mask still

only considers the 37 SCAN sites for which at least 100

AMSR-E retrievals of acceptable skill were available

during the 17-yr experiment period (section 2b). If we

also included sites for which soil moisture retrievals are

never available (e.g., densely forested areas or locations

with prohibitive radio-frequency interference), the con-

tribution of precipitation corrections (relative to retrieval

assimilation) may be enhanced. To increase the impact

of retrieval assimilation in such locations, the 1D EnKF

used here could be replaced with a distributed (3D)

assimilation approach (Reichle and Koster 2003). Given

the limited spatial error correlation distances, however,

we do not expect that a distributed filter could make up

for the lack of soil moisture retrievals in areas where

AMSR-E retrievals are not skillful.

Based on SCAN in situ measurements only, our study

suggests that the assimilation of surface soil moisture

retrievals improves root zone soil moisture, confirming

earlier results (Reichle et al. 2007). A more thorough

assessment of root zone estimates based on distributed

(multiprofile) in situ estimates is left for future study,

pending the availability of corresponding high-quality in

situ measurements. To this end, root zone estimates

from a dense sensor network are needed, similar to the

CalVal data used here for surface soil moisture.

The main conclusions of this study are that (i) satellite-

and gauge-based precipitation corrections and (ii) the

assimilation of surface soil moisture observations con-

tribute important and largely (although not entirely)

independent information to the skill of soil moisture es-

timates from a land data assimilation system. At present,

the combination of state-of-the-art precipitation products

and soil moisture satellite retrievals (or corresponding

microwave observations) in a land data assimilation sys-

tem can already provide considerable improvements in

global soil moisture data products. Additional gains may

be realized through the joint assimilation of surface soil

moisture retrievals from active microwave sensors (such

as the Advanced Scatterometer) and passive microwave

sensors (such as AMSR-E) because the two systems

have complementary strengths (Liu et al. 2010). Looking

ahead, improved data products of soil moisture (based on

current and future L-band active and passive microwave

satellite observations) and of precipitation (from GPM

and from higher-resolution atmospheric modeling and

analysis), along with improvements in land surface models

and data assimilation systems should further enhance

surface and root zone soil moisture estimates at the

global scale.
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